18
RENDlCONTI OELLA SOC IETA ITAUANA 01 MINERALOGIA E PETROLOGIA, "83, \bE. pp. '69 S86 Petrochemistry and mineralogy of Monte Cacciagrande granite Stilo Unit (Calabrian-Peloritan Arc, Southern Italy) ANTONIA MESSINA, SELMA Russo, FRANCESCA STAGNO, MARJA CALANDRA Istituto $denze della Terra dell'Universit a, 98166 SanI'Ag.t. (Menina) - The Stilo Unit crys talline pre-Triassic basement (southern sector of C.labrian·Peloritan Arc) is mainly composed of Iate-Hercynian composite p1utons. This paper describes the of studies on the Monte Cacciagrande intrusive body, $OUlhernmost Serre, near the tectonic contact with the underlying Aspromonte Unit. The mo n zogranilic to granodi oritic Mont e Cacciagrande mass is chal"ll cterized by the occurrence of K-feldspar mcgacrysts_ 1 15 calc-alkali ne peraluminous character is shown by the presence of magmalic muscovite, sillimanite, aooalusite and cordierite. The chemical composition of the intrusion indicates that it is a single body with internal che:miC1ll fractional ion. This granitoid was affected by a non-pervasive cataclastic to Oaser deformation probably related to the resuh of emplacement of the Stilo and Asptomonte Units in Alpine limes. Compared with other inlrusives of the Slilo Unit, the Monte Cacdagrande granite appears petrologically distinct from the: nearby peralumi l1OU$ Ciuanova gnnite, and shows si milar petrology to the t wo & rre stocku (biotite + /- muscovi te Imd hi otite + /- ampibole granite 10 granodiorite respectively and shows a higher dcgree of magmalic evolution. Key words : Peraluminous granites, major and trace clement chemical analyses, eleclron microprobe mineralogical analyses, Stilo Unit , Calabrian-Pel ori li.n Arc. Introduction and geological oudines The Monte Cacciagrande granitic mass occurs in Southern Serre, Calabria, Ital y. It belongs to the Stilo Unit, which is regarded as the uppermost tectonic element of the Calabrian-Peloritan fuc, a complex nappe pile related to the Alpine Orogeny (AMoDlo MORELLI et al ., 1976). According to BONA RDI et al. (l 984a) the Stilo Unit in the Serre extends from the Satriano area to Fiumara di Antonimina. It is also present as several klippen, both north and south of this area_ It consists of a ba seme nt of Paleozo ic metamorphics, intruded by late-Hercynian granitoids and all covered by Mesozoic carbonates. The mefi1morphic hasement is derived from an arenaceous·pelitic sequence with interbedded volcanoclastic and felsic volcanics, together with rare basic volcanics. A later thermal event is irregularly distributed , locally reaching the hornblende-horn fel s fades_ This thermal event is due to the intrusion of the piu tons and is superimposed on the regional metamorphism. The Stilo Unit piu tons have been divided into two suites ( PAGUON ICO & ROITUR A, 1979; D' AMlco et al. , 1981b): a mesaluminous s ui te, including the Serre composite granitic to tonalitic stock, and a peraluminous suite, including the Cittanova monzogranite to Ieucogranodiorite and the Serre «fine-grained granitic to granodioritic bodies». according to CRlSCI et al. (1985) and DEL MO RO et al. (1986) the tectonic contact between the Stilo Unit (Auct,) and the underlying Polia·Copanello Unit (Auct.) (AMoDlo MoRELU et al., 1976; BONARDI et al., 1984a) ousscuts two calc-alkaline tonalitic intru sions showing similar petrology and a common origin. Consequently this contact is

Petrochemistry and mineralogy of Monte Cacciagrande ...rruff.info/rdsmi/V43/RDSMI43_569.pdf · mineralogical analyses, Stilo Unit, Calabrian-Pelorili.n Arc. Introduction and geological

Embed Size (px)

Citation preview

RENDlCONTI OELLA SOCIETA ITAUANA 01 MINERALOGIA E PETROLOGIA, "83, \bE. ~).2, pp. '69 S86

Petrochemistry and mineralogy of Monte Cacciagrande granite Stilo Unit (Calabrian-Peloritan Arc, Southern Italy)

ANTONIA MESSINA, SELMA Russo, FRANCESCA STAGNO, MARJA CALANDRA Istituto $denze della Terra dell'Universita, 98166 SanI'Ag.t. (Menina)

AIISTK~cr. - The Stilo Unit crys talline pre-Triassic basement (southern sector of C.labrian·Peloritan Arc) is mainly composed of Iate-Hercynian composite p1utons. This paper describes the ~ults of studies on the Monte Cacciagrande intrusive body, $OUlhernmost Serre, near the tectonic contact with the underlying Aspromonte Unit .

The monzogranilic to granodioritic Monte Cacciagrande mass is chal"llcterized by the occurrence of K-feldspar mcgacrysts_ 115 calc-alkaline peraluminous character is shown by the presence of magmalic muscovite, sillimanite, aooalusite and cordierite. The chemical composition of the intrusion indicates that it is a single body with internal che:miC1ll fractional ion. This granitoid was affected by a non-pervasive cataclastic to Oaser deformation probably related to the resuh of emplacement of the Stilo and Asptomonte Units in Alpine limes.

Compared with other inlrusives of the Slilo Unit, the Monte Cacdagrande granite appears petrologically distinct from the: nearby peralumil1OU$ Ciuanova gnnite, and shows similar petrology to the two & rre stocku (bioti te + /- muscovi te Imd hioti te + /- ampibole granite 10 granodiorite respectively and shows a higher dcgree of magmalic evolution.

Key words: Peraluminous grani tes, major and trace clement chemical analyses, eleclron microprobe mineralogical analyses, Stilo Unit , Calabrian-Pelori li.n Arc.

Introduction and geological oudines

The Monte Cacciagrande granitic mass occurs in Southern Serre, Calabria , Italy. It belongs to the Stilo Unit, which is regarded as the uppermost tectonic element of the Calabrian-Peloritan fuc, a complex nappe pile related to the Alpine Orogeny (AMoDlo

MORELLI et al ., 1976). According to BONARDI et al. (l 984a) the

Stilo Unit in the Serre extends from the Satriano area to Fiumara di Antonimina. It is also present as several klippen, both north and south of this area_ It consists of a basement of Paleozo ic metamorphics, intruded by late-Hercynian granitoids and all covered by Mesozoic carbonates. The mefi1morphic hasement is derived from an arenaceous·pelitic sequence with interbedded volcanoclastic and felsic volcanics, together with rare basic volcanics . A later thermal event is irregularly distributed , locally reaching the hornblende-hornfels fades_ This thermal event is due to the intrusion of the piu tons and is superimposed on the regional metamorphism. The Stilo Unit piu tons have been divided into two suites (PAGUONICO &

ROITURA, 1979; D' AMlco et al. , 1981b): a mesaluminous suite, including the Serre composite granitic to tonalitic stock, and a peraluminous suite, including the Cittanova monzogranite to Ieucogranodiorite and the Serre «fine-grained granitic to granodioritic bodies».

according to CRlSCI et al. (1985) and DEL MORO et al. (1986) the tectonic contact between the Stilo Unit (Auct,) and the underlying Polia·Copanello Unit (Auct.) (AMoDlo MoRELU et al., 1976; BONARDI et al., 1984a) ousscuts two calc-alkaline tonalitic intrusions showing similar petrology and a common origin. Consequently this contact is

~70 A. MESSINA, S. RUSSO, F. STAGNO, M. CALANDRA

• •

• • °Z omaro

• • •

• • • • • •

P ia no

• •

• • • • • • • • •

------- ' ~'O

• • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • + M. Catcia grande

• •

• • • • • •

• •

CJ· CJb 0,

• •

• •

A ~ ..

