22
Permafrost Hydrology in Muskeg Lands Permafrost Hydrology in Muskeg Lands Masaki Hayashi Masaki Hayashi 1 , Bill Quinton , Bill Quinton 2 , Alastair McClymont , Alastair McClymont 1 , , Brendan Christensen Brendan Christensen 1 , Larry Bentley , Larry Bentley 1 , Agnès Rivière , Agnès Rivière 1 1 Geoscience, University of Calgary Geoscience, University of Calgary 2 Geography & Geography & Env Env. Studies, . Studies, Wilfrid Wilfrid Laurier University Laurier University Continuous (> 90%) Discontinuous (50-90%) Distribution of Permafrost in Canada continuous Discontinuous (10-50%) Isolated patches (< 10%) No permafrost Natural Resources Canada (http://atlas nrcan gc ca/) Ft. Simpson Ft. Simpson (http://atlas.nrcan.gc.ca/) discontinuous Permafrost: Ground is frozen for > 2 yr

Permafrost Hydrology in Muskeg Lands

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Permafrost Hydrology in Muskeg Lands Permafrost Hydrology in Muskeg Lands

Masaki HayashiMasaki Hayashi11, Bill Quinton, Bill Quinton22, Alastair McClymont, Alastair McClymont11, , Brendan ChristensenBrendan Christensen11, Larry Bentley, Larry Bentley11, Agnès Rivière, Agnès Rivière11

11Geoscience, University of CalgaryGeoscience, University of Calgary22Geography & Geography & EnvEnv. Studies, . Studies, WilfridWilfrid Laurier UniversityLaurier University

Continuous (> 90%)

Discontinuous (50-90%)

Distribution of Permafrost in Canada

continuous( )

Discontinuous (10-50%)

Isolated patches (< 10%)

No permafrost

Natural Resources Canada(http://atlas nrcan gc ca/)

Ft. SimpsonFt. Simpson

(http://atlas.nrcan.gc.ca/)

discontinuous

Permafrost: Ground is frozen for > 2 yr

Distribution of Permafrost in Canada

Wetlands (%)< 55 25

50-75< 75

Ft. SimpsonFt. SimpsonFt. SimpsonFt. Simpson

5-2525-50

< 75

Tarnocai et al. (2002, GSC Open File Rept. 4002)

-4

-2

0

tem

p ( C

)

Ft. Simpson Mean Annual Air Temperature

-8

-6

1900 1920 1940 1960 1980 2000

air t

Questions:• How will the permafrost distribution change?How will the permafrost distribution change?• How fast will the change occur?• How will the water cycle be affected?→ Scientific basis for adaptation to climate change

Discontinuous Permafrost near Ft. SimpsonDiscontinuous Permafrost near Ft. Simpson

flat bogflat bog

channel fenchannel fen

peat plateaupeat plateau

channel fenchannel fen

bogbog

peat plateaupeat plateau

Peat Plateaus Have Permafrost Cores

channel fenchannel fen

40 m40 m

Water flows over the permafrost.

bogbog

40 m40 m

permafrostpermafrost

1

m) 2006 GS

Frost Table in Late AugustGS: ground surface FT: frost table

-1

-0.5

0

0.5

tive

elev

atio

n (m 2006 GS

2006 FT

0.5 m0.9 m

-1.5

-1

0 10 20 30 40

rela

distance from fen (m)

1m

) 2006 GS

GS: ground surface FT: frost tableFrost Table in Late August

-1

-0.5

0

0.5

tive

elev

atio

n (m 2006 GS

2006 FT

2009 GS

-1.5

-1

0 10 20 30 40

rela

distance from fen (m)

2009 FT

zf

T = Ts

ground srf.

Qm

0.4

0.5

m-1

K-1

)

Differential Thawing by Conduction

T = 0frost table

Conduction dominates heat flux.All of heat flux is used to melt ice.

0.1

0.2

0.3

0.4 0.5 0.6 0.7 0.8

Measuredde Vries Eqn.

