44
Society Energy Environment SEE People and power: Heat system dynamics and smart control Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011, IEA Headquarters, Paris, France 1 Run presentation with F5 to see animations

People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

People and power: Heat system dynamics and smart control

Mark Barrett, Catalina Spataru November 2011

Energy Systems Workshop: Integrated energy systems of the future

IEA CERT-ETP20121 7, 8 November 2011, IEA Headquarters, Paris, France

1

Run

presentation

with F5 to see

animations

Page 2: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Contents

• Policy objectives

• Whole system

• Heat

• Demand

• Supply

• Heat, electricity and integration

2

Page 3: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

OBJECTIVES OF STRATEGY SOCIAL, ECONOMIC, POLITICAL

• Meet objectives at least cost with social equity

• Avoid irreversible, risky technologies

ENERGY SECURITY

• Reduce dependence on finite fossil and nuclear fuels

• UK 20% of energy from renewables by 2020 => ~35% renewable electricity?

• renewable transport fuels: 5% of by 2010, 10% by 2020

ENVIRONMENT

UK

• Government targets for GHG reduction from 1990: 12-20% by 2010, ~30% by 2020,

80% 1990-2050, including international transport.

• Require >95% GHG reduction for climate control and global equity

Europe 2020

• 20/30% GHG reduction

• 20% renewable energy fraction

3

Page 4: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Policy options

The policy aims are to be met using five classes of option:

• Behavioural change: demand, and choice and use of technologies

– demand substitution, less air travel

– modal shift from car and truck to bus and rail, lower motorway speeds, building

temperatures

– smaller cars

• Demand management

– insulation, ventilation control, recycling, efficient appliances...

• Energy efficient conversion

– cogeneration...

• Fuel switching

– to low/zero emission renewable and other sources

• Emission control technologies

– flue gas desulphurisation, catalytic converters, particulate traps...

4

Page 5: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

The whole system animated

5

Page 6: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

UK energy, space and time : animated

6

Page 7: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Temporal drivers

7

Use of time - UK average

0

100

200

300

400

500

600

700

800

900

0

5

10

15

20

25

30

0

3

6

9

12

15

18

21

0

3

6

9

12.0

00

15

18

21

0

3

6

9

12

15

18

21

W/m

2

deg

C;

m/s

Tamb_C

Tmains_C

WindDem1_mps

WindOn1_mps

WindOff1_mps

Tide_GWpGW

Wave_GWpGW

SolSInclined_Wpm2

Weather

Page 8: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 8

Heat development – strategic issues

Long development time so need to consider several decades.

Given socioeconomic development and efficiency improvements, what is the ‘end state’ for:

Heat demands in terms of:

• quantity

• temperature

• space

• time

Heat loads:

• Buildings – HW, space

• Industry – process heat

• Fuel synthesis – HT heat

Heat supply:

• Electric heat pumps

• Biomass – availability and spatial distribution

• fuel synthesis (ammonia, hydrocarbons, hydrogen and processing

• Solar, geothermal

• Waste heat

• industry

Page 9: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

End use demand

Heat pump

Store

Water

Electricity

Ambient LT Heat

MVHR LT Heat

Space

SolarHeater

Store

Pas

sive

sto

rage

Appliances

Gas? Boiler?

Dwellings;

two archetypes

Heat pump

single source

peaks

little storage

District heat

diversity

multiple inputs

cheap storage

implementation

9

District

Heat

End use demand

Heat pump

Store

Water

Electricity supply

Ambient LT Heat

Space

SolarHeater

StoreCHP

Store

Pa

ssiv

e s

tora

ge

Elecdemands

Page 10: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Building dynamics : heating

Winter’s day

Months 1,4,7

10

0

1000

2000

3000

4000

5000

6000

7000

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22

Wat

ts

De

g C

DHeatAux_W

DApp_W

DHWIncGain_W

DOccGain_W

DSolPassGain_W

Tamb_C

DComftargetT_C

DThermMT_C

0

1000

2000

3000

4000

5000

6000

7000

0

5

10

15

20

25

30

0 6 12 18 0 6 12 18 0 6 12 18

Wat

ts

De

g C

DSpHeatEmit_W

DApp_W

DHWIncGain_W

DOccGain_W

DSolPassGain_W

Tamb_C

DComftargetT_C

DThermMT_C

DHeatToStore_W

Page 11: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Building dynamics: solar heater