Fig. 1. - Geological sketch map of boundary between Stilo Unit (Southern Scnc Massif) and. Aspromonle Unit. Legend: 1) QUlmernary. 2) «Argille varieoloria (CretllCeOus-Oligocene). 3) StiIo-Capo d 'Orlando Formation (Latc OJigoccm: - Early Miocene), Sti/o Unit: 4) Monlc Caexiagrandc granite; .51 Cinanova gnniu:; 6) Mctamorphics. Aspromonte Unit: 7) Granites; 8) Metamorphics; 9) FaultS. 10) Overthrusts. A _ somhern seclor of Calabrian-Pdoritan Arc: a) Sti[o Unit (Aucl.);.bl Monte CacciagrarKIc grani te:; cl Polia.Copanc:Uo Unit (AuC!.) .

not considered an Alpine overthrust but a shear 130-140 Ma in age (Rh/Sr method) . According to the above-mentioned opinion, the Stilo Unit (Auet.) and the Polia CopanelIo

Unit (Auct.) form a single Alpine tectonic Unit.

Very little information on the Monte Cacciagrande granitic mass is given in ATZORl

PETROCHEMISTRY AND MINERALOGY OF MONTE CACCIAGRANOE GRANITE · STIW UNIT ECT. 571

TABLE 1 Modal data 0/ the Monte Cacciagrande granite

( n .. 27) range •

quartz 21.2 38 .2 32 . 6 plagiod il5t 27 .~ 37 . 7 31.1

K-hldspar 13.2 ~1.1 23.1

biotite '" 12 .~ '.2 .uscowi t e 2. ' 6. ' .. , s illiunite • 0 . 3

anddus ite • 0 . 6

cordierite • 0.1

accessories , 0.6

opaques • O. )

n .. nu.ber of sa.ples; ~ _ average;

S.O ... s tandard deviation .

S.O.

U

2.2

6. 2

2.1

1.0

et al. , 1977; GURRIERI, 1980; BONARDI et al., 1984a.

The Monte Cacdagrande granite extends for about 20 Km2 from the tectonic contact with the Aspromonte Uni t, marked by the Antonimina . Passo di Cancelo line, to the Melia plain (Fig. 1). It intrudes chlorite· serici te phyllires, phyllitic calcschists, actinolite schists, mkaschists characterized by porphyroblasls of chIorite ± muscovite ±

A

. • 00 o.

• • i . ' ., .. •

.. · . , • • •

10 . _ .

biotite ± garnet ± andalusite ± cordierite, biotite - albite gneisses, biotite - oligoclase gneisses and granitic gneisses.

The mass, inequigranular and medium to coarse . grained, is characterized by the occurrence of K-feldspar megracrysts. The texture mostly massive in the northern part, becomes strongly foliated near Antonimina, especially at the border with the pluton and within the cataclastic zone. The intrusion is crosscut by a few aplite to pegmatite dikes . It contains rare metamorphic xenoliths.

In the studied area the host rocks are overprinted by an irregular thin contact aureole locally reaching the hornblende· hornfels facies, with the widespread occurrence of andalusite and cordierite.

Petrography

Microscopic study

The northern part of the Monte Cacciagrande granite. is generally massive (samples 18/40) and exhibits a hypidiomorphic (porphyritic» texture with evident cataclastic effects. In the central and southern parts of the area, from Passo di Cancelo to Fiumara di Antonimina, the granite has a cataclastic· augen texture. This suggests that it was affected by a deformation event decreasing

FiS. 2. - Modal Q·A·P (after JUGS, 1973) and M·A·P diagrams of the Monue Caeciagraooe granite. Massive (1), eauclastic (2) and £laser (3) samples.

572 A. MESSIN .... S. RUSSO, F. STAGNO, M. CALANDRA

TABLE 2 Crystallization sequence 0/ mineral phases in the Monte UuciagTande granite

, , , ph .. ,". ··a m"ti c lpos t ...... p-'tic l de ( or ... tive , , , , , , ,

,olne .. a!. I""'patic ,.eHel maamatlc \late ...... groa tlc , aubaoUdua , , , , , , , , , , ab!"" .. !.p

, , , (4~) (32-1'"' .t.n) , , (7-1~ An) , pl .. locl"ae , .<: ' , , ,

-~, ,

... op ,

_+OP" , , , , ,

blot! t .. , ( :Chl.rut •• P.!o~ _ _ op" , .. a alblU , I • • ,. a _rictU , , ,

'" .. epldote quartz , , ,

IChl .. clller! te , , , , .. rutlle , , , ,N'

..... covl te , , , ", .. OpaqUe. , , , , .. ........ covlt. , , perth

, ,der perth '" .. blot! ca

K_feldapar , , , '" .. quaru ,

'" , ,

I perth .. pe r thl te , "", 'qz , , : .I cr .. aicroellne , - , .. , ,

.llll ..... lt. , __ L. , , , , , , --------- , , , , , cordlerlte , bl .... , , , , , , , , , , , , , and"tu"lte , - , '" 1 ____ _____ 1 , , , , , , , , .0c ..... I'1 •• ••• I , , , , , , ,

Xenolltha . r e not conaidered. The ..... covlle derive. ,,1"0 rrom .... p"tic blotit. and sub.clld". chlorlte . Apatite , zircon, "1l.nIt,,. IOOnadte and .. enetlte . Opaque • .

in intesinty to the north. Modal analysis (Table 1) shows that this

intrusion has a composition ranging from granite to granodiorite (Fig . 2). The early minerals that formed during magmatic crystallization (Table 2) consist of zoned euhedral plagioclase, followed by red-brown biotite. Quam, muscovite in large flakes (type 1, Table 3), and in smaller flakes associated with biotite {type 2, Table 3), and poikiHtic Kleldspar are late crystallizing phases. Apatite, zircon, allanite, monzanite and magnetite are accessory minerals. Corroded cores of plagioclase with An 47% and small euhedral biotite included in feldspars may be relics of a previous magmatic stage.

Sillimanite, andalusite and cordierite show different crys tal habits and modes of occurrence. Sillimanite, occurring either as

needles or as small euhedral prism, may be included in the zones of plagioclase (never in their core), epitaxial to quartz and feldspar or random crystals. Pink pleochroic and4!usite, usually zoned and fret= of inclusions, occurs

TA.BLE 3

Types of muscovites in the Monte Cacciagrande granite and their occurrence

IIP(

.. , .. 'i. I",. 'Hi.'d .. , t"i ... ~., .. ,i .... 1I" , • • i ....... i." •• IU bi.,l ".

l,,, .. g .. Ut d .. .. ,.dol •• i ...

P .. , ..... '~I. '."" ••• • , .f '" td iOtito O ...... to . 1 ... I • ••• • I i' ~ .

S.d"" ,I" •• U •• • f fib •• lil. cl",,,. ; . .... 11th. '0 .... ,oat I, rh ••• blotilO.

