31
SSWG May 9, 2005 1 PFIS/NIR Upgrade Andy Sheinis Asst. Professor UW Astronomy (9/2005) Currently: NSF Fellow, Lick Observatory [email protected]

PFIS/NIR Upgrade

  • Upload
    rad

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

PFIS/NIR Upgrade. Andy Sheinis Asst. Professor UW Astronomy (9/2005) Currently: NSF Fellow, Lick Observatory [email protected]. Investigators. P.I.: Andy. Sheinis Co-I.s: Ken. Nordsieck, Matt Bershady, John Hoessel, Ron Reynolds, Ed Churchwell, Jay Gallagher, Amy Barger, - PowerPoint PPT Presentation

Citation preview

Page 1: PFIS/NIR Upgrade

SSWG May 9, 2005 1

PFIS/NIR Upgrade

Andy Sheinis

Asst. Professor UW Astronomy (9/2005)

Currently: NSF Fellow, Lick Observatory

[email protected]

Page 2: PFIS/NIR Upgrade

SSWG May 9, 2005 2

Investigators

• P.I.: Andy. Sheinis • Co-I.s: Ken. Nordsieck, • Matt Bershady, • John Hoessel, • Ron Reynolds, • Ed Churchwell, • Jay Gallagher, • Amy Barger, • Eric Wilcots

Page 3: PFIS/NIR Upgrade

SSWG May 9, 2005 3

Design Team

• Andy Sheinis, project manager• New Hire, project scientist• Harland Epps, optical design• Mike Smith, mechanical design• Jeff Percival, Software• Ken Nordsieck, polarimetry • SAL, engineering and fabrication

Page 4: PFIS/NIR Upgrade

SSWG May 9, 2005 4

Summary

• 900 nm- (1.5-1.7? um)• Broad-band Imaging• Narrow-band Imaging: Dual

etalon• Low-Moderate spectroscopy

(R~1000-5000) (1.25 sec slit)• R ~ 10,000 with image slicer?

• Narrow-band polarimetry• Spectro-polarimetry

• Lyman alpha Galaxies (Z~10?)

• Low metallicity superstar clusters in the SMC

• Chemistry of the Galactic Bulge

• Brown dwarfs/ circumstellar disks.

• Magnetic field mapping of the Galactic center

Page 5: PFIS/NIR Upgrade

SSWG May 9, 2005 5

Science goals : NIR Narrow-band imaging

• Cosmological studies of z > 6 galaxies:• The key goal is to map the evolution of the luminosity function of more than 100,

z > 6 galaxies to compare to WMAP results and determine if the change in the ionization state of the IGM can be seen in a reduction of the luminosity functions at some redshift.

• In an observed 100 Angstrom range at 8000-9000 Angstrom, the current narrow-band surveys typically find about 100 galaxies per square degree with Lyman-alpha line fluxes of a few times 1e-17 ergs/cm2/s.

• NIR Fabry-Perot imaging of pre-determined small range of z>6 redshift space scanning through 100-200 Angstroms will find the higher redshift counterparts of these Lyman-alpha emission lines in the natural dark regions in the sky between the OH lines.

• NIR Fabry-Perot imaging will give higher resolution than the current narrow-band surveys. Furthermore, with long exposure times, the sensitivities will be higher.

• With a delta-lambda of a few Angstroms PFIS/NIR can cover the 100 Angstrom bin in 10-20 steps. Several hours/step will likely be required for good S/N resulting in an overall scan of 20-40 hours for a particular field.

Page 6: PFIS/NIR Upgrade

SSWG May 9, 2005 6

Science goals : NIR Moderate R Spectroscopy

• The First Stars: NIR spectroscopy of star forming regions and superstar clusters in the Small Magellanic Cloud will provide new data on low-metallicity star formation processes. This topic will allow comparison to star-formation models of the first stars in the universe.

• Star and Planet formation. A remarkably hot topic is the study of Brown dwarfs, young stars and circumstellar disks. Observations of the NIR excess in the spectra of brown dwarfs will allow us to determine whether this excess is due to circumstellar disks of planet-forming material.

Page 7: PFIS/NIR Upgrade

SSWG May 9, 2005 7

Science goals : NIR Spectropolarimetry

• Simultaneous visible/NIR spectropolarimetry will unique at this aperture:

• Rapidly variable polarimetric objects• Magnetic cataclysmic variables• Pre-main sequence stars• Novae, supernovae• Gamma ray bursts (longitudinal advantage) • The NIR spectropolarimetric imaging:• Magnetic field mapping of regions of the Milky Way. • Fabry-Perot spectropolarimetry of scattered emission lines in dusty

starburst galaxies will allow 3-D reconstruction of outflow from these galaxies.