Winter’s day

Months 1,4,7

11

0

5

10

15

20

25

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22

Lit

res/

hr;

De

g C

Wa

tts

DHWVol_l

DHWHeat_W

DSolCollToTank_W

DSolTankHeatOut_W

DSolTankT_C

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

0 6 12 18 0 6 12 18 0 6 12 18

Lit

res/

hr;

De

g C

W

DHWVol_l

SolSInclined_Wpm2

DHWHeat_W

DSolCollToTank_W

DSolTankHeatOut_W

DHWHeatAux_W

DSolTankT_C

Page 12: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Person-Dwelling

Combinations

12

0

5

10

15

20

25

30

35

2010 2015 2020 2025 2030 2035 2040 2045 2050

M

New10New8New7New6New5New4New3New2New1Ref10Exi10Ref9Exi9Ref8Exi8Ref7Exi7Ref6Exi6Ref5Exi5Ref4Exi4Ref3Exi3Ref2Exi2Ref1Exi1

Numbers of PDCs

changing with:

• Demolition

• Refurbishment

• New build

0

500

1000

1500

2000

2010 2015 2020 2025 2030 2035 2040 2045 2050

PJ

OilDel

DHDel

EleDel

GasDel

Gradual change in fuel

mix from mainly gas to

electricity

Page 13: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Person-Dwelling

Combinations

13

Heat (space+water) demand of PDCs changing with:

• Demolition

• Refurbishment

• New build

Page 14: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Person-Dwelling

Combinations

14

Numbers of PDCs

changing with:

• Demolition

• Refurbishment

• New build

0

500

1000

1500

2000

2010 2015 2020 2025 2030 2035 2040 2045 2050

PJ

OilDel

DHDel

EleDel

GasDel

Gradual change in fuel

mix from mainly gas to

electricity

0

200

400

600

800

1000

1200

0

20

40

60

80

100

2010 2015 2020 2025 2030 2035 2040 2045 2050

PJ

M

Water heat

Space heat

HH_Num

Pop

Page 15: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 15

Space heat emission

Delivered electricity

Load curves for Person-Dwelling Combinations – one day for months 1,3,5,7,9,11

Page 16: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Energy demand and time

16

Currently most heat load

met with gas, with a peak

of about 250 GW.

What if this were done

with electricity?

And seasonal variation

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

TW

h

SSpCool_GW

SSpHeat_GW

SHWHeat_GW

SLightEle_GW

SEqEle_GW

ISpHeat_GW

IProHeat_GW

IProChem_GW

IProEle_GW

DEleAppTot_GW

DHeat_GW

Page 17: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 17

Heat supply development - transition

What will happen to the gas grid?

Will it be used for:

• Quantity supply with renewable gas and/or CCS

• Backup to biomass, heat pumps etc?

Will the whole gas system be retained, or just part?

District heating and electric heat pumps

Develop DH networks from:

• Nuclei of large heat loads (office blocks, hospitals etc.) initially with gas CHP input

• Existing urban power stations? Initially fossil, then biomass?

• Suitable heat source for heat pumps - e.g. sea, river (e.g. Stockholm)

• Industrial waste heat

Fuel production – heat load and low temperature waste heat

• Refining: coastal with ports. Currently ~10 GW CHP equivalent

• Fuel synthesis plants: electricity to ammonia, hydrocarbons, hydrogen, biofuels

• Sited near coasts/ports to absorb off-shore wind/biomass and for sea transport or use

(ammonia)

• Sited at filling stations?

Page 18: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Demand – supply matching

High renewable fractions will include a large wind component;

• what will happen when there is a deficit or surplus of renewable energy of perhaps 100

GW?