PETROCHEMISTRY AND MINERALOGY OF MONTE CACCIAGRANDE GRANITE _ STILO UNIT ECT. .H3

as: a) subhedral cores surrounded by fibrolite, from which it appears to be formed; b) euhedral crystals, isolated or included in the external portions of plagioclase and/or K­feldspar. In both cases andalusite is usually rimmed by muscovite type 3 (Tables 2 and 3). Cordierite, when present, occurs as sigle euhedral crystals, pseudomorphically replaced by green biot ite and muscovite of type 4 (Tables 2 and 3). These modes of occurrence are suggest ive of a magmatic origin for the cordierite (GREEN, 1976; PHlLUPS et ai. , 198 1; CLEMENS & WALL, 1981) and alumi nosilicates (CLARKE et al., 1976; DE ALBUQUERQUE, 197 1).

The late-magmatic stage of the intrusion is characterized by muscovite of type 3 and 7 growing at the expense of aluminosilicates and biotite respectively (Tables 2 and ). In addition, quartz-muscovite intergrowths and muscovite + green biotite pseudomorphs after cordierite also belong to this stage. More than 50% of the samples show subsolidus features such as plagioclase alteration, mainly in the core, K-feldspar perthitization , and replacement of sillimanite and andalusite by sericite .

The xenoliths, mm-sized, consist of assemblage of decussate micas (muscovite type 5, Table 3) with a metamorphic texture locally sericite (type 6, Table 3) can be Sttn growing on relic clusters of fibrolite.

The effects of deformation range from minor cataclasis to the development of a true foliation characterized by flattening of quartz­feldspar aggregates and alignment of platy minerals. In the latter case, the rock shows evidence of grain size reduction and development of an augen texture . This textural development is accompanied by re­crystallization of quartz into polygonal aggregates, rotation and fracturing of K­feldspa r with fractures often filled by quartz, albite and more rarely pumpelIyite, rotation and orientation of mica flakes along the shear planes and the development of kink-bands in some of the micas.

Milleral chemistry

The major minerals of two samples,

cataclasis (B 2006) and significant deformation (B 1640). were chemically analyzed, using an electron microprobe.

All analized muscoviles (Table 4, Fig. ), although with chemical composition close to theoretical values, show small but significant compositional variations related to their petrographic occurrence (Fig. 3b). In comparison with the large isolated muscovite (type 1) , muscovite rimming biotite (type 7) has higher Ti, Si, Mg and Fe contents and a lower Na/(Na + K) ratio; decussate muscovite from xenoliths (type 5) shows similar composition to type 1 but has lower Fe and Mg contents; seridte pseudomorphic after sil1imanite (type 6) is characterized by higher AI and lower Si, Fe, Na and Ti contents . Types 2 and 3 muscovites respectively, associated with biotite and rimming andalusite, have compositions similar

TABLE 4

Microprobe analyses 0/ muscovites from the Monte Cacciagrande granite

, .. ,I. !, .. ... ... " .. ,' 110, ... "til ~i"1 ~

~ ~ ... d , ! ... ,

" ,,11

11"

" ',. " .. ..

" ..

., ... 11.<0 11 •• , .'_ ,>01. '"" .!"III , . . ... 0' ".01 '1 .11 '1 .11 '~.II .~. " 'I.~

••• •• I." .. " I." 1." '.11 .... ••• 11." .. " H." '.M M.II 1.11

0.11 .... • •• ' .M ' .K ,." ' .t! ... , ... , '.11 .. ••• ..• '. ' 0 ' .1> ,." 0." '.M .. .. .. ' .11 O.t! '.11 0. " ... \ • . 11 .... • . U ' .1/ ....

11.1' It. " 11." t . " '0." 11." II.N

1l.1l 11. " .. " " .. ... " ..... .... .... " .f I ... ........ 1 • • f 11 111

\ .111 1.011 '.111 .. "" '.01. • • 011 •• 011 ,.~ I. m .. '" I.'" , .... '.Ill '.UI

'.- •. * .- .. - '.- .. - .. -I. III .. -'.m .. ~ ..... .. -1.111 .. - .. -.... ' .. - '.0" ' .11' I."' '.111 .. -••• I.'" .... ' I. '" '."1 .. - .. - .. - I.'" '.'" .. , . ..", I."' 1.10. ' .00'

'.00' '.1'11 .... , ..... ' .. " ..... '.- '.tlt

1.00' .... , 0.00 •

•. III O. III .. -1.0'" o. '" .. - ... " 1.,,' '.H' .... , .. " . >.111 !.III lolM

.. ". ,.- •. * I.", • !.III .. to' lom

representative respectively of only minor . '"'''''' .... " ... 0. .... I ... t. , . .... , .......... tI •• """"

574 A. MESSlNA, S. RUSSO, F. STAGNO, M. CAUNDRA

'0

~ • 0 ., ••• • " ~ • -• ••• f

;;

" •••

-

.... - -... , , , . • ,

'0 ""..-1 ~ ~_'i )

0.0"' 008 0 .12 0 .16

Na/ <Na-+K.Ca)

• " •

a

- - - - ,

- - -

0.2 0.. 0.6 0.8 1.0 1.2

a

b

Fig. }. - (Fe -+ Mg)/(Fe -+ Mg -+ Mn .. Ti -+ AI) vs Na/(Na -+ K .. Ca) (a) and AIVI vs. TiOI \h) diagrlll'ls for muscovites of the Monte Caccilgnnde gTanite: 1 ,.. magmatic flakes ; 2 ,.. small flakes associated with magmatic bioute; .3 _ flakes replacing aluminosilicates; :; ,.. decussate flakes in xenoliths; 6 ,.. seridte pseudomorph after sillillllnite in xenoliths: 7,.. flakes replacing biotite. These numbers correspond to muscovite types of Table .3. Dashed lineas contour muscovite fields of other peraluminous grlllites from literature: a} short dashes _ CUUE (1981), long dashes _ D' AMlcO et al. (I98h); b) ANDERSON &.

ROWLEY (198 1).

to type 1. In general , the muscovite of the Monte Cacciagrande granite appears to be less celadonitic (Fig. J) than that of other peralu minous granitoids (ANDERSON &

ROWLEY. 1981; CURKE. 1981 ; D'AMICO et al., 1981a).

Biotites analyzed (Table 5, Fig. 4) in the

TABLE 5 Microprobe analyses of biotiles from the Monte

Caccwgrande granite

.... I. ......... ", .... , ..... ~lO

!lOl

lilt, ~'l' h, •• ,. ." ,,1 I.U\

IlfIOl 11_ "..0 IU<O Iloot ,

)1." )'.01 3'. 01 l4 . • ~ )'.01

I." 3.10 I,ll 1. 01 1 .11

le.I' 't.11 11./' 11. ,. LI.SI

0.11 0 .01 0.03 lL.~t n.u 11." n,l, n." O.'" 0.11 .. " 0.11 0.11 ~ ... 1.11 1 .01 \.1/ ~.It

0.01 0.01 0.01

0.01 0.01 .. " I,ll I. fI ,,11 I.lI •••

H .el n." "." n.1I ".H

• .. b" .f I ..... th b.ol, .1 11 (0)

" u "

ALl!

" " .. •• " ,. '.

,.