λ b(W

m

ater contentQm = λb (Ts – 0) / zf

λb : bulk thermal conductivity

Hayashi et al. (2007, Hydrol. Proces. 21: 2610-2622)

water content

0.5

1n

(m) ground surf.

Soil “Pits” InstrumentationW pit

C pit

-1

-0.5

0

rela

tive

elev

atio

n

frost table

-1.50 10 20 30 40

r

distance from fen (m)

Frost Table Lowering in 2004

dzf Qm

dt ρice Lf fice=

ρice: density of iceLf: latent heat of fusionfice: volumetric ice fraction

0

0.2

0.4z f (m

) Site USite L

5/1 5/16 5/31 6/15 6/30 7/15 7/30 8/14

C pitW pit

Hayashi et al. (2007, Hydrol. Proces. 21: 2610-2622)

Frost Table Lowering in 2004

dzf Qm

dt ρice Lf fice=

ρice: density of iceLf: latent heat of fusionfice: volumetric ice fraction

0

0.2

0.4z f (m

) Site USite L

5/1 5/16 5/31 6/15 6/30 7/15 7/30 8/14

C pitW pit

fice = 0.59

Hayashi et al. (2007, Hydrol. Proces. 21: 2610-2622)0

0.4

0.8

liqui

d w

ater

con

t.

Measured at 0.2 m depth

2D Survey of Frost Table (FT)June 12, 2006

ground surf.

FT

• FT measured using FT probe on 0.25 m grids.• Data interpolated using SURFER on 0.1 m grids.

Wright et al. (2009, Water Resour. Res., 45: W05414)

• Whole model domain initially drained completely.• Addition of 15 mm of infiltration

Groundwater Flow Simulation

Water accumulates inWater accumulates in frost-table depressions.Wet condition in depression enhances thawing.→ Positive Feedback

Saturated thickness (m)

→ Positive Feedback

Wright et al. (2009, Water Resour. Res., 45: W05414)

Electrical Resistivity Imaging (ERI)

fenfen

bogbog

0 m 20 40 80fen plateau bog0 m

5

60

FTunfrozen peatunfrozen peat

permafrostpermafrost

15

510

20resistivity (Ω m) 102 103 104

FT clayclaypermafrostpermafrost

McClymont et al. (2013. J. Geophys. Res., 118: 1826-1837)

ERI Line 1: Peat Plateau Transect

020 m 30 40 50 60

depression

0 m 20 40 80fen plateau bog0 m

5

60

FT

024

unfrozen peatunfrozen peatpermafrostpermafrost

15

510

20resistivity (Ω m) 102 103 104

FT clayclaypermafrostpermafrost

McClymont et al. (2013. J. Geophys. Res., 118: 1826-1837)

ERI Line 2: Cross-Bog Transect

100m100m

0 m 20 40 80fen isolated bog bog

0 m 60

15

510

20resistivity (Ω m) 102 103 104

clayclayclayclay

sand lens

McClymont et al. (2013. J. Geophys. Res., 118: 1826-1837)

19771977Delineation of Peat Plateau on Aerial Images

200 m

Quinton et al. (2011, Hydrol. Proces., 25:152)

20002000Delineation of Peat Plateau on Aerial Images

200 m

Quinton et al. (2011, Hydrol. Proces., 25:152)

20082008Delineation of Peat Plateau on Aerial Images

Peat Plateau Area1977: 53%2000: 49%2008: 43%

200 m

Quinton et al. (2011, Hydrol. Proces., 25:152)

Aug. 2002Aug. 2002

Changes Evident on the Ground

July 2013

DataloggerDatalogger DataloggerDatalogger

• Wetlands become larger and larger.• They generate more drainage pathways.Consequences??