Page 8: PFIS/NIR Upgrade

SSWG May 9, 2005 8

Minimize Risks

• PFIS/Visible significant engineering overlap• Extensive performance modelling up-front.• Very experienced lens designer.• Band-limit at the detector > semi-warm spectrograph.• Cool camera (not cryogenic) temperatures > warm pupil

with no internal pupil relay.• Experienced VPH partner (UNC)• Experienced etalon partner (Rutgers)• Existing instrument frame.• Re-use mechanical design (articulating mechanism,

insertion mechanism, mounts etc….)

Page 9: PFIS/NIR Upgrade

SSWG May 9, 2005 9

Constraints

• Visible optical design, sharing collimator• Thermal constraints• Weight budget• Dispersion (collimator diameter and camera angle)• All transmissive• VPH gratings• FOV

Page 10: PFIS/NIR Upgrade

SSWG May 9, 2005 10

System Parameters:First Guess

• Blue cut-off ~850nm, based on optical design constraints.

• Red cut-off ~1.4-1.7 um, dependent on modeling results

• FOV: 8 arc minutes

• Single 2K X 2K chip

• Plate scale: 6 pix/arcsec = 108 um/sec

• Camera EFL: 302 mm

• Beamsize: 149mm

• Final F/#: F/2.02

• No cold stop

• Low emissivity warm-stop

• Cooled cam (-20 to -80C)

• Band-limited detector

Page 11: PFIS/NIR Upgrade

SSWG May 9, 2005 11

Existing or Planned Systems

name aperture Instrument detector FOV Resolution Fabry perot Polarimetryimaging spectroscopycoveragel/dl

M " " umSALT 11 PFIS/NIR Hawaii2 340 x 340340 0.85-1.6 1000-10,000 yes yesKeck 10 Nirspec 1024 x 1024 InSb 46 x 46 0.9-5 2000, 25,000HET 9.2 MRS beam 2 0.9-1.8 5000, 20,000Subaru 8.3 OHS hawaii 1K MCT 108 20,60 0.9-2.5 300-1000

IRCS 4.8-9.6 1.0 - 5.0 200-20000CIAO 22 1.0 - 5.0 300-1200

ESO 8.3 CRIRES 1024 x 1024 InSb x 3 50 1.0 - 5.0 20K-100KESO 8.3 ISAAC hawaii 1K MCT x 2 120 1.0-2.5 500-3000 yesESO 8.3 SINFONI Hawaii 2K 0.8x 0.8 to 8x8 1-2.5 2000-4000ESO 8.2 CONICA 1024 x 1024 InSb Alladin 1.0 - 5.0 yes yesGemini N 8.1 NIRI 1024 x 1024 InSb Alladin 22-110 1.0 - 5.0 460-1650 k-bandGemini N NIFS 3 x 3 0.95-2.4 5300Gemini S 8.1 Phoenix 1024 x 1024 InSb Alladin 14 1.0 - 5.0 50K-75KGemini S GNIRS 1024 x 1024 InSb Alladin 1.0-5.5 1700-18000 yesMMT 6.5 MMIRS 408 x 408 1.0-2.5 3000Magellan I 6.5Magellan II 6.5

Page 12: PFIS/NIR Upgrade

SSWG May 9, 2005 12

Performance Modelling

Atmosphere telescope

Pupil stop

slit Warm Collimator

grating

Cooled camera

cold detector

Thermal radiation dispersedThermal radiation non-dispersed

Dewar

Page 13: PFIS/NIR Upgrade

SSWG May 9, 2005 13

Worst Offender, Warm Slit

Atmosphere telescope

Pupil stop

slit Warm Collimator

grating

Cooled camera

cold detector

Thermal radiation dispersedThermal radiation non-dispersed

Dewar

Page 14: PFIS/NIR Upgrade

SSWG May 9, 2005 14

Worst Offender, Warm Slit

Atmosphere telescope

Pupil stop

slit

Warm Collimator

grating

Cooled camera

cold detector

Thermal radiation dispersedThermal radiation non-dispersed

Dewar

Narcissus mirror

Page 15: PFIS/NIR Upgrade

SSWG May 9, 2005 15

2nd Offendor, warm enclosure

Atmosphere telescope

Pupil stop

slit

Warm Collimator

grating Cooled camera

cold detector

Dewar

Enclosure radiation

Page 16: PFIS/NIR Upgrade

SSWG May 9, 2005 16

Performance Modelling

Atmosphere telescope

Pupil stop

slit

Warm Collimator

grating Cooled camera

cold detector

Dewar

Narcissus mirror

Page 17: PFIS/NIR Upgrade

SSWG May 9, 2005 17

Performance Modelling:Sample imaging output

• Output: (photo-electrons/ sec)