1.1" I.nl

1.1'" I.m .. ~ .. ~ 0.011 O.lll 0.\01 0. 111 1.)01 1.41/

1.191 1.111

0.011 0,01/ 0.01)< 0.001

~.~II ~.,u

0.G02

0.01! '.GO! 1. III 1.111

1.,.0 l. m

1.116 1.111 I.'" 1. 1l<. I.NI 1.101 .. ~ .. - .. ~ 0.111 0.901 0 . 111

0.)11 0.''1 C.1I1

•. llt I. m 1.1" 1.11/ 1."0 I.'" 0.0l" 0.0)0 0.0l0 .. ~ !.!'" !.n! 1.!1I

0.002 '.001

0.0'-LI1! I.In •. m

1.1I! 1.111 1.10 •

• , ." •••• 4 ... 1 ..... D ... .. f". to t . ... " ......... ,,', ..... 1,.1 ••

same samples, have high AI contems in both octahedral and tetrahedral positions, related to the peraluminous character of the granite (CLARKE, 1981). When plotted on the diagrams used by GANGY (1968) and DE ALBUQUERQUE (1973) (Fig. 4a), the Monte Cacciagrande biotites fall in thc= region of biotites coexisting with muscovite and primary aluminosilicates respectively. The biotites are also relatively rich in Fe and Ti , although the chemical variation of biotite in differem petrographic positions is very limited. All analyzed b iotites, independent of their mode of occurrence, have a siderophyllitic (or zinnwalditic, ALaERNETY , 1980 in MARTIN & BOWDEN, 1981) t rend, in that they have intermediate Fe/(Fe + Mg)

PETROCHEMISTRY AND MINERAWGY OF MONTE CACCIA(;RANDE GRANITE· snw UNIT ECT 575

TABLE 6 Microprobe analyses of andalusite from the

Monte Cacciagrande granite

suph B 2006" , 1640 .... n. andysu ...... , 3

SiO 36.66 36 .44 2

:::~3 0.06 0.04

62.97 63.61 C, 0 0.00 0.00 r e~ 3 0.40 0.40 .,0 0. 02 0.01

" 0.01 0. 00 2

Total 100.12 100.50

N~lber of ions on the basis .f 20 (0)

Si

'1 2. F. ., li ,

• ••

•••

3.961 3. 924 8. 020 8.074 0.0~6 0.036 0.003 0.002 0.005 0.003 0.001 0. 000

idi olorph ic andalu sit e .

relics of idiolor phic and l lu s i te

partly pseudolorphosed by serieite.

pe~for .ed analyses . Data refers to

t he lost representative analy s i s .

ratios and lower Ca and Na contents with respect to other peraluminous granitoids (Fig. 4) (DE ALBUQUERQUE, 1973; CLARKE, 1981; D'AMICO et al., 1981a).

Andalusite (Table 6) has an almost theoretical composition and its FeO content

...is typical of magmatic andalusite from peraluminous granidoids of the South Mountain Batholith - Nova Scotia (CLARKE et al., 1976) and of the Eisgarn type Moldanubikum . Moravia (D'AMICO et al., 1981a).

In massive samples pkJgjockJse shows normal zoning and a compositional range from andesine to oligoclase (Table 7). In deformed samples, however, where plagioclase is

TABLE 7 Or-Ab·An contents 0/ feidspars from the Monte Cacciagrande granite determined by electron

microprobe

K_ fol d. par

, .. pi. a 2006 a 16. 0

o . ,""I, ... .

.C> 96.6 8".6 12.9 11.1 1J.6 ... ,. , l".1 26.~ 16.~ 25. 1 ,., .. , .., 0.' , .. .. , pl .gi., I ....

... plt 8 2006 8 16.0.

n • .,.1,. .. . (r .,. l . (, . 1 ( r. )

,. , .7 . Z ll. ) lB.] ••• 16.1 ... 52.0 6J.S 18.1, 92 ... BI. J

.,' ••• ••• U • •• ,.,

Puf.r .. d .. 01, .... Oat. reft .. to the ... t ropr.unt.!

.i'f • •• I,.i • . Irok •• phgiod u ..

Ai •• f • brok •• phgiod .. e .i th , .-ieiti .. d .or.

r.,. _ "Ii, ,.r.; e • e.c.; ,. ,i • .

fractured and has sericitized cores (locally sericitization is complete), plagioclase ranges in composition from albite to oligoclase (Table 7).

K-feldspar is usuall y an orthoclase microperthjte, but in the most deformed samples it is a microcline.perthite (Table 7) .

Geochemistry

The analytical data for major and trace elements, of the 15 representative samples are given in Table 8.

Major and trace elements were determined by X·ray fluorescence with a Philips PW 1400 spectrometer, using the method suggested by FRANZINI et al. (1972, 1975) and LEONI &

SAITTA (1976). MgO was determined by Atomic Absorption Specrrometry, Fe + by titration with KMn04' Na20 by direct flame

576 A. MESSINA, S. RUSSO, F. STAGNO. M. CAI.ANDRA

M,O

40 30

a

"

Fe O GO ~ " AI;l°3

• o ,

• . , 0= 3

a : 4

,~o.~'~."W~ ________ C'~'D

c

PHLOGOPITE 0.'2 D' 0.9 AN N ITE , , • • ...

Fe/( Fe+ Mg )

Fig. 4. _ MgD-FeD-AlP, (a); AIJV vs. Fe/(Fe+ Mg) (h) and AP' vs. F~' (c) diagrams for biotitcs of the Monte Cacciagrande granite. 1 • relic flakes associated with fibroli te in xenoliths; 2. magmatic flakes; 3. flakes frayed aroJor broken by deformative event; 4 _ decussate flakes in xcnoliths. a) MgO-FeO-A120J diagram after DE ALBUQUERQUE (1973); h) dashed lines contour bioti!c fields of peraluminous granites after CLAI!.KE (1981) {short dashes} and O 'AMICO et al. (l98 la) Oong dashes}; cl after AulERNETY in MARTIN & BoWDEN (1981).

spectrophotometry, and H20 by loss on ignition at lOOOoC.

The chemical features of the Monte Cacciagrande granite show fehic, peraluminous and cale-alkaline characters with: a) Si02 ranging from 70.85 to 72.77 ",t.%; hi AlP, > N"O + Kp; cl K,O > Na,-O; d) relatively high Fe010l Ti02 and P20,. The major oxides versus SiO j diagrams (Fig. 5) show the typical trends 0

felsic rocks with marked compositional homogeneity . CaO, MgO, FeD + Fe203 and

Ti02 show an inverse correlation with Si02 content. Trace elements Sr and Ba (average values 136 and 648 ppm respectively) also decrease with incrasing SiD~, while Rb (like K) is nearly constant and high (x ~ 232 ppm). The K/Rb ratio is therefore quite low (x = 154), whereas the Sf/Ca ratio is realtively high (x = 20.3). Zr and V exhibit a negative correlation with SiD2, whereas Nb and Y are rather constant.

The geochemistry indicates that the Monte Cacciagrande granite is a single body with

PETROCHEMISTRY AND MINERAlDGY OF MONTE CACCIAGRANDE GRANITE · STIW UNIT ECT. 577

, " 0

,, -0 0 •

T ;0 2 • • • • c. ~ • , • ". • • 0'

00 0 • , - • 0 & • • •

" • ''''' . 0 A I20 l ' ~o 't • s. ~ . • • • 3' ,,' • • • ."" • ..

, ,~ . o~ • • 0 i«l •• .. F,O 0 Rb 0 • 0 • • • ''''' Fe20 J • • 0

'" 0 0 , • • • 0

'" • 0 ' 0

v ~o

~- . • • 0 • "gO B • •

" • • • 0' 0 ~ • • • •

• .""" "

B. B • • B " '\ • C.O • • , • ''''' <! • .' • • 0 • •

0' "" , • '" '" • ~o Nb '" • • • 0

0

" 0 N a20

' . • ;> " · " , "'"

0

• 0 • • Z. ' 0 • , • 0 ~ • K, O ~o "" • • • • • • • , • • .""

