1
N 7 m=14.007 14 15 r=1.71 Reduced nitrogen 3– (as NH 4 + ) S 16 32 33 34 36 r=1.84 m=32.066 Sulfur as sulfide 2– 78 80 82 Se m=78.96 74 76 77 r =1.98 Selenium 34 2– as selenide Br 35 m=79.904 79 81 (82) r=1.95 (7+ r=0.39) Bromine as bromide Cl 17 m=35.453 35 37 r=1.81 Chlorine as choride C 6 m=12.011 12 13 14 r=2.60 Reduced carbon 4– 15 m=30.974 r=2.12 Phosphorus 3– as phosphide P 51 r=2.45 121 123 Sb m=121.760 Antimony 3– as antimonide Noble Gases Anions with which hard cations preferentially coordinate Anions (No ionization) Anions with which soft cations preferentially coordinate Intermediate Anions that commonly coordinate with H + (e.g., as CH 4 , NH 3 , H 2 S, H 2 O, etc.) At 85 215 218 219 Astatine Rn 86 (222) 220 222 218 219 Radon Si 14 m=28.086 r=2.71 Silicon as silicide 4– Most known natural occurrences of phosphides and silicides are in metorites and cosmic dust. Most natural occurrences of carbides and nitrides are in meteorites or mantle phases. He 2 3 4 Helium m=4.0026 r=1.2 Ne 10 20 21 22 Neon m=20.180 r=1.5 Ar 18 36 38 40 Argon m=39.948 r=1.8 Kr 36 78 80 82 83 84 86 Krypton m=83.80 r=1.9 Xe 54 129 130 131 132 134 136 124 126 128 Xenon m=131.29 r=2.1 As 33 m=74.922 75 r=2.22 Arsenic as arsenide 3– Cations that coordinate with H 2 O (or CO 3 2– or SO 4 2– ) in solution Cations that coordinate with O 2– in solution (e.g., as NO 3 , PO 4 3– , SO 4 2– , etc.) Noble Gases (No ionization) z / r = 1 Rn 86 (222) 219 220 222 Radon z / r = 4 z / r = 2 "Hard" or "Type A" Cations (All electrons removed from outer shell) (Thus a noble-gas-like configuration of the outer shell) Coordinate F>O>N=Cl>Br>I>S Where Fe 2+ and Fe 3+ would fall if they were hard cations He 2 m=4.0026 3 4 Helium r=1.2 Ne 10 m=20.180 20 21 22 Neon r=1.5 Ar 18 m=39.948 36 38 40 Argon r=1.8 Kr 36 m=83.80 78 80 82 83 84 86 Krypton r =1.9 Xe 54 m=131.29 129 130 131 132 134 136 124 126 128 Xenon r =2.1 ionic charge ÷ ionic radius = 32 = z r Cs 55 m=132.905 133 r=1.69 Cesium ion + Fr 87 (223) 223 r=1.76 Francium ion (<30 g in crust) very rare + 137 138 Ba 56 m=137.327 130 132 r=1.35 134 135 136 Barium ion 2+ Ra 88 (226) 223 224 r=1.40 226 228 Radium ion 2+ Cations that coordinate with OH or O 2– in solution z / r = 16 ? Ac 89 m=227.03 r =1.18 227 228 ? Actinium ion 3+ Pu 94 Plutonium Very limited natural on Earth occurrence 239 Np 93 Neptunium 237 ? Very limited natural on Earth occurrence Pa 91 (231) (+4 r=0.98) 231 234 Protactinium ion 5+ Cations that coordinate with OH (or H 2 O) in solution + Li 3 m=6.941 6 7 r=0.60 Lithium ion Na 11 m=22.990 23 Sodium ion r=0.95 + + Rb 37 m=85.468 85 87 r=1.48 Rubidium ion + Be 4 m=9.012 9 r=0.31 Beryllium ion 2+ Sr 38 m=87.62 87 88 84 86 r=1.13 Strontium ion 2+ B 5 m=10.811 10 11 r=0.20 Boron as borate (B(OH) 3 3+ or B(OH) 4 ) C 6 12 13 14 m=12.011 Carbon, as CO 2 , 2- & carbonate (CO 3 ) 4+ bicarbonate (HCO 3 ) - 15 r=0. r= 0.46 Mn 7 + (MnO 4 ) Cr 24 m=51.996 50 52 53 54 r=0.52 Chromium as chromate (CrO 4 2– ) 6+ V 23 m=50.942 50 51 r=0.59 Vanadium ion e.g., as vanadate 5+ 96 98 100 Mo 42 m=95.94 92 94 95 97 r=0.62 Molybdenum as molybdate 6+ Re 75 m=186.207 r=0.56 185 187 Rhenium ion 7+ r=0.68 W 74 180 182 183 184 186 m=183.84 Tungsten (Wolfram) as tungstate 6+ Tc 43 (100) Technetium Very limited natural on Earth occurrence 99 Elements 95 and beyond do not occur naturally: 95: Americium 96: Curium 97:Berkelium 98 Californium 99: Einsteinium 100: Fermium 101: Mendelevium 102: Nobelium 103: Lawrencium 104: Rutherfordium 105: Hahnium "Soft" ("Type B") Cations (Many electrons remain in outer shell) Coordinate I>Br>S>Cl=N>O>F z r / = 4 Intermediate Cations (Some electrons remain in outer shell) Coordination with S or O likely z / r = 16 Po 210 211 212 216 218 214 215 84 Polonium z r / = 8 coordinate with O 2– (± OH ) in solution Cations that 3+ r= 0.64 Mn 25 4+ r =0.53 Manganese ion 3,4+ Fe 26 r=0.64 Ferric iron 3+ Co 27 r=0.63 Cobaltic cobalt 3+ Sn 50 r=0.71 Stannic tin 4+ Sn 50 m=118.710 112 114 115 116 r=1.12 120 122 124 117 118 119 Stannous tin 2+ 102 104 Ru 44 m=101.07 96 98 99 3+ r=0.69 4+ r=0.67 100 101 Ruthenium ion 3,4+ Pd 46 m=106.42 102 104 105 106 108 110 r=0.86 Palladium ion 2+ Re 75 m=186.207 185 187 r=0.65 Rhenium ion 4+ 212 214 Pb 82 m=207.2 204 206 207 r=1.20 208 210 211 Plumbous lead 2+ Pb 82 r=0.84 Plumbic lead 4+ Bi 83 m=208.980 r=1.20 212 214 215 209 210 211 Bismuth ion 3+ Bi 83 r=0.74 Bismuth ion 5+ z / r = 8 As 33 r =0.47 arsenate (AsO 4 3– ) 5+ As 33 m=74.922 75 Arsenic, r=0.69 as in arsenites 3+ r=0.62 Sb 51 antimonate 5+ Sb 51 m=121.760 r=0.90 121 123 Antimony ion, 3+ as in antimonites S 16 r=0.37 4+ as sulfite (SO 3 2– ) Sulfur Se 34 r=0.42 selenate (SeO 4 2– ) 6+ 52 r =0.56 Te tellurate 6+ 128 130 52 m=127.60 120 122 123 r=0.89 124 125 