43
Petroleum Generation Istvan Csato University of South Carolina Department of Geological Sciences Petroleum Geology Class 745 Spring 2002

Petroleum Generation

  • Upload
    frayne

  • View
    125

  • Download
    2

Embed Size (px)

DESCRIPTION

Petroleum Generation. Petroleum Geology Class 745 Spring 2002. Istvan Csato University of South Carolina Department of Geological Sciences. I. Organic Matter. II. Petroleum Generation. III. Source Rock Evaluation. IV. Thermal Maturation Models. Sequence Stratigraphy. - PowerPoint PPT Presentation

Citation preview

Page 1: Petroleum Generation

Petroleum Generation

Istvan CsatoUniversity of South CarolinaDepartment of Geological Sciences

Petroleum Geology Class 745Spring 2002

Page 2: Petroleum Generation

I. Organic MatterI. Organic Matter

II. Petroleum GenerationII. Petroleum Generation

III. Source Rock EvaluationIII. Source Rock Evaluation

IV. Thermal Maturation ModelsIV. Thermal Maturation Models

Page 3: Petroleum Generation

Sequence Stratigraphy

Page 4: Petroleum Generation

Controls on total organic matter

• Productivity• Grain size• Sedimentation rate• Oxidation/Reduction

Page 5: Petroleum Generation

Preservation of Organic Matter

Demaison and Moore, 1980

Page 6: Petroleum Generation

Conversion of Organic Matter

Barker, 1996

• biopolymers• bitumen• biomarkers

Page 7: Petroleum Generation

I. Organic MatterI. Organic Matter

II. Petroleum GenerationII. Petroleum Generation

III. Source Rock EvaluationIII. Source Rock Evaluation

IV. Thermal Maturation ModelsIV. Thermal Maturation Models

Page 8: Petroleum Generation

Conversion of Kerogen

Barker, 1996

Organic matter: 1%

• Kerogen 90%• Bitumen 10%

Page 9: Petroleum Generation

Kerogen Evolution Paths

Tissot et al., 1974

Page 10: Petroleum Generation

Variation of the HC/TOC, Los Angeles and Ventura Basins

Philippi, 1965

Page 11: Petroleum Generation

Depths and Temperatures for Onset of Oil Generation

Tissot et al., 1975

Page 12: Petroleum Generation

General Scheme for Hydrocarbon Formation

Tissot et al., 1974

Page 13: Petroleum Generation

I. Organic MatterI. Organic Matter

II. Petroleum GenerationII. Petroleum Generation

III. Source Rock EvaluationIII. Source Rock Evaluation

IV. Thermal Maturation ModelsIV. Thermal Maturation Models

Page 14: Petroleum Generation

1. Does the the rock have sufficient organic matter?2. Is the organic matter capable of generating?3. Has this organic matter generated petroleum?4. Has the generated petroleum migrated out?5. Is the rock oil-prone or gas-prone?

Questions for exploration geologist:

Page 15: Petroleum Generation

Quantity of Organic Matter:TOC must be greater than 0.5%

Type of Organic Matter:

Page 16: Petroleum Generation

Thermal Alteration Index, Paris Basin

Correia, 1971

Maturity

Page 17: Petroleum Generation

Kerogen Maturation Profile, Louisiana Gulf Coast

Barker, 1996

Vitrinite: woody, Type III kerogen

Maturity

Page 18: Petroleum Generation

Vitrinite Reflectance Data

Dow and O’Connor, 1982

Maturity

Page 19: Petroleum Generation

Vitrinite Reflectance Profile, Elmsworth Field, Canada

Welte et al., 1984

Maturity

Page 20: Petroleum Generation

Disturbing of Vitrinite Reflectance

Barker, 1996

Page 21: Petroleum Generation

Elemental Data For Kerogen

Peters, 1986

Page 22: Petroleum Generation

Increase of S1 with Depth

Barker, 1996

Pyrolysis

Tmax

S1

S2

Page 23: Petroleum Generation

Yield of Hydrocarbons with Increasing Temperature

Barker, 1974

Pyrolysis

Tmax

S2/TOC = HIS3/TOC = OI

S1

S2

S1 S2

Page 24: Petroleum Generation

Changes in TR and Tmax

Espitalie et al., 1977

Page 25: Petroleum Generation

HI versus OI

Peters, 1986

Page 26: Petroleum Generation

Evaluation of Geochemical Parameters

Peters, 1986

Page 27: Petroleum Generation

I. Organic MatterI. Organic Matter

II. Petroleum GenerationII. Petroleum Generation

III. Source Rock EvaluationIII. Source Rock Evaluation

IV. Thermal Maturation ModelsIV. Thermal Maturation Models

Page 28: Petroleum Generation

KER = BIT + RESIDUE

At t=0KER= Vo, BIT=0

At t>0KER=Vo-Vt, BIT=Vt

dV/dt= k(Vo-Vt)

k=A*e[-E/RT]

Kinetics of Chemical Reactions

Arrhenius equation

R =Gas constant (0.008314 KJ/mol0K)T=absolute temperatureE=activation energyA=frequency factor

Page 29: Petroleum Generation

Activation Energy

Barker, 1996

Page 30: Petroleum Generation

Bond Energies

March, 1985

Page 31: Petroleum Generation

Increasing Reaction Rate with Temperature

Barker, 1996

Page 32: Petroleum Generation

Bitumen Release Curves with Different Activation Energies

Barker, 1996

Page 33: Petroleum Generation

Bitumen Release Curves with Different Frequency Factors

Barker, 1996

Page 34: Petroleum Generation

Increase in Reaction Rate

Barker, 1996

Page 35: Petroleum Generation

Bitumen Release Curves for 8 Parallel Reactions

Juntgen and Klein, 1975

Page 36: Petroleum Generation

Distribution of Activation Energies, Paris Basin

Tissot et al., 1987

Page 37: Petroleum Generation

Temperature Factors used by Lopatin

Barker, 1996

maturity = (ti)(rni) TTI (Time-Temperature Index)

Page 38: Petroleum Generation

Burial History Plot

Barker, 1996

Page 39: Petroleum Generation

Calculated TTI

Barker, 1996

Page 40: Petroleum Generation

Calibration of TTI

Waples, 1980

Page 41: Petroleum Generation

Time-Temperature Reconstruction, Big Horn Basin, Montana

Hagen and Surdam, 1984

Page 42: Petroleum Generation

Kinetic Model of Tissot and Espitalie, 1975

Tissot and Espitalie, 1975

Page 43: Petroleum Generation

Kinetic Model of Sweeney et al., 1987

Sweeney et al., 1987