" '" . ! o y • !"20 5 . "", • • • to , •

0" • • • • " • "

" " " ,

" " " ,

5 ;° 2 5i0 2

Fig. 5. - 5i0 2 vs. major and trace elements diagrams for the Monte Cacciagrtnde granite. Symbols as in Fig. 2.

578 A. MESSINA, S. RUSSQ, F. STAGNO, M. CALANDRA

TABLE 8

Chemical analyses 0/ the Monte Cacciagrande granite

( n 1 ) 11 101 ,,'U 11 ,U 11 ," IS ,lot 11 1101 11 Ill _ 11 1I1~ JI 1111 11 U" 11 11<1 • ,,11 • ,1'00 • ,'', I UU

:::' uA "I' " ' ~ .. ,. .. , "I :::~

" .. • • " • •• ., .. .,~. .,. "'"

!I.ll '1.0\ 11.04 11.11 !l,tIO ><l.tS 11.17 n.II 11.12 '1..0 ILl! 11. " II.n >1.11 11.11

0.11 0.4' 0," 0.)1 0.11 0.11 0.11 0.11 D.n 0.11 O.ll O.lt O.l<. 0.11 0.11

".01 ".It ".to ".11 11.11 1I.L1 11.11 ".11 II.H 11.1' 11.10 ".'1 " .11 " ,f! 11.14

I." 0." 1." D.I> l.lI 0.10 O.to .... I.n 0. 11 1.01 1.51 1.11 0.11 0."

I.H 1.10 0.01 1... 0.19 1.11 Lot 1.1> I." I... 1.» I.H l.lI 1.11 L.n 1.11 1 .1Il 0.11 I.N 0.11 '.01 0.01 0.01 0.01 ' ,01 '.1' '.01 '.11 0.01 0.11 ..<1 0." D.n •. • , 1 .1l '.11 0." I.SI 0." l . loG '.11 '.It I." 0." 0.11

0.10 1.<, loll 1.10 0." 1.11 0." I.Ll 0.10 I.'" 0." 0.11 0." 0." 0.91

1.11 I ... 1.11 1.11 I." 1.10 I.n 2.11 2.11 1. " 1." I." 1.1! I." 2.11

'. f! 1.11 '.U '.01 '.11 1.01 '.11 ' .M '.SI '.11 ' .11 '.12 •. n '.tI '.1' 0.11 0.2' 0.11 0.11 0.11 0.11 0.10 0.1' 0.1 1 0. 1> 0.11 0.11 0.11 0.11 0.11

1.10 1.1' 1.\10 I.M 1.01 I." 1.11 1. ' 1 I.t! I . " I.t! 1.lt I.H I.SI 0. 11

' .11 '.If 1.1l 1.10 1.10 I.U 1.011 '." .... 1 . 1> '.11 ' .<1 ' .. ' .011 '.lI

" " " " " " <I <I

I < J <, III 11. III 'I' ,.. 1<, no III

'" m lit IN .. III I11 III

I' 11 11 11 I. 11 " 11

I" I11 III ,.. 1" "' 11' 1>1 11 " ~ 11 11 11 11

1', I" I" III ,.1 1" 1 '"~ ",

SI . I .0.0 ".' 11.1 ... . 1 n.1 12.1 n.'

'".1 ''0 .1 111.1 m.1 Ill.' 111.1 11 •. ' 1".1

1.1 0.1 I.' 1.0 I.' 1.1 1.1 I.'

1. ' 1 I. " I. " 1.1' .... 1.11 I." 1.11

" " " " d < I

II1 110 '" U. III

11' I., '" t\o III 1I 11 11 11 I'

III ,n lit III I" 1I I1 11 11 ,I

SlI III '" I" III

n.I ".1 n.1 " .0 OZ .O 111.1 110.1 In. I !fO.1 ,,1.1

I.t .. , 1.1 I. J 1.1

'." ,... 1.11 1.11 I."

" " "I III

In III

1I 11

'10 It<

" . III It,

11 . 1 11 .0

,.... "'.1 I.' I.' loll I."

C • c.I.'. ' . .... "1 •• "" •• " • • .... I .. • /e ... ",O/lC.G"',O"zOI .0 • • 1" . 1 ... ,," •• 1.. " .... "hUI •

... - 'I, .. ,

internal fractionation. The lack of significant chemical differences between massive and deformed samples suggests that tectonic and metamorphic re-equilibration was isochemical.

Discussion and Conclusions

The Monte Cacciagrande mass is a typical peraluminous body as suggested by the presence of muscovite, sillimanite, andalusite and cordierite, by the high normative corundum value and by A > CNK and A/CNK> 1. 1 (SHANO, 1927; Cu..RKE, 1981; CHAPPELL & WHITE, 1974 (Table 8).

Peralllminous granitoids, ranging In composition from granodiorite to leucomonzogranite, are widespread in the Calabrian-Peloritan Arc, in the Aspromonte, Stilo and Sila Units. In the Aspromonte Unit, the peralllminous granitoids are intruded into medium - high grade metamorphics of

Hercynian age partly re-equilibrated during' the Alpine orogeny (BoNAROI et al., 1984b). In the Stilo and Sila Units, they are intruded either into low to medium-high grade metamorphics (BONARDI et al., 1984a; BARBJERI et al., 1985; MESSINA et al., 1988) or into older biotite-bearing plutons with rare primary muscovite or hornblende (HIEKE MERLIN & LoRENZONI, 1972; LoRENZONI &

ZANETTIN LoRENZONI, 1975; MORESI &

PAGUONICO, 1976; BORSJ et al., 1976; CRIse! et al., 1979; LoRENZONI et al., 1979; CRIsCJ et ai., 1980; BARBIERI et al., 1985; MESslNA et al., 1988).

In order to ascertain possible genetic relations with other granitoids of the Stilo Unit , the Monte Cacciagrande granite is compared with the Cittanova peraluminous granite (CRIscr et al., 1979) (284 - 291 Ma in age; initial ratio 87Sr/86Sr > 0.708, DEL MORO et al. , 1982) and with the «main» and

.. 01

1 ... 1 • • " .. .. " .. " .. "

PETROCHEMISTRY AND MINERALOGY OF MONTE CACCIAGRANDE GRAMTE· STILO UNIT ECf. 579

T ABLE 9

Modal data 0/ some Stilo Unit granidoids ~. CACCUGRUD£ ' CITlANOU " $ ( A A (

9,a.di •• i t ..

" g .... di.dt ..

" . " A • LI

~"art'

plogi.,h ..

(.fold,par

b"tilt

_uco_iu

• illiunito nd.lu,;u

•• cdi.cl"

Ih i • •• r~.

12.6 11.1

n.l .., • ••

s.o. .., ••• ••• ... •••

" 0.1

" 0.6

" O. 1

32.1

36.4

111.6

••• , .. " 3 •• ,. " 4. (,

$.0.

•• • .., .. , • •• ..,

H . 2

41.6

1~ . 6

12.:1"

•••

eAl$Cl ot 01 .. 1980.

$.0.

••• , .. ... ... •••

]4. I

]0 ••

n.1 ••• • ••

s.o.

, .. ••• , .. ... ...