126 Te Tellurium ion, 4+ as in tellurites 53 r =0.44 Iodine I 5+ as iodate (IO 3 ) m=126.904 Rare earth elements (REEs) (effectively "Hard" or "Type A" cations in their 3+ state) 176 Hf ? No natural occurrence on Earth Pm 61 ( 150) ? Promethium z /r = 2 138 Ba Lantha- nides: z / r = 4 *For the sake of simplicity, 232 Th- 208 Pb series are omitted. the 235 U- 207 Pb and z / r = 2 = ionic charge ÷ ionic radius z / r = 1 La 57 m=138.906 r=1.15 138 139 Lanthanum ion 3+ 142 Ce 58 m=140.116 136 138 140 r =1.11 Cerium ion 3+ 148 150 Nd 60 m=144.24 142 143 144 r=1.08 146 145 ? Neodymium ion 3+ Eu 63 m=151.964 151 153 r=1.03 Europium ion 3+ Gd 64 m=157.25 152 154 155 r=1.02 158 160 156 157 Gadolinium ion 3+ Tb 65 m=158.925 r=1.00 159 Terbium ion 3+ Dy 66 m=162.50 156 158 r =0.99 163 164 160 161 162 Dysprosium ion 3+ Ho 67 m=164.930 165 r=0.97 Holmium ion 3+ Er 68 m=167.26 162 164 166 r=0.96 167 168 170 Erbium ion 3+ Tm 69 m=168.934 169 r=0.95 Thulium ion 3+ Yb 70 m=173.04 168 170 171 r=0.94 (2+ r= 1.13) 174 176 172 173 Ytterbium ion 3+ Lu 71 m=174.967 175 176 r=0.93 Lutetium ion 3+ Pr 59 m=140.908 141 r=1.09 (4+ r=0.92) Praseodymium ion 3+ r =1.01 Ce 58 Cerium ion 4+ 152 154 Sm 62 m=150.36 144 147 148 r=1.04 149 150 Samarium ion 3+ Eu 63 r=1.12 Europium ion Substitutes for Ca 2+ 2+ C 6 Diamond r=0.77 & graphite S 16 Sulfur Si 14 r=1.34 Silicon Se 34 Selenium r=1.6 Cd 48 Cadmium r=1.56 I n 49 Indium r =1.66 52 Te Tellurium r=1.7 Re 75 Rhenium r =1.37 Ta 73 Tantalum r=1.46 Gases Non- metals Metals O 8 2 oxygen Molecular Bi 83 Bismuth r=1.82 Pb 82 Lead r=1.75 Cr 24 Chromium r=1.27 Co 27 Cobalt r=1.25 Ni 28 Nickel r =1.24 Fe 26 Iron r=1.26 Pd 46 Palladium r =1.37 Rh 45 Rhodium r=1.34 Ru 44 Ruthenium r=1.34 Os 76 Osmium r=1.35 Ir 77 Iridium r=1.35 Zn 30 Zinc r=1.39 Al 13 Aluminum r=1.43 As 33 Arsenic r=1.48 Sb 51 Antimony r=1.61 Sn 50 Tin r=1.58 Au 79 Gold r=1.44 Ag 47 Silver r=1.44 Pt 78 Platinum r=1.38 Cu 29 Copper r=1.28 Hg 80 Mercury r=1.60 Tl 81 Thallium r =1.71 Elemental Forms other than noble gases (uncharged) Principal elements in iron meteorites (Fe>>Ni>>Co) and, with S or O, presumably domi- nant elements in Earth's core and isotopic are omitted to conserve space) (Atomic masses information Fe Zr Li Lu 10 most abundant elements in Earth's crust 11 th to 20 th most abundant elements in Earth's crust 21 st to 40 th most abundant elements in Earth's crust 41 st to 92 nd most abundant elements in Earth's crust Elements that are thought to make up most of the Earth's core (Fe>Ni>Co), along with possibly S or O Elements that occur as native minerals, recognized in antiquity ( recognized from Middle Ages to 1862; recognized after 1963.) Elements that make natural mineral alloys with Fe Elements that make natural mineral alloys with Cu Elements that make natural mineral alloys with Os Elements that make natural mineral alloys with Pt Elements that make natural mineral alloys with Au See also Insets 1 to 5 and 7. Inset 7: Conceptual model of the behavior of oxides of hard (and intermediate) cations Li N Cations Rb O 2– Low z/r High z/r Weak cation- oxygen bonds Strong cation- oxygen bonds cation-cation Strong bonds, but repulsion H + Intermediate z/r Si 14 m=28.086 28 29 30 r=0.41 as silicate (SiO 4 4– ) 4+ or Si(OH) 4 0 Cr 24 m=51.996 50 52 53 54 r=0.69 chromium 3+ Chromic 54 56 57 58 Ions concentrated in deep-sea ferromanganese nodules relative to seawater Ions commonly concentrated in residual soils and residual sediments. Small symbol ( ) indicates less certainty. with full outer electron shells La 3+ Ba 2+ Hf 4+ Cs + Y 3+ Sr 2+ Zr 4+ Nb 5+ Rb + Ca 2+ Ti 4+ V 5+ K + Al Mg 2+ Si 4+ P 5+ Na + B 3+ Be 2+ C 4+ Li + 3+ 251 Bromellite Chrysoberyl 240 Periclase 160 254 Corundum 198 Spinel 38 Quartz 210 Perovskite 216 Rutile 115 Lime 87 71 3 145 152* 175 Tausonite 38 Quartz Mineral of one cation: 71 Nonmineral: 210 Perovskite Mineral of two cations: 200 150 100 50 Inset 1: Bulk modulus (K s in GPa) of oxide minerals of hard cations *Baddeleyite has at ambient condi- K s = 95 GPa but stable ZrO 2 phase is for the latter. is not the most tions; value shown z / r = 1 z / r = 1 z / r = 4 Cd 48 114 116 111 112 113 r=0.97 106 108 110 m=112.411 Cadmium ion 2+ I n 49 m=114.818 1+ r=1.32 113 115 3+ r=0.81 Indium ion 1,3+ Au 79 m=196.967 r=1.37 197 Gold ion (3+ r=0.85) + Tl 81 m=204.383 r=1.40 207 208 210 203 205 206 Thallous thallium + Tl 81 r=0.95 Thallic thallium 3+ 202 204 206 Hg 80 m=200.59 196 198 199 r=1.19 200 201 Mercurous ion + Ag 47 m=107.868 r=1.26 107 109 Silver ion + + 63 65 Cu 29 m=63.546 r=0.96 Cuprous copper Cr 24 r=0.90 chromium 2+ Chromous H 1 1 2 3 Hydrogen ion m=1.0079 r =10 -5 + Ni 28 r=0.73 Nickel ion 3+ 61 62 64 Ni 28 m=58.693 58 60 r=0.72 Nickel ion 2+ r =0.62 Ga 31 