300

400 BirchJean-MarieBlackstone

off (

mm

) Runoff = Total flow / Drainage area

Annual Total Basin Runoff near Ft. SimpsonFour Rivers (150-1,900 km2), Similar Landcovers

600 Ft. Simpson precip.(mm

)

0

100

200

1970 1980 1990 2000 2010

Scotty

annu

al ru

no

0

200

400

1970 1980 1990 2000 2010prec

ipita

tion

(

Global Water and Energy Experiment (GEWEX)

MacKenzie GEWEX Study (MAGS): 1995-2005

Ft. Simpson

Hydrology of circum-polar region using the Mackenzie Basin as an experimental watershed.

Scotty Creek study was initiated as a MAGS “node”initiated as a MAGS node .

Personnel: Bill and MasakiBudget: $15,000/yr

Humble Beginning, 1999-2001

Camp Scotty Set Up, 2003-2004

Relocation to Camp Scotty 2, 2006

Camp Scotty 3 Construction, 2012

2013 Scotty Crew

Photo: Michael Braverman

Photo: Michael Braverman

Prediction of Permafrost Melt, 1990-2090Model Assumptions• Vertical energy transfer• Large (∼50 km) grids

pink: complete melting

• No lateral flow of water and energy

Reality (Scotty Creek)

gZhang et al. (2008. Geophys. Res. Lett., 35: L02502)

1 km

lakepeat plateauisolated bogconnected bogchannel fen

Vertical and Lateral Thawing of Permafrostsurface heat flux

geothermal flux

How can we improve our prediction using numerical models?

Electrical Resistivity Imaging (ERI)

fenfen

bogbog

0 m 20 40 80fen plateau bog0 m

60unfrozen peatunfrozen peat

15

510

20resistivity (Ω m) 102 103 104

FT clayclaypp

permafrostpermafrost

Numerical Modelling ApproachNorthern Ecosystem Soil Temperature (NEST) model

2D finite-element heat transfer model, Temp/W

NEST plateau NEST bog

Zhang et al. (2003, JGR, 108, D22)

Permafrost Thaw Simulation, 2004-2010Extent of permafrost body (only half is shown)

3.5 m

1.4 m2010

2004

McClymont et al. (2013. J. Geophys. Res., 118: 1826-1837)

Permafrost Thaw Simulation, 2012-2032Extent of permafrost body (only half is shown)

2012

2032

Drainage Paths in Scotty Creek Watershed

Seismic exploration in 1960s.

5 km

20082008Delineation of Peat Plateau on Aerial Images

200 m

Quinton et al. (2011, Hydrol. Proces., 25:152)

ERI Line 3: Winter Road (∼ 40 yrs old)

clearingforest forest0 m 20 40 80

0 m60

resistivity (Ω m) 102 103 104

15

510

20

permafrostpermafrost permafrostpermafrost

partial thawing

Simulation after road construction, 1969-2010NEST bog NEST plateau

2.1 m

dept

h (m

)

2.1 m

dept

h (m

)

distance (m)distance (m)

2050

2010

Winter Road Simulation, 2010-2100

dept

h (m

)2030

2050

2010

distance (m)

Permafrost Thaw – Positive Feedbackpeat plateau1. Thinning of canopy.

→ Increase in radiationenergy input.

1

2preferential thaw

2. Local thawing.→ Water-energy feedback

causes further thawing.3. Wet condition prevents

trees from growing back.→ New bog forms

saturated, frozen peatsaturated, thawed peatunsaturated, thawed peat

new bog

3

p→ New bog forms.

Quinton et al. (2009, Can. Water Resour. J. 34: 311 )

Take Home Points• Open canopy and wet condition enhance thawing.• Thawing causes a dramatic shift in water cycle.• Resource exploration activity can have a strong

People: Nicole Wright, Laura Chasmer, Mike Toews, Alan Bonnetrouge, Chris Hopkinson, and many others

C S

Acknowledgements

• Resource exploration activity can have a strong influence.

Funding: International Polar Year, Canadian Space AgencyCanadian Foundation of Climate and Atmospheric SciencesNatural Sciences and Engineering Research Council

Logistical Support : Liidlii Kue First NationsNorthwest Territories Government, Environment Canada