29.2 ~S.l

11.0 I~.I

• ••

s.o .

•• • ,., , .. ••• ..,

2~.a

32.6

23.7

16.6 .. ,

(RISel 01 01.. 1!I19 . A - ... b ... f ... ,1 .. ; ,. "'U9'; S.O .• " •• ~a.d d .. ill".'

T ABLE 10

Chemical analyses 0/ some StUo Unit granitoids

• • ,,, 1"<1 " "'01 -

,_ n ,-It ... • n.1! 11. ..

'.Il. .... ,." lu,. I~.~ 11." '.iI ..... 1.1»

•. u. '.11 I." •• V • '.1' 1.11 ..... .... ,." '.Il • 1.'1 .... I." ..... 1.11 .... . I.t' ' ." '.11· l.rI 1.11

1.>1 • '.It

tl .. .. . .. .. ~ .. . . " "

m '" . " Kl • ,ot,

•.• t

I •. ,

••• , .. '" '" 11.1 .. , 11.' ••

I.'.

... , .... .. " .... .... I." '.1> '.1' ' •• 1

1.11

'.11

'.iI

, _ IJ

..... .... It.'I _ n." n.1I '.11 •• , •••• 11 ...... ..

11.11· n." I'." t." ..... I." '.SI .... 1.11· 1." 1.1' •. 11 .... • 1.11 1.11 I."

•. 11· I.n .... ,.'" ' .• 1 . 1.11 I.It 1.11

'.n ..... '.11 .... I.'" '.If 1.11 1.11 '.01 _ 1.11 ' .U 1.1<

I." + '.11 1.11 1.011

1.. I.'" I.' '.1 1.1 I.' 1.1 •• 1 •.• 1.1 •.••• I.' •.•

'"., U III III .. 11 SI III 1<1 11

I.' " .. 11.1 '.1 U ' " ," lit '1 I.' • . • It It.' ".1

m 1'''1111 • nu "I 101 II M " 11 •• 11.'" 11 11

. -.. , .. i.D •

lI.n _ 11.10 If.I' 1.11 ..... 1.11 .... ' . 11

H ... . 11." n." . ... 0.06 _ 1.00 I.. O.~

I... . 1.11 I.~ 1. ' 1

1.11· •• " t ... ' .• 1 I.... 1.11 '.11 • . ,.

I.", 1.1' 1.\1 . ...

•. ~. 1.11 1.1' '.1'

I.", .... '.11 ..... •• 11· '.11 I." •.• ,

1.11· I."

P)" ~ .. .. .• I.' I.' '.f •.• I.' I' ' .1 1.1

.. .1 11 ,.. 11

,".11< 110. .. , .• _ 11 H '.1

I.. • m II1 11

11 • 10 11 I.' ... • 110 IS. 11

11 .. .. •.•

.. • 10 " >.'

'Oh.... • , ........ f ....... , . . . ... . .. , 1.1. _ " ......... IoU .. ,

UIK." .1. '"'' I. <.1.'. ' ...... '10 . ...... ..

<lIKl ••• 1. INt.

" 11 "' .. ..,1 .. "11

• . Il

' .. ".'1. JI." 0.'1· .... I'.U· 11. <1 ••• ,. , •• > 1.11· I." •. 11. '.11

'.t!. 1.11

'.11. ' .~ 1.11· 1.11

I."· .... ..... '.11

I.' .

11 ." . ...

' .01 '.11 I~.lI 1.lt

' .n .. .. 1.11 .. ..

I." I." I." '.11 I." 1.11

'.11 '.n I.n .. .. ' .1' .. ..

I.... l .un.")1.1I 1.1l

IJ .. .. 11.'

I.'" 1.1 '.' I.. I ...... ) '.1 '.1

11 • i" 11' JI

"' • III "." ... . .. .. ... to ·111 """ I.' • " 11. ' '.1

lit . 111 "I"

" 11 I1 I. ' " ·.1 .. IO. '

580

• o o!

o • U

o N • Z

o N

'"

o N

'" • o N • Z

%

5

3

3

5

5

3

A. MESSINA, S. RUSSO, F. STAGNO, M. CALANDRA

.. •

I ,,11;, • •

)()(1\ )( )( )( x)( x "1.

x)(x )(

..

,. "

o .0

.. ,. ~~ · --.. , . . . " ,

. .. ".. .

• -

oOO ' Oq;;,o , •

~" . .. , "

o

• .. '

" • •••• • "& • O~~%

,

..

o 0 • •

o ~c:. 00 6 ' 0"·· . . :'

L.I. Fig. 6. - Latsen Index [1/3 SiOz + K10 - (C.O + MgO + FeD + FepJ] varinion diagrtIlis for major eiemc:nlS of some Srilo Unit granitoid5. Montc Cacc:iagrande . circles; Cinaoova (CIlSCI el al. , 1979) _ dots; $cm: (CRlSCI el al . , 1980) fine.grained granodiori tc: . triangles; main granodiorite . CIW~.

the « rine-grained )) stocks of the Serre (CRISCI 1979; CRISCI e t al ., 1980; D'AMICO et al. , et al. , 1980). For these three intrusions·" , 1981b; PAGUONICO &. ROTIURA, 1982). anatectic crustal genesis from different The Monte Cacciagrande intrusion is materials has been suggested (CRISCI et al., mineralogically similar to the Ciuanova body

PETROCHEMISTRY AND MINERAlOGY OF MONTE CACClAGRANDE GRANITE· snw UNIT ECT. 58 1

0' IJ)

" 0 _ N

«(

0' ;:

7J

••

os

I. ..

0 .•

I 0'1

~ •

•• ,

'"

, , ~ ~

~, ~, ~ ~~

"1,' • , • .~ , ,

• ~ , .~ • • •

~''If ~ . ~ • ~ ~

• • ~ • •

· : " It)( "

)( >OI.~ )()< tJ. 'If:> 6 )( 6." tJ.tJ.

• •

• . •. " •. !!t°.a .' • 'If. " 00-o 0 .c€0 , ,

., . .~ . et' • O~?. 0 ·

• . '\.: .6~. '.

•• o,. ••• ~ ~ 8lPo. ...... ... •

Ir----------------

o '" :E

i

1.J J

o· i

"" : •

..

" 22 , . U .

Fig. 6. (Continud) - Larsen Index [1/3 Si02 + KP - (C.O + MgO + FeO + FePJl variation diagrams for major clements of 50fDC Stilo Unit granltoids. Monte Cacciagrandc _ circles; Cittanova (Cmo et al., 1979) • dots; Scrrc (C .. ,sc, et 11. , 1980) finc.grained granodiorite . triangles; main granodiorite . Cf05SCS.

owing to the presence of abundant muscovite and minor andalusi te, sillimanite and cordierite (Table 9); however, the latter is heterogranular, fine·grained and only locally

porphyritic. The two Serre stocks are both structurally and compositionally different from the Monte Cacciagrande mass, in fact the «fine-grained granodiorite» is muscovite-

582 A. MESSlNA, S. RUSSO, F. STAGNO, M. U.UNDRA

bearing and the «main granidiorite » is homeogranular, medium·grain sized and

1<100

E "00 • "- .00 ~

'00

" , E 00, • '" "-~ z "

" ,

E "" • r . "- ."? " , , . N .. ; . '00 • ..