m=69.723 69 71 (1+ r=1.13) Gallium ion 3+ 70 72 73 74 76 Ge 32 m=72.61 (2+ r=0.93) r=0.53 Germanium ion 4+ because it speciates both as I (to right) Iodine is shown twice as a solute in seawater and IO 3 (here). H 1 m=1.0079 1 2 3 r=2.08 Hydrogen as hydride O 8 m=15.999 16 17 18 r=1.40 2– Oxygen as oxide Hg 80 r=1.10 Mercuric ion 2+ z r = 8 / z r = 8 / z / r = 4 z / r = 2 Cr Mn 2+ Fe 3+ Fe 2+ Co 2+ Ni 2+ Cu + Zn 2+ Sn 4+ Pb 2+ Bi 3+ 2603 2054 1652 1838 2078 2228 1509 2242 1903 1098 1170 Bismite Massicot Cassiterite Bunsenite Cuprite Zincite Hematite Manga- nosite Sb 928 As 547 Cd 2+ >1773 Cu 2+ 1719 Tenorite Ga 3+ 2079 Ge 4+ 1388 Ag ~473(d) + Tl 852 + Tl 3+ 1107 Sn 2+ 1353(d) Hg 2+ 773(d) Montroydite Valentinite Au no stable oxide + 2400 2000 1600 1200 800 Inset 6: Melting and decomposition (d) temperatures (K) of oxides of intermediate and soft cations Co 3+ 1168 (d) V 4+ 2240 Mn 3+ 1353(d) As 5+ 588 In 3+ 2185 Pd 2+ 1023(d) Rh 2+ 1373(d) Mo 4+ 1373(d) W 4+ ~1773(d) Re 4+ 1173(d) Pt 2+ 598(d) Au 3+ 423(d) Hg + 373(d) Arsenolite 3+ 1600 2000 Avicennite Ir 4+ 1273 (d) 1200 Eskolaite 3+ Wüstite Tugarinovite Paramont- roseite Argutite 3+ Romarchite Monteponite 400 See also Inset 3. Commonly coordinate with O of carboxyl groups of organic ligands Commonly coordinate with C of organic ligands, as in methylmercury Sc 21 m=44.956 45 r=0.81 (48) Scandium ion 3+ Al 13 m=26.982 27 r=0.50 3+ Aluminum ion as Al 3+ or Al(OH) n 3–n Fe 3+ 49 50 Ti 22 m=47.867 46 47 48 r=0.68 Titanic titanium 4+ Zr 40 m=91.224 90 91 r=0.80 92 94 96 ? Zirconium ion 4+ La & 57- REEs 71 170 Yb See below 3+ Hf 72 m=178.49 174 176 177 r=0.81 178 179 180 Hafnium ion 4+ Ta 73 m=180.948 180 181 r=0.73 Tantalum ion 5+ as tantalate Th 90 m=232.038 227 228 230 r=0.95 (+3 r=1.14) 231 234 Thorium ion 232 * 4+ 92 Uranium ion r=0.97 U 4+ 74 m=183.84 180 182 183 r=0.64 184 186 W Tungsten (Wolfram) ion 4+ 190 192 Os 76 m=190.23 184 186 r=0.69 187 188 189 Osmium ion 4+ Ir 77 m=192.217 r =0.66 191 193 Iridium ion 4+ 97 98 100 42 m=95.94 92 94 95 96 r=0.68 Mo Molybdenum ion 4+ r=0.61 V 23 Vanadium ion 4+ V 23 m=50.942 50 51 r=0.74 vanadium 3+ Vanadous Ti 22 r =0.90 Titanium ion 2+ Ti 22 r=0.75 Titanium ion 3+ 4 most abundant constituents in atmosphere 5 th to 8 th most abundant Anions that form minerals with K + and Na + Anions that form minerals with Al 3+ , Ti 4+ , and Zr 4+ Anions that form minerals with Si 4+ Anions that form minerals with Mg 2+ Cations that form simple oxide minerals Cations that form simple sulfide minerals Cations that form simple fluoride minerals Cations that form oxysalt minerals (e.g., S 6+ in sulfates, As 5+ in arsenates) Cations that form simple bromide or iodide minerals Anions that form minerals with Au + Anions that form minerals with Ag + Anions that form minerals with Cu + 128 130 52 m=127.60 120 122 123 r =2.21 124 125 126 Te Tellurium 2– as telluride Bi 83 m=208.980 Bismuth as 2–,3– bismuthide The only bismuthide minerals are of Pd, Ag, Pt, Au, and Pb An Earth Scientist's Periodic Table of the Elements and Their Ions Version 4.8c © 2007 L. Bruce Railsback, Department of Geology, University of Georgia, Athens, Georgia, 30602-2501 U.S.A. ([email protected]). For updates and more information, see http://www.gly.uga.edu/railsback/PT.html. Version 4.6 of this table was published as Figure 1 of the following paper: Railsback, L.B., 2003, An Earth Scientist's Periodic Table of the Elements and Their Ions: Geology v. 31, no. 9. p. 737-740. Publication of Version 4.6 in Geology was supported by National Science Foundation Grant DUE 02-03115. Version 4.7 was published in 2004 in the Geological Society of America's Map and Chart Series as item MCH092. Y 39 m=88.906 89 Yttrium ion r=0.93 3+ Nb 41 m=92.906 r=0.70 Niobium (or Columbium) ion (96) 93 5+ Rh 45 m=102.906 r=0.86 103 Rhodium ion 2+ Pt 78 m=195.078 190 192 193 r=0.96 196 198 194 195 ? Platinum ion 2+ z r / = 1 2 z r / = 1 z r / = 2 78 80 82 Se 34 m=78.96 74 76 77 r=0.50 4+ as selenite (SeO 3 2– ) Selenium F 9 m=18.998 19 r =1.36 Fluorine as fluoride Periclase La 3+ Hf 4+ Ta 5+ W 6+ Y 3+ Sr 2+ Zr 4+ Nb 5+ Mo 6+ Ca 2+ Ti 4+ V 5+ K + Cr 6+ Al Mg 2+ Si 4+ P 5+ Na + S 6+ B 3+ Be 2+ C 4+ N 5+ Li + Th 4+ 3+ Corundum Lime Quartz Shcherbinaite Molybdite Tantite Baddeleyite Inset 4: Solubility of oxide minerals of hard cations 4.4 Bromellite –7.4 2.77 9.9 –2.4 –8.1 –3.9 –1.37 14.0 1.4 Sc 3+ –9.7 –7.6 Rb + 28.9 4.3 Ba 2+ 6.7 Log of activity of cation species in distilled water at 25 °C –9.7 Mineral Thorianite Rutile La 3+ Hf 4+ Ta 5+ W 6+ Y 3+ Sr 2+ Zr 4+ Nb 5+ Mo 6+ Ti 4+ V 5+ Cr 6+ Al Si 4+ P 5+ S 6+ B 3+ Be 2+ C 4+ N 5+ Li + Th 4+ 3+ 9 Periclase Mg 2+ Na + 5.5-6 7.5-8 9 7 3-3.5 5.5 Perovskite 3-4 7 6 Spinel Corundum Bromellite Ca 2+ K + 3.5 Lime Quartz