Demands

• Vary with social activity and weather

• Electric heat supply with heat pumps that vary with weather

Supplies:

• Renewables that vary with weather

• Dispatchable renewables

Matching

• Dispatchable supplies - chemical fossil/biomass

• Storage – heat, chemical, mechanical

• Transmisson

A large fraction of electricity will be used for heat.

Electricity is expensive to store, heat is cheap to store

18

Page 19: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 19

National system – storage

1

10

100

1000

1

10

100

1000

10000D

om

est

ic

Serv

ice

s

Ind

ust

ry

Dis

tric

t h

eat

EV

bat

teri

es

Ele

c. s

yste

m s

tore

Syn

the

tic

liqu

id

Dw

elli

ng

fab

ric

Oth

er

bu

ildin

g fa

bri

c

GW

GW

h

System total storage

Storage/average output

Input power (max)

Input elec. power

Domestic Services

Industry

District heat

EV batteries

Elec. system store

Synthetic liquid

Dwelling fabric

Other building fabric

Page 20: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

0

50

100

150

200

250

0 6 12 18 0 6 12 18 0 6 12 18

GW

LiqSynEleInp_GW

DHHPEleIn_GW

TEle_GW

SEle_GW

IEle_GW

DEle_GW

EleSuppReq_GW

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

0 6 12 18 0 6 12 18 0 6 12 18

De

g C

GW

SSpCool_GW

SSpHeat_GW

SHWHeat_GW

SLightEle_GW

SEqEle_GW

SHeatToStore_GW

SHeatStoreT_C

SHPCOP

SHPCoolCOP0

50

100

150

200

250

300

350

0

5

10

15

20

25

30

35

40

0 6 12 18 0 6 12 18 0 6 12 18

GW

h

GW

TRail_GW

TEVBattOut_GW

TEVBattIn_GW

TEVBatt_GWh

0

5

10

15

20

25

30

0 6 12 18 0 6 12 18 0 6 12 18

GW

DEleAppTot_GW

DEleForHeatTot_GW

DEle_GW

72

74

76

78

80

82

84

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 0 6 12 18 0 6 12 18

Deg

C

GW

ISpHeat_GW

ILiq_GW

IProHeat_GW

IProChem_GW

IProEle_GW

IHeatToStore_GW

IHeatStoreT_C

20

Domestic

National energy deliveries – one day for months 1,4,7 ; modelled at 15 min intervals

Industry

Transport Services

Total delivered

Page 21: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 21

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

0 6 12 18 0 6 12 18 0 6 12 18

De

g C

GW

DHDel_GW

DHHeatToStore_GW

CHPHeat_GW

CHPEle_GW

CHPFuel_GW

DHHeatStoreT_C

560

570

580

590

600

610

620

0

2

4

6

8

10

12

14

16

18

20

0 6 12 18 0 6 12 18 0 6 12 18

GW

h

GW

LiqSyn_GW

LiqSynIntoStore_GW

LiqSynEleInp_GW

LiqStore_GWh

DISTRICT HEAT/CHP

National system supply – 1 day for months 1,4,7 ; modelled at 15 min intervals

SYNTHETIC FUELS

Page 22: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

-150

-100

-50

0

50

100

150

200

250

300

0 6 12 18 0 6 12 18 0 6 12 18

GW

ImportEle_GWWaveEle_GWSolarPVEle_GWWindOff1Ele_GWWindOn1Ele_GWTideEle_GWHydroEle_GWSupEleDisp_GWLiqEle_GWSolEle_GWGasEle_GWNucEle_GWEleSysStoreOut_GWCHPEle_GWEleSuppReq_GWEleSysStoreIn_GWEleWasted_GWExportEle_GWEleGen_GW

22

Electricity:

• Demand

• Renewables

• Trade

National electricity supply – 1 day for months 1,4,7; modelled at 15 min intervals