'" ,

:~ . . .. • • E , ". • " •

~ ~ "

"" a" < .. . E ' " , .. ' . ,,-" • , • ,;; '00

"" E • • • ~ ,00 ,~ , ~~l&R " ",'k ~ . , .. . , . , -

, ~ , , E 'Jp • • " " • ~. > 0

"

biotite-amphibole-bearing (Table 9). Table 10 lists the chemical data of the

"" ". " ,

'" " " "

'" ".

",die ,

"' 0 o "0

. 00 •

.o . o~ . . o '" . . .

. '?: ,.o ~.~. . : .. . ,' '.

.... ", .. ~ . 0 ... :0' •• ,. .. 0

'. . '. .. q . . .

ooV·· · •• 0

0 0

ooo~ . . , .. . '. ," . . .. ~.

o o(p~ '.. '" 0.. .. • • •• I N"

.'

' .

..

. " " " " " " " " L. .!.

Fig. 7. - Larscn Index [If} SiOJ + KP . (eRO + MgO ... FeO + FtlOJl variation diagrams for trace dements of some Stilo Unit granitoids. Symbob as in Fig. 6.

PETROCHEMISTRY AND MINERALOGY OF MONTE CACClAGRANOE GRANITE · STILO UNIT EeT. 583

F

:{~ o •

1\."'''' ,. '. <i§;: . ~

• ' : ""r -. .... ,

A M AIK

. ~ -.

F.

CoO

o ",411> • o~

~." ~o " • 6 • . ~. ' ..

CoO

Fig . 8. - Chemical diagrams of some Stilo Unit granitoids; FeD, ... -{Na20 + K20)-MgO; {FeD + FepJ + MgO + MnO + TiOJ-(Nap + Kp)-CaO; Kp-Nap-eaO. Symbob as in Fig. 6.

compared types. In the major oxides and lrace elements vs. Larsen Index diagrams (Figs. 6 and 7) the Monte Cacciagrande samples appear to fo llow trends parallel with the Cittanova samples because of higher FeO + Fe20}, K20, Ti02, Nb, Zr, V and Rb contents and lower CaO, Na20, Ba and Sr contents. The studied samples appear to be correlated with those of the two Serre stocks, in fact most elements define smooth variadon trend with clear positive correlat ions for Si02, K20, Na20, Rb and Nb, and clear negative correlations for the other oxides, V and Sr. Y shows a certain degree of scattering in the two stocks. The overall pictures (Figs. 6 and 7) are typical of a calc·alkaline intrusive suite.

The evidence seen in Figs. 6 and 7 is supported by the F·A·M, Fem·AIK·CaO, K,..o-Na,;.O-CaO (Fig. 8) and Se-Ca, SiU2·Rbt::'r (Fig. 9) diagrams, as a whole, the two Serre stock samples and the Monte Cacciagrande samples define a typical cale· alkali ne magmatic trend. The Cittanova samples, scattered only in the K20·Na20· CaO diagram, appear to be aligned along parallel trends.

On the basis of the above considerations, it may be suggested that the Monte Cacciagrande peraluminous granite is related to the two Serre stocks. These three intrusions appear to originate from a common cale· alkaline magma, representing different stages of magmatic evolution. The Monte Cacciagrande granite, showing a higher felsic and peraluminous character, .is the most fractionated body. It is more difficult to consider the Cittanova body as also belonging to this series.

As regard the parental magma which gave rise to this small calc·alkaline suite, a hypothesis may be made when knowledge on the Serre granitoids is more advanced.

The Monte Cacciagrande granite is analogous to other peraluminous bodies, granodioritic to leucomonzogranitic in composition, characterized by magmatic aluminosilicates and cordierite, outcropping in the Sila Nappe (Northern Calabria). They are considered (BAR6IERl et al., 1985; MEssINA

et al., 1988) as the most fractionated members of a magmatic ca.le.alkaline series, ranging in composition from gabbro to leucomonzogranite, which derived from

584 A. MESSINA, S, RUSSO, F. STAG NO, M. CALANORA

3 .0

1.0

• 0 .4 o

Sr (ppm)

.4 •• .a 70 7 2

Si02 (wt %)

Fig. 9. - C. vs. Sr and Rh/Sr vs. SiOt di~r.ms of some Stilo Unit granitoids. Symbols as in Fig. 6. Vectors

indicate elemental variations for 2096 raction.tion of the three mOSI abunclllnt phases.

PETROCHEMISTRY ANO MINERALOGY OF MONTE CACCIAGRANDE GRANITE. STUD UNIT ECT. 585

fractional crystallization of magma, supplemented contamination.

a subcrustal by crustal

The crystallization conditions of the studied granitic mass may be inferred from the relations shown by the AI-rich minerals. The presence of sillimanite and cordierite, as magmatic phases, indicates T > 710°C and P not exceeding 6 Kb (FLOOD & SHAW, 1975) and the transformation andalusite to magmatic muscovite indicates T = 660 710°C and PH20 = 3.9 Kb (CLARKE et al., 1976).

As far as the deformative event is concerned, the location of the Monte Cacciagrande granite at the southernmost end of the Stilo Unit suggests that the deformation was the result of emplacement of the Stilo and Aspromonte Units in Alpine times.

Acknowledgments. - Our thank are due to Poof. R. Compagnoni, (Oipartimento Sdenze della Terra _ Torino) and Dr.]. Sutter CU.S.G.S. Reston VA U.S.A.) for their, hdpfuJ suggestions, 10 the lsliluto di Petrografia - Universid di Parma - for putting X. ray fluorescence equipment at our disposal, and 10 Prof. G. Oi Battiscini for assislence in performing chemical analyses.

The research was finiUl!rd. by M.P.I. (40% and. 60%).

REFERENCES

AMOOIO MORELLI L. , BoNAROI G., COLONNA V., DIETRlcH D., GnJNTA G.,IPPOLlTO F., UGUOll.l V., LORENZONI S., PAGL!ONICO A., PERRONE V., PICCARRETA G., Russo M., ScANOONE P., ZANETI"IN· LoRENZONl E., ZUPi'EITA A. (l976) - L 'Alt"o Colobro. Peloril<lno nell'orogene appenninico.mag!rrebitk. Mem. Soc. Geol. 11., 17 , pp. 1-60.

ANOERSON J.L. , ROWI..EY M.C. (1981) - Synkinematic inslTusion of peraluminous and IHSOCiated mel<l/uminous granitic ntIlgmas, Wipple Mountains, C,lifomia. Can. Mineral., 19, pp. 83-101.

ATZORJ P., PEZZINO A., ROTIURA A. (1977) - Lo massa granitica di Citl<lnova (CA42bria meridionale): re42:doni con le rrxce granitoidi del maniccio tklle Serre e con le mel<lmor/iti di Canolo, San Nicodemo e Molrxhio (Nol<l preliminare). Boil. Soc. Geol. It. , ·96, pp. 387-391.

B,uBIERI M., CoMPAGNONI R., DE VIVO B., MEsslNA A., PERRONE V. (1985) - Petrologia e geochim;ca tki granitoidi tkl42 Siill (CAlobria). Rillnione Scientifica. Siena. Gruppi d.i lavooo CNR «Paleozoioo» ed «Evoluzione magmatica e melamorfica deUa crosla Fanerozoica».

BONAROI G., MESSINA A., PERRONE V., Russo 5., ZUPPE"ITA A. (1984a) - L'unita di Stilo net settore meridiorlOle tkll'Areo C,42bro·Peloritano. Boil. Soc. Geol. It., 10), pp. 279·309.