Shcherbinaite Molybdite Tantite Thorianite Baddeleyite 6.5 Srilankite >9 (Ru=6-6.5) Chrysoberyl 8.5 *A non-rutile synthetic TiO 2 is the hardest known oxide Inset 2: Hardness of oxide minerals of hard cations 7 Quartz Mineral of one cation: 5.5 Perovskite Mineral of two cations H=4 H=4 H=6 H=8 H=6 Hardness (Mohs scale) * 6.5 3000 La 3+ Ba 2+ Hf 4+ Ta 5+ Cs + W 6+ Y 3+ Sr 2+ Zr 4+ Nb 5+ Rb + Mo 6+ Sc 3+ Ca 2+ Ti 4+ V 5+ K + Cr 6+ Al Mg 2+ Si 4+ P 5+ Na + S 6+ B 3+ Be 2+ C 4+ N 5+ Li + Th 4+ 1700 1193 2681 723 216 3125 1996 855 290 3200 2103 943 673 2938 3123 1785 1074 2286 2580 2500 3173 2058 1745 3493 2500 2000 1000 500 3000 2000 1500 1500 2345 3+ Inset 3: Melting T(K) of oxides of hard cations See also Inset 6. v. 4.8c 03 2 May 2007 92 234 235 238 Uranium * r=0.7 m=238.029 U as uranyl (UO 2 2+ ) 6+ F Cl Br I Anion: Na + ( )-, and Mg 2+ ( )-bearing halides (mol/L) HgI 2 Villiaumite Halite 100 1 10 -2 10 -4 10 -6 10 -8 Sellaite Chlorargyrite Bromargyrite Iodargyrite NaBr NaI AgF MgBr 2 MgI 2 Mineral Nonmineral HgBr 2 HgCl 2 Solubility of Ag + ( )-, Hg 2+ ( )-, (AgCl) (AgBr) (AgI) (MgF 2 ) (NaF) (NaCl) MgCl 2 of hard and soft cations Inset 8: Solubility of halides I 53 r=2.16 (7+ r =0.50) (124) 127 (128) (130) Iodine as iodide m=126.904 r=0.25 Fe 26 as ferrate or 6+ perferrate (FeO 4 2– ) z r = ionic potential or charge density = ionic charge ÷ ionic radius Ge 54 m=72.59 2 3 4 r=1.05 Ionic Radius (r ) (Å) Atomic Mass Most abundant (bold) Radioactive (italicized) β- β+ EC, α Naturally occurring isotopes Radioactive decay pathways Outline solid for naturally occurring elements or ions; dashed for ones that rarely or never occur in nature. Actinium Element Name Atomic Number (number of protons) Symbol (see scale at far right) 3+ (or elemental radius for elemental forms) Permanganate (MnO 4 ) is a hard cation shown to left Chromate (CrO 4 2– ) is a hard cation shown to left MgAlBO 4 (Sinhalite) Me 2+ CO 3 KNO 3 (Niter) Na 2 SO 4 (Thenardite) CaSO 4 (Anhydrite) Al 2 SiO 5 (K-S-A) ZrSiO 4 (Zircon) KAl 2 Si 3 O 8 (Kspar) AlPO 4 (Berlinite) Na 3 PO 4 (Olympite) (e.g., Calcite) Si 4+ P 5+ S 6+ B 3+ C 4+ N 5+ Inset 5: Typical simple oxysalt minerals ( __MO n minerals without OH or H 2 O) Minerals with cations of very low ionic potential (e.g., K + , Na + , Ba 2+ ) Minerals with cations of low (e.g., K + ) to moderate (e.g., Al 3+ ) ionic potential "K-S-A" indicates kyanite, andalusite, & sillimanite. NaNO 3 (Natratine) Minerals with cations of low ionic potential 8 most abundant solutes dissolved in seawater 9 th to 16 th most abundant 17 th to 22 nd most abundant 2 nd to 8 th most abundant solutes in average river water Most abundant solute in average river water (HCO 3 ) Ions that enter later phases in igneous rocks because of their large size (mostly "large-ion lithophiles") Ions that enter early-forming phases in igneous rocks Ions least depleted from mantle in formation of crust Ions enriched in CAIs (Ca-Al-rich inclusions in meteorites) relative to the composition of the solar system Solutes that can be limiting nutrients in the oceans Macronutrient solutes on land Micronutrient solutes on land Ions essential to the nutrition of at least some vertebrates ("essential minerals") Solutes that can be limiting nutrients in the growth of bacteria Fe 26 m=55.845 r =0.76 Ferrous iron 2+ N 7 m=14.007 14 15 r=0.11 Nitrogen as nitrate (NO 3 ) 5+ P m=30.974 31 r=0.34 Phosphorus as 5 1 phosphate (PO 4 3– 5+ and HPO 4 2– ) S 16 m=32.066 32 33 34 36 r=0.29 Sulfur as sulfate (SO 4 2– ) 6+ K 19 m=39.098 39 40 41 r=1.33 Potassium ion Ca 20 m=40.078 40 42 43 44 46 48 Calcium ion 2+ r = 0.99 Mg 12 m=24.305 24 25 26 r=0.65 Magnesium ion 2+ Fe 2+ 55 Mn 25 m=54.938 r =0.80 Manganous Mn 2+ 59 Co 27 m=58.933 r =0.74 Cobaltous cobalt 2+ r=0.69 Cu 29 Cupric copper 2+ Zn 30 m=65.39 64 66 r=0.74 67 68 70 Zinc ion 2+ r= 0.27 Cl 7 + (ClO 4 ) as per- chlor- nate as per- manga- nate 42 Mo 2+ Nb 41 4+ Nb 41 3+ H 1 2 hydrogen Molecular 2 N 7 nitrogen Molecular O 8 Oxygen as peroxide, as in atmospheric OH 0 , HO 2 , and H 2 O 2 1– Anions with incomplete outer electron shells Also see Inset 9. Also see Inset 9. Ions that tend to enter into and/or stay in O 2- -bearing solids Ions that tend to only enter O 2- -bearing solids late, or not at all, and instead to enter or remain in aqueous solution. See also Inset 9. presumably as rheniate 5+ NO 3 (nitrate) 4+ NO 2 (nitrogen dioxide) 3+ NO 2 (nitrite) 2+ NO (nitric oxide) 1+ N 2 O (nitrous oxide) 0 N 2 (nitrogen) 3– NH 3 (ammonia) Example Inset 9: The many valence states of nitrogen Valence state Highlighted valence states are shown above in the main table. N 2 is the most abundant constituent of the atmosphere; NO 2 , NO, N 2 O, and NH 3 are minor constituents.