Renewable

and CHP

0

50

100

150

200

250

300

0 6 12 18 0 6 12 18 0 6 12 18

GW

WaveEle_GW

SolarPVEle_GW

WindOff1Ele_GW

WindOn1Ele_GW

TideEle_GW

HydroEle_GW

CHPEle_GW

EleSuppReq_GW

Smart grid algorithm

applied to match

demand and supply with

storage

Page 23: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Monthly flows

23

Domestic

Services

0

500

1000

1500

2000

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

W

De

g C

DSpHeatEmit_W

DSolPassGain_W

DOccGain_W

DApp_W

DHWIncGain_W

Tamb_C

DComftargetT_C

DThermMT_C

DSpHeatEmitReqT_C

DHeatToStore_W

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

TWh

DEleAppTot_GW

DHeat_GW

DEleForHeatTot_GW

DGas_GW

DOil_GW

DEle_GW

DDH_GW

0

10

20

30

40

50

60

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

De

g C

TWh

SSpCool_GW

SSpHeat_GW

SHWHeat_GW

SLightEle_GW

SEqEle_GW

SHeatToStore_GW

SHeatStoreT_C

Page 24: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 24

Conclusions

Energy efficiency and renewable electricity are major options for meeting policy objectives

Electrification of heat produces major challenges in terms of peaks and demand-supply

matching

Robust, least cost system designs will integrate all demands and supplies

Electricity demand-supply matching will require the extensive use of a mix of:

• heat storage

• chemical storage of synthetic fuels

• dispatchable biomass CHP plant

• heat pump inputs to district heating

• long distance transmission

Page 25: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 25

Electricity supply:

Renewable and CHP

National system scenario

Deliveries

0

200

400

600

800

1000

1200

2010 2015 2020 2025 2030 2035 2040 2045 2050

TW

h

DHDel_GW

EleDel_GW

SolDel_GW

LiqDel_GW

GasDel_GW

0

100

200

300

400

500

600

700

2010 2015 2020 2025 2030 2035 2040 2045 2050

TWh

WaveEle_GW

SolarPVEle_GW

WindOff1Ele_GW

WindOn1Ele_GW

TideEle_GW

HydroEle_GW

CHPEle_GW

EleSuppReq_GW

Page 26: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Heat and DH

National context for DH

A.Heat demand

1.domestic, industry, services, refineries etc.:

• quantities, load density, temperatures, temporal pattern

B. Fundamental technical and economic analysis

1.What fraction of heat demand to be met by DH? What densities of heat loads and total size

2.What heat inputs to DH: technologies - boiler/CHP/heat pumps/solar; fuels - biomass, gas.?

• What configurations? How much heat storage?

3.How will DH fit in to the national energy system and meet constraints like carbon and biomass

availability?

4.How will DH system operate dynamically in high renewable energy systems?

C. Policy specific to DH

1.Implementation: Building regulations/ standards, local planning, utility requirements.

2.Public infrastructure investment

3.Heat, gas and electricity market structures: contracts, pricing etc.

4.Foreign experience

26

Page 27: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Demography

27

56

60

64

68

72

76

80

84

88

92

1996 2001 2006 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056Year

Mil

lio

ns

56

60

64

68

72

76

80

84

88

92

Principal Mortality variants

Migration variants Fertility variants

High/Low combination variants

Projected

0

10

20

30

40

50

60

70

80

2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

M

Pop age 120Pop age 115Pop age 110Pop age 105Pop age 100Pop age 95Pop age 90Pop age 85Pop age 80Pop age 75Pop age 70Pop age 65Pop age 60Pop age 55Pop age 50Pop age 45Pop age 40Pop age 35Pop age 30Pop age 25Pop age 20

Page 28: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Households and Dwellings - UK DEMOGRAPHY

28

y = 7.2857e-0.37x

R² = 0.90680

1

2

3

4

5

6

7

0 1 2 3 4 5

CO

2 (

t/p

ers

on

/yr)

Persons / household

CO2 (t/person)

Expon. (CO2 (t/person))

More people;

Smaller households;

More dwellings;

More energy per person

More carbon per person in small

households

Page 29: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

People: energy service demands, system use and control

29

Behaviour and energy services

Use of appliances

Control of systems

Monitoring – indoor environ imposes difficult challenges on location discovery due to the dense

multipath effect and building material

Model occupancy patterns and energy consumption (OPEC)

Intention to extend to other sectors – especially transport

Page 30: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

People: energy service demands, system use and control

30

Patterns of occupancy & Individual appliances energy usage = Individual energy

load profiles

Load curves:

Lighting & appliances

and

occupants’ patterns

Page 31: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Building dynamics

Occupancy

Walls

31

0

10

20

30

40

50

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

He

at in

pu

t

Deg

C

Heater input

Solar radiation

Inc gains

Occupancy

Tcomfort

Tair

Plaster

Brick

Insulation

Insulation

Brick

Tambient

0

10

20

30

40

50

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

He

at in

pu

t

Deg

C

Heater input

Solar radiation

Inc gains

Occupancy

Tcomfort

Tair

Plaster

Brick

Insulation

Insulation

Brick

Tambient

0

5

10

15

20

25

0.0

1.0

2.0

3.0

4.0

0 2 4 6 8 10 12 14 16 18 20 22

De

g C

DOccN

DOcc

DSpConAdv_h

DComftargetT_C

0

5

10

15

20

25

0.0

1.0

2.0

3.0

4.0

0 2 4 6 8 10 12 14 16 18 20 22

De

g C

DOccN

DOcc

DSpConAdv_h

DComftargetT_C

Page 32: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

0

5

10

15

20

25

0.0

1.0

2.0

3.0

4.0

0 2 4 6 8 10 12 14 16 18 20 22

De

g C

DOccN

DOcc

DSpConAdv_h

DComftargetT_C

Heat pump and

storage dynamics

Winter’s day

modelled at 5 min

intervals

32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

CO

P

De

g C

Tamb_C

DThermMT_C

DHeatStoreT_C

DHPCOP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18 20 22

CO

P

Wat

ts

DHeatAux_W

DHeatToStore_W

DEleForHeat_W

DHPCOP

Page 33: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE

Load curves for Person-Dwelling Combinations – one day for months 1,3,5,7,9,11

33

Appliances

Water heat demand

Page 34: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 34

CO2

National system scenario

Primary

0

100

200

300

400

500

600

700

2010 2015 2020 2025 2030 2035 2040 2045 2050

Mt

LiqEleCO2_t

SolEleCO2_t

GasEleCO2_t

CHPCO2_t

TIntCO2_t

TLandCO2_t

SGasCO2_t

ISolCO2_t

ILiqCO2_t

IGasCO2_t

DLiqCO2_t

0

500

1000

1500

2000

2500

2010 2015 2020 2025 2030 2035 2040 2045 2050

TW

h

BioPri_GW

SolPri_GW

OilPri_GW

GasPri_GW

WaveEle_GW

SolarPVEle_GW

WindOff1Ele_GW

WindOn1Ele_GW

TideEle_GW

HydroEle_GW

Page 35: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 35

District heat – economics and developing the market

Central problem:

•High capital cost and long development times means DH suppliers need long contracts and

high take-up of consumers.

• This restricts consumer choice in end use energy supply type (e.g. gas or DH),

and frequency with which fuel switches can be made (say, increasing from 1 month to

15 years); but it increases consumer flexibility and security in primary fuel mix

Economics of DH must be comparative;

•What are capital costs compared to alternatives? E.g. increasing the capacity of dispatchable

generation and low voltage electricity distribution to accommodate individual heat pumps in

dwellings.

•What are the variable fuel and operating costs of alternatives? E.g. individual heat pumps or

gas boilers?

•What are the economic benefits of DH in terms of:

• multi-fuelling (CHP+HPs+…) that may be adjusted instantly or in long term with no

consumer impact?

• lower carbon emissions?

• Role in the energy system with dynamic fuel mix changing and storage, so as to

integrate, for example, a large wind component?

To overcome problem

•What financial incentives?

•What changes to regulation of energy market, buildings, planning, etc. are required?

Page 36: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 36

District heat development – possible drivers

• Building regulations: zero carbon, energy supply

• Planning regulations: e.g. Merton type rule

• Energy supply drivers.

• E.g. offshore wind->HP+DH, renewable target to absorb wind (inc. CHP, HPs?)

• RHI etc

• Energy system coherence. Role of DH as system balancer.

• Carbon target.