BoNARDI G., COMPAGNONl R., MESSINA A., Pe:RRONE V. (1984b) . RiequiJibrazioni metamor/iche di probabile eta alpina nell'Unita dell'AJpromonte. Alt"o Calobro­Pe/oritano. Rend. SIMP. 39, pp. 613·628.

BoRSI S., HIEKE MERLIN 0., loRENWNI 5., PAGUONICO A., ZANETI1N·loRENWNI E. (I976) . Stilo Unit and "dioritic.Jejntigitic,. Unit in u ~ (C,/ahria, Il<lly). Geological, petrologictJI characters. BoU. Soc. Geol. It., 95, pp. 219·244.

CHAPPEU B.W., WHITE A.}.R. (l974) - Two contrasting granite types. Pacific. Geol. 8, pp. 173-174.

CURKE D.B. (1981) - The mineralogy of peraluminous granites: a review. Can. Mineral., 19, pp. 3-17.

ClARKE D.B., McKENZIE C.B., MUECKE G.K., RICHAROSON S.W. (1976) - Magmatic andalusitefrom the South Mountain Batholith, Nova Scotia. COnlr. Mineral. Petrol., 56, pp. 279-287.

ClEMENS ].0., WALL V.}. (1981) - Origin and crysl<lllization of some peraluminous (S-type) granitic magmas. Can. Mineral., 19, pp. 111·1}1.

CRISCI G.M., lEaNI L., MAnuOL! R. , MORESI M., PAGUONICO A. (1980) - Petrorogical and t,eochemical dal<l on two inlTuswe stocks of the ..serre» (CAlabria, Southern ll<lly). Miner. Petrogr. Am, 2), pp. 274·291.

CRISCI G.M., MACCARRONE E., ROTTIJRA A. (I979) . Cittanova peraluminous granites (Calabria, Southem Italy). Miner. Petoogr. Acta, 23, pp. 279·302.

CRISCI G.M., PAGLlONlCO A. (1985) - Tonalitesfrom the Serre, C,labrian Are, Southern Italy. Geological, petrological and geocbemielll features. N. ]b. Miner. Mh., n3jl, pp. 'j9·75.

O'AMtco C., RorruRA A., BAJl.GOSsl G., NANETIl M.C. (1981a) - Magmatic genesis of andd.lusite in peraluminous granites: Examples from Eisgpm type granites in MoltUnufJikum. Rend SIMP., 38/1 , pp. n-25.

O'AMICO C., ROTTIJRA A., M.!r.ccARRONE E., PuGUSI G. (I981b) . Peraluminous granitic suite of Caillbrian· Peloritan AIt" (Southern Italy). Rend. SlMP., 38/1 , pp. 35·52.

DE AI..8UQUERQUE C.A.R. (1971) - Petrochemistry of a series of granitic rocks from Northern Portugpl. Geol. Soc. Am. Bull. , 82, pp. 2783·2798.

DE AI..8UQUERQUE C.A.R. (1973) - ~hemiJtry of biotitesfrom granitic rocks, Northern Portugpl. Geoch. Cosmoch. Acta, 37, pp. 1779-1802.

DEL MORO A., PAGUONlCO A., PICCARR£TA G., RorruRA A. (1986) - T«tonic structure and post-Hercynian evolution of the Serre, CA/ahrian AIt", Southem Il<lly: Geological, petrological and radiometric evitknces. Tcctonophysics, 124, pp. 223-238.

FLOOO R.H. , SHAW S.E. (1975) - A cordierite·Bearing Granite Suite from the New Engillnd Batholith, N.S. W., Australia. Contc. Mineral. Petrol., 52, pp. 157-164.

FRANZINI M., LEaNI L., SAITI"A M. (I972) - A simple method to evaluate the matrix effects in X-ray /luorescence analysis. X-ray Spectrometry, 3/1, pp. 151-154.

FRANZINI M., U;oNI L. , SAITI"A M. (19n) - Revisione di una metodologm analitiell per /luorescema X basal<l

586 A. MESSINA, S. RUSSO, F. STAGNO, M. CALANDRA

Ill/la corrniont comphta dqJi 4f~tti ai matrice. Rend. SIMP, ) 1/2, pp. J6~·)78.

GAGNYC. (1968)· Pitrogin~du gnzniteiks (ft~, VOSge1 mlridionaks, Fr"nu. Thbe d'EulI , Univer$it~ de Naotes, 546 p.

GREF.N T.H. (1976) - Expmmmtaigmmltion o/cordimte or gamn-lNllring granitic liquids from /I ~/itic composilion. Geology, 4, pp. 85-88.

GUUlEJ.l S. (1980) - U m#!tamor/iti in~ d#1 pfutone di Citlil1UJWl (CiJl4brill mendiot/ale). Per. Miner" 49/2-], pp. In-20t.

HIEK E MERUN 0., LoRI!NZONI S. (1972)·11 mauiccio granitico Mile Snrt (Calabria). Stare attuak dt/k conosanu pdroflrlficM. Man. In. Geol. Miner. Univ. Padova, 29. pp. 1-29.

I.U.G.S. (1973) • ClassijicaJion and nomml:iIltflre 0/ plutonic rrx/Q. Rtcommmt411ions. N.Jb. Miner. Mh ., 4, pp. 149-164.

LEONI L. , SAl'ITA M. (1976) - X·ray /luomcenct analysis 0/19 troce ekmmts in rocks and mineral standards. Rend. SlMP, )2/2, pp. 479·510.

LoR€NZONI 5., MESSINA A. , Russo 5., STAGNO F., ZANETTiN·LoRENZONI E. (1979) . Le magmatiti ddl'Unitli di LongobllCCO (Silll, Cillllma). Boil. Sex. Geol. h. , 97, pp. 727·738.

loRENWNI 5., ZANE'fTIN·LoRENZONI E. (1975) . T~ «granitic. Unit 0/ the Sila Piccolll (Calabria, Italy). lIs position and !«/()nic signi/icanu. N. Jb. Geol. Palaon1. Mh., 8, pp. 479·488.

MARTIN R.F. , BoWDEN P. (1981)· Ptra{um;nouf grani/es produud by rock·fluid intnrulion in IM Ririwai nQnOfOgtnic ring-comp/ex, Nigtria: MintTtIlogica/ tvitknce. Can. Mineral. , 19, pp. 6)·82.

M ESSINA A., 8ARBIERI M., COMPAGNONI R. , OF. VIVO 5 ., PERRONE V., Russo 5., SCOTT B.A. (1988) . Gr%gical and petrochemical sludy of the Silll Nappe granitoids (Northern Cawbria, llaly). E.}.M. In press.

MORESI M., P AG LIONICO A. (1975) . Osseroationi gtologicM, pttrogra/icht c gcochimichc sulle rocu granitoiditklk $tmo orinu4li (Ctli4bria). BoIl. Soc. GcoI. h. , 94, pp. 1855·1882.

PAGUONlCO A., RO'ITURA A. (1979) · VuiSQIn mlIf/1Ullism in tIN GrIll/m:J·Peloritan Aft". In Sassi F.P. CEd.) IGCP Project N. 5, Newsletter, I , pp. 8)·92.

PllllllPS G.N., WALL V.}., CLEM€NS J.D. (1981) . Petrology 0/ Ihe SlTalhbogje &Iho/itb: a co,dimte· bearing granite. Can. Mineral. , 19, pp. 47·63.

SHAND S.J. (1927) . Eruptive rocks. (1st Ed.) J. Wiley & Sons, New York.