Periodic Table English

Embed Size (px)

DESCRIPTION

Periodic table

Citation preview

Page 1: Periodic Table English

N 7m=14.007

14 15

r=1.71

Reduced nitrogen

3–

(as NH4+)

S 16

32 33 34 36

r=1.84m=32.066Sulfur as sulfide

2–

78 80 82

Se

m=78.96

74 76 77r=1.98

Selenium342–

as selenide

Br 35

m=79.904

79 81 (82)

r=1.95(7+ r=0.39)

Bromine

as bromide

Cl 17

m=35.453

35 37

r=1.81

Chlorineas choride

C 6m=12.011

12 13 14

r=2.60

Reduced carbon

4–

15

m=30.974r=2.12

Phosphorus

3–

as phosphide

P

51

r=2.45

121 123

Sb

m=121.760

Antimony

3–

as antimonide

Noble Gases

Ani

ons

with

w

hich

har

d ca

tions

pr

efer

entia

lly

coor

dina

te

Anions

(No ionization)

Ani

ons

with

w

hich

sof

t cat

ions

pr

efer

entia

lly

coor

dina

te

Inte

rmed

iate

Anions that commonly coordinate with H+ (e.g., as CH4, NH3, H2S, H2O, etc.)

At 85

215 218 219

Astatine

Rn 86(222)

220 222218 219

Radon

Si 14

m=28.086r=2.71

Silicon as silicide

4–

Most known natural occurrences of phosphides and silicides are in metorites

and cosmic dust.

Most natural occurrences of carbides and nitrides are in meteorites or mantle phases.

He 2

3 4

Helium

m=4.0026r=1.2

Ne 10

20 21 22

Neon

m=20.180r=1.5

Ar 18

36 38 40

Argon

m=39.948r=1.8

Kr 36

78 80 8283 84 86

Krypton

m=83.80r=1.9

Xe 54

129 130 131132 134 136

124 126 128

Xenon

m=131.29r=2.1

As 33m=74.922

75

r=2.22

Arsenic as arsenide

3–

Cations that coordinate with H2O (or CO3

2– or SO42–)

in solution

Cations that coordinate with O2– in solution (e.g., as

NO3–, PO4

3–, SO42–, etc.)

Noble Gases(No ionization)

z/r = 1

Rn 86(222)

219 220 222

Radon

z/r = 4z/r = 2

"Hard" or "Type A" Cations(All electrons removed from outer shell)

(Thus a noble-gas-like configuration of the outer shell)

Coordinate F>O>N=Cl>Br>I>S

Where Fe2+ and Fe3+ would fall if they were

hard cations

He 2m=4.0026

3 4

Helium

r=1.2

Ne 10m=20.180

20 21 22

Neon

r=1.5

Ar 18

m=39.948

36 38 40

Argon

r=1.8

Kr 36m=83.80

78 80 8283 84 86

Krypton

r=1.9

Xe 54m=131.29

129 130 131132 134 136

124 126 128

Xenon

r=2.1

ionic charge ÷ionic radius

= 32 =zr

Cs 55m=132.905

133

r=1.69

Cesium ion

+

Fr 87(223)

223

r=1.76

Francium ion

(<30 g in crust)very rare

+137 138

Ba 56m=137.327

130 132r=1.35

134 135 136

Barium ion

2+

Ra 88(226)

223 224

r=1.40

226 228

Radium ion

2+

Cations that coordinate with OH–

or O2– in solution

z / r= 16

?

Ac 89m=227.03

r=1.18

227 228

?Actinium ion

3+ Pu 94Plutonium

Very limitednatural

on Earthoccurrence

239

Np 93Neptunium

237 ?

Very limitednatural

on Earthoccurrence

Pa 91(231)

(+4 r=0.98)

231 234

Protactinium ion

5+

Cations that coordinate

with OH– (or H2O) in solution

+Li 3m=6.941

6 7

r=0.60

Lithium ion

Na 11

m=22.990

23

Sodium ion

r=0.95

+

+

Rb 37m=85.468

85 87

r=1.48

Rubidium ion

+

Be 4m=9.012

9

r=0.31

Beryllium ion

2+

Sr 38m=87.62

87 8884 86

r=1.13

Strontium ion

2+

B 5

m=10.811

10 11

r=0.20

Boron as borate (B(OH)3

3+

or B(OH)4–)

C 6

12 13 14

m=12.011

Carbon, as CO2,

2-& carbonate (CO3 )

4+

bicarbonate (HCO3)-

15r=0.

r=0.46

Mn7+

(MnO4– )

Cr 24

m=51.996

50 52 53 54

r=0.52

Chromium as chromate (CrO4

2–)

6+V 23

m=50.942

50 51r=0.59

Vanadium ione.g., as vanadate

5+

96 98 100

Mo 42

m=95.94

92 94 95 97r=0.62

Molybdenum as molybdate

6+

Re 75

m=186.207r=0.56

185 187

Rhenium ion

7+

r=0.68

W 74

180 182 183184 186

m=183.84

Tungsten (Wolfram)

as tungstate

6+

Tc 43

(100)

TechnetiumVery limited

natural

on Earthoccurrence

99

Elements 95 and beyond do not occur naturally: 95: Americium 96: Curium 97:Berkelium 98 Californium 99: Einsteinium100: Fermium

101: Mendelevium102: Nobelium103: Lawrencium104: Rutherfordium105: Hahnium "Soft" ("Type B") Cations

(Many electrons remain in outer shell)Coordinate I>Br>S>Cl=N>O>F

z r/= 4

Intermediate Cations(Some electrons remain in outer shell)Coordination with S or O likely

z/r = 16

Po

210 211 212

216 218214 215

84Polonium

zr/ = 8

coordinate with O2– (± OH–) in solutionCations that

3+ r= 0.64

Mn 25

4+ r=0.53

Manganese ion

3,4+ Fe 26

r=0.64

Ferric iron

3+ Co 27

r=0.63

Cobaltic cobalt

3+ Sn 50r=0.71

Stannic tin

4+

Sn 50m=118.710

112 114 115 116r=1.12

120 122 124117 118 119

Stannous tin

2+

102 104

Ru 44m=101.07

96 98 99

3+ r=0.694+ r=0.67

100 101

Ruthenium ion

3,4+Pd 46m=106.42

102 104 105106 108 110

r=0.86

Palladium ion

2+

Re 75m=186.207

185 187

r=0.65

Rhenium ion

4+

212 214

Pb 82m=207.2

204 206 207

r=1.20

208 210 211

Plumbous lead

2+

Pb 82r=0.84Plumbic lead

4+

Bi 83m=208.980

r=1.20

212 214 215209 210 211

Bismuth ion

3+

Bi 83r=0.74

Bismuth ion

5+

z/r =

8

As 33r=0.47

arsenate (AsO43–)

5+

As 33m=74.922

75

Arsenic,

r=0.69

as in arsenites

3+r=0.62

Sb 51antimonate

5+

Sb 51

m=121.760r=0.90

121 123

Antimony ion,

3+

as in antimonites

S 16r=0.37

4+as sulfite (SO3

2–)Sulfur Se 34

r=0.42selenate (SeO4

2–)

6+

52r=0.56

Te tellurate

6+

128 130

52m=127.60

120 122 123r=0.89

124 125 126

TeTellurium ion,

4+

as in tellurites

53

r=0.44

IodineI5+

as iodate (IO3 )–

m=126.904

Rare earth elements (REEs)(effectively "Hard" or "Type A" cations in their 3+ state)

176Hf?