• total sky noise = 23.0

• in-band sky noise= 16.7

• j-band sky noise = 4.3

• h-band sky noise = 22.5

• dewar noise = 1.55e-18

• telescope emission = 7.7

• warm optics noise = 2.2

• cold optics noise = 0.57

• readnoise = 7.50

• Det. noise(dark cur) = 0.31

• Inst. noise (imaging) = 10.9

• Input parameters:

• Filter start=1480 nm

• Filter end=1500 nm

• Cold optics temp=253K

• Warm optics temp=273K

• Det. band =900-1500nm

Page 18: PFIS/NIR Upgrade

SSWG May 9, 2005 18

Performance Modelling:Sample Spectroscopic output

Tc=253 KTw=273K

Page 19: PFIS/NIR Upgrade

SSWG May 9, 2005 19

Performance Modelling:Sample Spectroscopic output

Tc=233 KTw=233K

Page 20: PFIS/NIR Upgrade

SSWG May 9, 2005 20

Optical Design

Pre-DewarDewar

Page 21: PFIS/NIR Upgrade

SSWG May 9, 2005 21

Optical Design

Page 22: PFIS/NIR Upgrade

SSWG May 9, 2005 22

Optical Design

Pre-Dewar

Dewar

Page 23: PFIS/NIR Upgrade

SSWG May 9, 2005 23

Optical Design

Page 24: PFIS/NIR Upgrade

SSWG May 9, 2005 24

Enabling Technology : VPH Gratings

• Partner with UNC, discussion with Chris Clemens.

• Test facilities at SAL and UNC

• Other vendors: KOSI, Ralcon, Wasach, CSL

Λ

α

d

)sin(2 αλ nm Λ=

Page 25: PFIS/NIR Upgrade

SSWG May 9, 2005 25

Transmittance of dichromated gelatin as a function of wavelength for a 15 m thick layer which has been uniformly exposed and processed. As measured by KOSI, courtesy Sam Barden.

Good News

Page 26: PFIS/NIR Upgrade

SSWG May 9, 2005 26

Sample Gratings

• Modeled efficiency (Chris Clemens)

• 560 l/mm

• 40 degrees (alpha + beta)

• dn=0.1

• Thickness = 6.4 um

• Throughput > 90% from 1140-1360

Page 27: PFIS/NIR Upgrade

SSWG May 9, 2005 27

Sample Gratings

• Modeled efficiency (Chris Clemens)

• 990 l/mm

• 87 and 63 degrees (alpha + beta)

• dn=0.1

• Thickness = 6.4 um

• Throughput > 80% over 100nm bands

Page 28: PFIS/NIR Upgrade

SSWG May 9, 2005 28

Sample Gratings

• Modeled efficiency (Chris Clemens)

• 1119 l/mm

• 110, 96, 77, and 65 degrees (alpha + beta)

• dn=0.1

• Thickness = 6.4 um

• Throughput > 70% over 100nm bands

Page 29: PFIS/NIR Upgrade

SSWG May 9, 2005 29

Enabling technology: Fabry-Perot etalons

• Partner with Ted Williams; Rutgers

• Two possible vendors, Queensgate and Michigan Aerospace have given verbal bids.

• Mechanics and insertion mechanisms will share technology with PFIS/VIS

• Optical testing at SAL: (Sheinis optical lab)

Page 30: PFIS/NIR Upgrade

SSWG May 9, 2005 30

Facilities

• SAL• Sheinis lab• Bershady lab• UNC• Rutgers• Other partners? • We would welcome discussions with other

potential collaborators within the consortium.

Page 31: PFIS/NIR Upgrade

SSWG May 9, 2005 31

Cost

Cost estimates (in thousands, USD) Materials fabrication Engineering Total VPH Gratings (UNC) 40 80 120.00 Grating/ Articulation Mechanism SAL 21.39 157.92 179.31 Polarimetric Optics 50 30 80.00 Optics Mechanisms SAL 9.55 9.55 camera 0.00 optics COSI 56.2 60 116.20 coatings COSI 20 20.00 mechanics pilot group 20 24 54.5 98.50 0.00 detector 0.00

chip Rockwell Hawaii 2k 350 350.00

Dewar IR Labs 90 20 110.00 electronics IR Labs 75 75.00 Fabry-Perot Etalons Qeensgate 347.7 347.70 controller Qeensgate 71 71.00

insertion mechanism SAL/Rutgers 15 25 40.00

total components 1617.26

Salaries months rate fringe

Sheinis Summer salary 6 8.8 0.335 70.49 Postdoc 36 4.4 0.215 192.46 Instrument Scientist 36 6.3 0.335 302.78

Engineer/Physicist 36 6.3 0.335 302.78

total salaries 868.50 contingency 35 % 870.02

Grand Total 3355.78

matching funds UW Match Sheinis startup 300.00 UW capital Sheinis startup 40.00 UW postdoc Sheinis Startup 50.00 UNC match 120.00 total match 510.00

Net proposal 2845.78

match percentage 0.15