• Power stations; old and new. CHP mandate. IPPC. LCPD.

Page 37: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 37

District heat : foreign success

60% Danish houses have DH

Stockholm has DH with inputs from CHP, waste heat, large heat pumps using sea heat

Gothenburg DH:

•offers consumers the choice between DH and ground source HPs

•extends its DH system to very low density housing on rocky terrain

•has inputs from waste incineration, fossil plant etc.

How do they do it?

Organise seminars to bring successful practice to the UK. Advice on technical, economic,

regulatory, local political, social aspects of DH. Attendees: DECC, LAs, industry, consultants

etc.

Aim for lead demonstration UK DH systems small/medium scale with Scandinavian aid. New

schemes and/or extensions of existing (from nuclei) e.g. Southampton, Woking, Pimlico. Build

on existing initiatives. Consider dominant building/industrial loads, proximity to heat sources

such as existing power stations.

.

http://www.worldenergy.org/documents/dhchp.pdf

Page 38: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 38

Smart grid

PRIMARY ENVIRONMENTAL IMPACT

ENERGY DEMAND ENERGY CONVERSION PRIMARY ENERGY

Finite energy

Fossil

Income energy

Finite energy

Fission

Geothermal

Sun

Moon

Gas

Oil

Coal

Heat

Kinetic

Heat

Electricity

Kinetic

Light

Chemical

Cool

Waste heat

ChemicalNuclear

Transp

Waste heat

ENVIRONMENTAL HEAT

Tidal

Wave

Wind

Hydro

Heat

Biomass

Light

Domestic

Services

Industry

Impact Impact

Fusion

E

Food

Motor Generator

Fuel cell

Heat engine

Heater

Heat pump

Page 39: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 39

Smart grid

Liquid

Gas

synt

elec

Hydro

Solar PV

CHP

biomass

synt

District HeatingCooling

Heat pump

liq

gas

Hea

coal

Wind

Heat

Tide

Solar

H

H

Services

Dwellings

Nuclear

Solid

Gas

Liquid

Industry

Transport

Page 40: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 40

Smart grid

UK PUBLIC SUPPLY

Primary

UK END USE

Demands Heat

Solar thermal

G

Heater

Hydro

Wind

Light

Hydro

Solar PV

CHP

Elec

Elec only

RenewRenew

Liq

Wind

Water

Space

CHP

Motor

Appliance

Light

Cook

Sun

high volt

low volt

Elec only

Transport

Variou

Motor Liq

Elec

Heat

Cooker

Social patterns & weather

Process

Process

Syn Gas

TRADE(EU

WORLD)