No natural occurrence

on Earth

Pm 61

(150)?

Promethium

z/r = 2

138Ba

Lantha-nides:

z/r =

4

*For the sake of simplicity,

232Th-208Pb series are omitted.the 235U-207Pb and

z/r =

2

= ionic charge ÷

ionic radius

z/r=

1

La 57

m=138.906r=1.15

138 139

Lanthanum ion

3+

142

Ce 58m=140.116

136 138 140r=1.11

Cerium ion

3+

148 150

Nd 60m=144.24

142 143 144r=1.08

146 145?

Neodymium ion

3+

Eu 63m=151.964

151 153r=1.03

Europium ion

3+

Gd 64m=157.25

152 154 155r=1.02

158 160156 157

Gadolinium ion

3+Tb 65

m=158.925r=1.00

159

Terbium ion

3+ Dy 66m=162.50

156 158r=0.99

163 164160 161 162

Dysprosium ion

3+Ho 67

m=164.930

165

r=0.97

Holmium ion

3+ Er 68m=167.26

162 164 166

r=0.96

167 168 170

Erbium ion

3+Tm 69

m=168.934

169

r=0.95

Thulium ion

3+ Yb 70m=173.04

168 170 171

r=0.94(2+ r= 1.13)

174 176172 173

Ytterbium ion

3+

Lu 71m=174.967

175 176r=0.93

Lutetium ion

3+Pr 59m=140.908

141

r=1.09(4+ r=0.92)

Praseodymium ion

3+r=1.01

Ce 58Cerium ion

4+

152 154

Sm 62m=150.36

144 147 148r=1.04

149 150

Samarium ion

3+

Eu 63

r=1.12Europium ion

Substitutes for Ca2+

2+

C6

Diamond

r=0.77& graphite

S16

SulfurSi14

r=1.34Silicon

Se34

Selenium

r=1.6

Cd48

Cadmium

r=1.56

In49

Indium

r=1.66

52Te

Tellurium

r=1.7

Re75

Rhenium

r=1.37

Ta73

Tantalum

r=1.46

Gases

Non-metals

Metals

O8

2oxygen

Molecular

Bi83

Bismuth

r=1.82

Pb82Lead

r=1.75

Cr24

Chromium

r=1.27

Co27

Cobalt

r=1.25

Ni28

Nickel

r=1.24

Fe26

Iron

r=1.26

Pd46

Palladium

r=1.37

Rh45

Rhodium

r=1.34

Ru44

Ruthenium

r=1.34

Os76

Osmium

r=1.35

Ir77

Iridium

r=1.35

Zn30Zinc

r=1.39

Al13

Aluminumr=1.43

As33

Arsenic

r=1.48

Sb51

Antimony

r=1.61

Sn50Tin

r=1.58

Au79

Gold

r=1.44

Ag47Silver

r=1.44

Pt78

Platinum

r=1.38

Cu29

Copper

r=1.28

Hg80

Mercury

r=1.60

Tl81

Thallium

r=1.71

Elemental Forms

other than noble gases(uncharged)

Principal elements in iron meteorites (Fe>>Ni>>Co) and, with S or O, presumably domi-nant elements in Earth's core

and isotopic

are omitted toconserve space)

(Atomic masses

information

FeZrLiLu

10 most abundant elements in Earth's crust11th to 20th most abundant elements in Earth's crust21st to 40th most abundant elements in Earth's crust41st to 92nd most abundant elements in Earth's crust

Elements that are thought to make up most of the Earth's core (Fe>Ni>Co), along with possibly S or O

Elements that occur as native minerals, recognized in antiquity ( recognized from Middle Ages to 1862; recognized after 1963.)

Elements that make natural mineral alloys with FeElements that make natural mineral alloys with CuElements that make natural mineral alloys with OsElements that make natural mineral alloys with PtElements that make natural mineral alloys with Au

See also Insets 1 to 5 and 7.

Inset 7: Conceptual model of the behavior of oxides of hard (and intermediate) cations

Li NCations

Rb O2–

Low z/r

High z/r

Weak cation-oxygen bonds

Strong cation-oxygen bonds

cation-cation

Strongbonds, but

repulsion

H+

Intermediate z/r

Si 14

m=28.086

28 29 30

r=0.41

as silicate (SiO44–)

4+

or Si(OH)40

Cr 24m=51.996

50 52 53 54

r=0.69

chromium

3+Chromic

54 56 57 58

Ions concentrated in deep-sea ferromanganese nodules relative to seawater

Ions commonly concentrated in residual soils and residual sediments. Small symbol ( ) indicates less certainty.

with full outer electron shells

La 3+Ba2+ Hf 4+Cs +

Y 3+Sr 2+ Zr 4+ Nb5+Rb+

Ca2+ Ti 4+ V 5+K +

AlMg2+ Si 4+ P5+Na +

B 3+Be2+ C4+Li +

3+

251BromelliteChrysoberyl

240

Periclase160

254Corundum

198

Spinel

38Quartz

210

Perovskite

216Rutile

115Lime

87

71

3

145

152*

175

Tausonite

38Quartz

Mineral of one cation:

71Nonmineral:

210Perovskite

Mineral of two cations:

200

150100

50

Inset 1: Bulk modulus (Ks in GPa) of oxide minerals of hard cations

*Baddeleyite has

at ambient condi-

Ks = 95 GPa but

stable ZrO2 phase

is for the latter.

is not the most

tions; value shown

z / r=

1

z / r=

1

z / r=

4

Cd 48

114 116111 112 113

r=0.97106 108 110

m=112.411Cadmium ion

2+In 49

m=114.818

1+ r=1.32

113 115

3+ r=0.81

Indium ion

1,3+

Au 79m=196.967

r=1.37

197

Gold ion

(3+ r=0.85)

+ Tl 81m=204.383

r=1.40

207 208 210203 205 206

Thallous thallium

+

Tl 81r=0.95

Thallic thallium

3+202 204 206

Hg 80m=200.59

196 198 199r=1.19

200 201

Mercurous ion

+

Ag 47m=107.868

r=1.26

107 109

Silver ion

+

+

63 65

Cu 29m=63.546

r=0.96

Cuprous copper

Cr 24r=0.90

chromium

2+Chromous

H 1

1 2 3

Hydrogen ion

m=1.0079r=10-5

+

Ni 28

r=0.73

Nickel ion

3+

61 62 64

Ni 28m=58.693

58 60r=0.72

Nickel ion2+

r=0.62

Ga 31m=69.723

69 71

(1+ r=1.13)

Gallium ion

3+

70 72 73 74 76

Ge 32m=72.61

(2+ r=0.93)r=0.53

Germanium ion

4+

because it speciates both as I– (to right)

Iodine is shown twice as a solute in seawater

and IO3 (here).–

H 1m=1.0079

1 2 3r=2.08

Hydrogen–

as hydride

O 8m=15.999

16 17 18

r=1.40

2–Oxygen as oxide

Hg 80r=1.10

Mercuric ion

2+

zr = 8/

zr =

8

/

z/r =

4

z / r=

2

CrMn

2+

Fe3+

Fe2+

Co2+

Ni2+

Cu+ Zn2+

Sn4+

Pb2+

Bi3+

2603

2054 1652

1838

2078 2228 15092242

1903

10981170

BismiteMassicot

Cassiterite

Bunsenite Cuprite

Zincite

Hematite

Manga-nosite Sb

928

As547

Cd2+

>1773

Cu2+

1719

Tenorite

Ga3+

2079Ge

4+

1388

Ag~473(d)

+

Tl852

+

Tl3+

1107

Sn2+

1353(d)

Hg2+

773(d)Montroydite

Valentinite

Auno stable

oxide

+

2400

2000

1600

1200

800

Inset 6: Melting and decomposition (d) temperatures (K) of oxides of intermediate and soft cations

Co3+

1168 (d)V

4+

2240

Mn3+

1353(d)

As5+

588

In3+

2185Pd

2+

1023(d)Rh

2+

1373(d)Mo

4+

1373(d)

W4+

~1773(d)Re

4+

1173(d)Pt

2+

598(d)

Au3+

423(d)Hg+

373(d)

Arsenolite

3+1600

2000

Avicennite

Ir4+

1273 (d)

1200Eskolaite

3+

Wüstite

Tugarinovite

Paramont-roseite

Argutite3+

RomarchiteMonteponite

400

See also Inset 3.

Commonly coordinate with O of carboxyl groups of organic ligands

Commonly coordinate with C of organic ligands, as in methylmercury

Sc 21m=44.956

45

r=0.81

(48)

Scandium ion

3+

Al 13

m=26.982

27

r=0.50

3+Aluminum ion asAl3+ or Al(OH)n

3–n

Fe3+

49 50

Ti 22m=47.867

46 47 48

r=0.68

Titanic titanium

4+

Zr 40m=91.224

90 91

r=0.80

92 94 96 ?

Zirconium ion

4+

La & 57-REEs 71

170Yb

See below

3+ Hf 72m=178.49

174 176 177

r=0.81

178 179 180

Hafnium ion

4+Ta 73

m=180.948

180 181

r=0.73

Tantalum ion

5+

as tantalate

Th 90m=232.038

227 228 230

r=0.95(+3 r=1.14)

231 234

Thorium ion

232 *

4+ 92Uranium ion

r=0.97

U4+

74

m=183.84

180 182 183

r=0.64

184 186

WTungsten (Wolfram)

ion

4+

190 192

Os 76m=190.23

184 186

r=0.69

187 188 189

Osmium ion

4+ Ir 77m=192.217

r=0.66

191 193

Iridium ion

4+97 98 100

42m=95.94

92 94 95 96r=0.68

MoMolybdenum ion

4+

r=0.61V 23

Vanadium ion

4+

V 23m=50.942

50 51r=0.74

vanadium

3+Vanadous

Ti 22r=0.90Titanium ion

2+

Ti 22r=0.75Titanium ion

3+

4 most abundant constituents in atmosphere

5th to 8th most abundant

Anions that form minerals with K+ and Na+

Anions that form minerals with Al3+, Ti4+, and Zr4+ Anions that form minerals with Si4+

Anions that form minerals with Mg2+

Cations that form simple oxide minerals Cations that form simple sulfide minerals

Cations that form simple fluoride minerals

Cations that form oxysalt minerals (e.g., S6+ in sulfates, As5+ in arsenates)

Cations that form simple bromide or iodide minerals

Anions that form minerals with Au+ Anions that form minerals with Ag+ Anions that form minerals with Cu+

128 130

52

m=127.60

120 122 123r=2.21

124 125 126

TeTellurium

2–

as telluride

Bi 83

m=208.980

Bismuth as

2–,3–

bismuthide

The only bismuthide minerals are of

Pd, Ag, Pt, Au, and Pb

An Earth Scientist's Periodic Table of the Elements and Their IonsVersion 4.8c © 2007 L. Bruce Railsback, Department of Geology, University of Georgia, Athens, Georgia, 30602-2501 U.S.A. ([email protected]). For updates and more information, see http://www.gly.uga.edu/railsback/PT.html.

Version 4.6 of this table was published as Figure 1 of the following paper: Railsback, L.B., 2003, An Earth Scientist's Periodic Table of the Elements and Their Ions: Geology v. 31, no. 9. p. 737-740. Publication of Version 4.6 in Geology was supported by National Science Foundation Grant DUE 02-03115. Version 4.7 was published in 2004 in the Geological Society of America's Map and Chart Series as item MCH092.

Y 39m=88.906

89

Yttrium ion

r=0.93

3+ Nb 41

m=92.906r=0.70

Niobium (orColumbium) ion

(96)93

5+ Rh 45m=102.906

r=0.86

103

Rhodium ion

2+

Pt 78m=195.078

190 192 193

r=0.96

196 198194 195

?

Platinum ion

2+

z r/=

1 2–

z r/=

1–

z r/=

2–

78 80 82

Se 34m=78.96

74 76 77r=0.50

4+

as selenite(SeO32–)

Selenium

F 9m=18.998

19

r=1.36

Fluorineas fluoride

Periclase

La 3+ Hf 4+ Ta5+ W6+

Y 3+Sr2+ Zr 4+ Nb5+ Mo6+

Ca2+ Ti 4+ V 5+K + Cr 6+

AlMg2+Si 4+ P5+Na + S6+

B 3+Be2+ C4+ N5+Li +

Th4+

3+

Corundum

Lime

Quartz

Shcherbinaite

Molybdite

Tantite

Baddeleyite

Inset 4: Solubility of oxide minerals of hard cations

4.4Bromellite

–7.4 2.77

9.9 –2.4 –8.1 –3.9 –1.37

14.01.4

Sc3+

–9.7 –7.6

Rb+

28.94.3

Ba2+6.7

Log of activity of cation species in distilled water at 25 °C

–9.7

Mineral

Thorianite

Rutile

La 3+ Hf 4+ Ta5+ W6+

Y 3+Sr2+ Zr 4+ Nb5+ Mo6+

Ti 4+ V 5+ Cr 6+

Al Si 4+ P5+ S6+

B 3+Be2+ C 4+ N5+Li +

Th4+

3+

9

PericlaseMg2+

Na +

5.5-67.5-8 9 7

3-3.55.5

Perovskite

3-4

7

6

Spinel

Corundum

Bromellite

Ca2+K +3.5Lime

Quartz

Shcherbinaite

Molybdite

Tantite

Thorianite

Baddeleyite

6.5Srilankite

>9(Ru=6-6.5)