Coal

Nuclear

NatGas

Liquid

Biomass

Page 41: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 41

Smart grid

ENERGY SYSTEM

Sources Transmission / storage Demands

CONTROL SYSTEM: Human / Information technology

Sensors Actuators

Learn, devise and implement control stategy

Buildings

IndustryTransportGas

Fossil

Heat

Nuclear

Renewable

Elec

Liquid

Page 42: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 42

Smart grid

Current Projected

Demand Service demand weather dependent space heating input

lighting input

independent water heating input

appliances input

Stores storage levels heat stores end use input output

electricity stores system output

Supply Thermal stations elec only input output

CHP input output

Renewables uncontrolled wind input

wave input

solar input

with storage biomass input output

hydro input output

tidal input output

geothermal input output

Trade output

Page 43: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 43

Smart grid

EleServe Scenario: Efficiency + CHP + renewables 2030 Winter day : Summer day

-5

15

35

55

75

95

115

135

155

1 25

GW

hrs

System

System demand

Essential generation

Dem Net E

Trade

Dem Net ET

Store

Dem Net ETS

Optional generation

Reserve requirement

Reserve store+hydro

Res req. Net Store

0

20

40

60

80

100

120

140

160

0 0

GW

hrs

Demand (LM) T:Rai:Mot: T:PHc:Mot:PH

T:EV:Mot:EV R:Coo:Spa:Air

R:HP:Spa:HP R:Off:Spa:Res

R:Unr:Spa:Res R:Hot:Wat:HP

R:Hot:Wat:Res R:Lig:Lig:Lig

R:Mis:Gen:Gen R:Tel:App:Tel

R:Dis:Was:Dis R:Clo:Was:Clo

R:Was:Was:Was R:Coo:Coo:Coo

R:Fre:Ref:Fre R:Fri:Ref:Ref

S:All:Wat:HP S:All:Wat:Res

S:All:Spa:HP S:All:Spa:Res

S:All:Gen:Gen S:All:Lig:Lig

S:All:Coo:Coo S:All:Spa:Air

S:All:Ref:Ref O:Pub:Lig:Lig

O:Far:Gen:Gen I:Ind:LT :HP

I:Ind:LT :Res I:Ind:HT :Res

I:Ind:Pro:Pro I:Ind:Gen:Gen

I:Ind:Mot:Mot I:Ind:Lig:Lig

E:Fue:Syn:Ele E:Fue:Gen:Gen

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 0

p/k

Wh

hrs

Marginal costs

Distribution

Startup energy

Generation energy

-9

11

31

51

71

91

111

131

151

171

0 0

GW

hrs

Generation PS30: Ogt PS20: O

PS26: G PS21: O

PS18: G PS27: G

PS28: G PS19: G

PS23: Gcc PS24: Gcc

PS25: Gcc PS22: Gcc

PS15: C PS12: C

PS11: C PS10: C

PS17: C PS13: C

PS9: C PS8: C

PS16: C PS14: C

PS7: N PS6: N

PS5: Gchp PS4: RSolPV

PS3: RWav PS2: RAer

PS1: RTid

System before load management

Page 44: People and power: Heat€¦ · Mark Barrett, Catalina Spataru November 2011 Energy Systems Workshop: Integrated energy systems of the future IEA CERT-ETP20121 7, 8 November 2011,

Society Energy Environment SEE 44

Smart grid

EleServe Scenario: Efficiency + CHP + renewables 2030 Winter day : Summer day

-5

15

35

55

75

95

115

135

155

1 25

GW

hrs

System

System demand

Essential generation

Dem Net E

Trade

Dem Net ET

Store

Dem Net ETS

Optional generation

Reserve requirement

Reserve store+hydro

Res req. Net Store

0

20

40

60

80

100

120

140

0 0

GW

hrs

Demand (LM) T:Rai:Mot: T:PHc:Mot:PH

T:EV:Mot:EV R:Coo:Spa:Air

R:HP:Spa:HP R:Off:Spa:Res

R:Unr:Spa:Res R:Hot:Wat:HP

R:Hot:Wat:Res R:Lig:Lig:Lig

R:Mis:Gen:Gen R:Tel:App:Tel

R:Dis:Was:Dis R:Clo:Was:Clo

R:Was:Was:Was R:Coo:Coo:Coo

R:Fre:Ref:Fre R:Fri:Ref:Ref

S:All:Wat:HP S:All:Wat:Res

S:All:Spa:HP S:All:Spa:Res

S:All:Gen:Gen S:All:Lig:Lig

S:All:Coo:Coo S:All:Spa:Air

S:All:Ref:Ref O:Pub:Lig:Lig

O:Far:Gen:Gen I:Ind:LT :HP

I:Ind:LT :Res I:Ind:HT :Res

I:Ind:Pro:Pro I:Ind:Gen:Gen

I:Ind:Mot:Mot I:Ind:Lig:Lig

E:Fue:Syn:Ele E:Fue:Gen:Gen

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 0

p/k

Wh

hrs

Marginal costs

Distribution

Startup energy

Generation energy

-9

11

31

51

71

91

111

131

151

171

0 0

GW

hrs

Generation PS30: Ogt PS20: O

PS26: G PS21: O

PS18: G PS27: G

PS28: G PS19: G

PS23: Gcc PS24: Gcc

PS25: Gcc PS22: Gcc

PS15: C PS12: C

PS11: C PS10: C

PS17: C PS13: C

PS9: C PS8: C

PS16: C PS14: C

PS7: N PS6: N

PS5: Gchp PS4: RSolPV

PS3: RWav PS2: RAer

PS1: RTid

System after load management