Chrysoberyl8.5

*A non-rutile synthetic TiO2 is the hardest known oxide

Inset 2: Hardness of oxide minerals of hard cations

7Quartz

Mineral of one cation:

5.5

Perovskite

Mineral of two cations

H=4

H=4

H=6

H=8

H=6

Hardness (Mohs scale)

*

6.5

3000

La 3+Ba2+ Hf 4+ Ta5+Cs + W6+

Y 3+Sr 2+ Zr 4+ Nb5+Rb+ Mo6+

Sc3+Ca2+ Ti 4+ V 5+K+ Cr 6+

AlMg2+ Si 4+ P5+Na + S6+

B 3+Be2+ C4+ N5+Li +

Th4+

1700

1193

2681 723 216

3125 1996 855 290

3200 2103 943

673 2938 3123 1785 1074

2286 25802500

3173 2058 1745

3493

25002000

1000

500

3000

2000

1500 1500

2345

3+

Inset 3: Melting T(K) of oxides of hard cations

See also Inset 6.

v. 4.8c 03 2 May 2007

92

234 235 238

Uranium

*r=0.7

m=238.029

U

as uranyl (UO22+)

6+

F–

Cl–

Br–

I–

Anion:

Na+( )-, and Mg2+( )-bearing halides (mol/L)

HgI2

Villiaumite

Halite

100110-210-410-610-8

Sellaite

Chlorargyrite

Bromargyrite

Iodargyrite

NaBr

NaI

AgF

MgBr2

MgI2

MineralNonmineral

HgBr2

HgCl2

Solubility of Ag+( )-, Hg2+( )-,

(AgCl)

(AgBr)

(AgI)

(MgF2)(NaF)

(NaCl)

MgCl2

of hard and soft cationsInset 8: Solubility of halides

I 53

r=2.16(7+ r=0.50)

(124) 127(128) (130)

Iodine as iodide

m=126.904

r=0.25

Fe 26as ferrate or

6+

perferrate (FeO42–)

zr

= ionic potentialor charge density

= ionic charge ÷ ionic radius

Ge 54m=72.59

2 3 4

r=1.05

Ionic Radius (r) (Å)

Atomic MassMost abundant (bold)Radioactive (italicized)

β-β+EC,

α

Naturally occurring isotopes

Radioactivedecay pathways

Outline solid for naturally occurring elements or ions;dashed for ones that rarely or never occur in nature.

ActiniumElement Name

Atomic Number(number of protons)

Symbol(see scale at far right) 3+

(or elemental radius for elemental forms)

Permanganate (MnO4

–) is a hard cation

shown to leftChromate

(CrO42–) is a

hard cation shown to left

MgAlBO4 (Sinhalite)

Me2+CO3 KNO3 (Niter)

Na2SO4 (Thenardite)

CaSO4 (Anhydrite)Al2SiO5 (K-S-A)

ZrSiO4 (Zircon)

KAl2Si3O8 (Kspar)

AlPO4 (Berlinite)

Na3PO4 (Olympite)

(e.g., Calcite)

Si 4+ P5+ S6+

B 3+ C4+ N5+

Inset 5: Typical simple oxysalt minerals (__MOn minerals without OH or H2O)

Minerals withcations of very low

ionic potential(e.g., K+, Na+, Ba2+)

Minerals with cations of low (e.g., K+) to moderate (e.g., Al3+) ionic potential

"K-S-A" indicates kyanite, andalusite, & sillimanite.

NaNO3 (Natratine)

Minerals with cations of low ionic

potential

8 most abundant solutes dissolved in seawater

9th to 16th most abundant 17th to 22nd most abundant

2nd to 8th most abundant solutes in average river water Most abundant solute in average river water (HCO3

–)

Ions that enter later phases in igneous rocks because of their large size (mostly "large-ion lithophiles")

Ions that enter early-forming phases in igneous rocks

Ions least depleted from mantle in formation of crustIons enriched in CAIs (Ca-Al-rich inclusions in meteorites) relative to the composition of the solar system

Solutes that can be limiting nutrients in the oceans

Macronutrient solutes on land Micronutrient solutes on land

Ions essential to the nutrition of at least some vertebrates ("essential minerals")

Solutes that can be limiting nutrients in the growth of bacteria

Fe 26m=55.845r=0.76

Ferrous iron

2+

N 7

m=14.007

14 15

r=0.11

Nitrogenas nitrate (NO3

–)

5+

P

m=30.974

31r=0.34

Phosphorus as51

phosphate (PO43–

5+

and HPO42–)

S 16

m=32.066

32 33 34 36

r=0.29

Sulfur assulfate (SO4

2–)

6+

K 19m=39.098

39 40 41

r=1.33

Potassium ionCa 20

m=40.078

40 42 4344 46 48

Calcium ion

2+

r=0.99

Mg 12m=24.305

24 25 26

r=0.65

Magnesium ion

2+

Fe2+

55

Mn 25m=54.938

r=0.80

Manganous Mn

2+

59

Co 27m=58.933r=0.74

Cobaltous cobalt

2+r=0.69

Cu 29Cupric copper

2+

Zn 30m=65.39

64 66

r=0.74

67 68 70

Zinc ion

2+

r=0.27

Cl7+

(ClO4– )

as per-chlor-nate

as per-manga-

nate

42Mo2+

Nb414+

Nb413+

H1

2hydrogenMolecular

2N 7

nitrogenMolecular O

8

Oxygen as peroxide,

as inatmosphericOH0, HO2, and H2O2

1–

Anionswith incomplete outer electron

shells

Also see Inset 9.

Also see Inset 9.

Ions

that

tend

to

ent

er in

to

and/

or s

tay

in

O2-

-bea

ring

solid

s

Ions

that

tend

to o

nly

ente

r O

2--b

earin

g so

lids

late

, or

not a

t al

l, an

d in

stea

d to

ent

er o

r re

mai

n in

aqu

eous

sol

utio

n.

See also Inset 9.

presumably as rheniate

5+ NO3– (nitrate)

4+ NO2 (nitrogen dioxide)

3+ NO2– (nitrite)

2+ NO (nitric oxide)1+ N2O (nitrous oxide)0 N2 (nitrogen)

3– NH3 (ammonia)

Example

Inset 9: The many valence

states of nitrogen

Valencestate

Highlighted valence states are shown above in the main table.

N2 is the most abundant constituent of the atmosphere; NO2, NO, N2O,

and NH3 are minor constituents.