PEM_Fuel_Cell_Electric_Circuit_Model

Embed Size (px)

Citation preview

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    1/15

    PEM Fuel Cell Electric Circuit Model

    Power Electronics for Fuel CellsWorkshop

    National Fuel Cell Research Center

    University of California, Irvine

    August 8-9, 2002

    Randall GemmenNational Energy Technology Lab

    Parviz FamouriElectroMechanical Systems Lab

    West Virginia University

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    2/15

    Goals for Modeling

    Model the dynamic behavior of the fuel cell

    Must be electrical circuit model

    A Black box type model easy to use for power

    electronics engineers

    Use of standard circuit analysis packages such as

    P-Spice

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    3/15

    Page 1

    PEM Fuel Cell System

    FuelSupplyAirSupply

    Humidifier Humidifier

    Anode

    ExhaustCathode

    Exhaust

    +

    _

    Stack

    Voltage

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    4/15

    Page 1

    Proposed Fuel Cell Model

    l Uniform & Constant Temperature: T=80 deg. C.

    l Uniform & Constant Pressure: P=101000 Pa.Panode=PH2 + PH2O Pcathode=PO2 + PH2O+ PN2

    l Stack voltage:Vstack= N [Eo + RT/nF ln(PH2 PO2

    1/2 / PH2O) -Z*I -e -D]

    where, N = number of cells,e = electrochemical overpotential,

    D= diffusionoverpotential, Z = cell impedance.

    l Cell impedance model accounts for cell electrical capacitance.

    l Flow is laminar.

    l Saturated inlet gas.

    l Ignore condensation in channels.

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    5/15

    Page 1

    Conservation Equations

    l Anode Mole Conservation:

    l Cathode Mole Conservation:

    where, P=partial pressure, V=FC volume, m=mole flow, =mole density,

    U=velocity, A=channel flow area, I=current, R=univ. gas constant,T=temperature.

    F

    IUAm

    dt

    dP

    RT

    VoutOinO

    Oc

    4)()( 2_2

    2 = &

    F

    IUAm

    dt

    dP

    RT

    VoutHinH

    Ha

    2)()( 2_2

    2 = &

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    6/15

    Page 1

    Conservation Equations

    l Flow:

    where, K=flow constant,P=pressure drop across cell=Po-Ph, U=velocity,A=flowarea.

    l Humidifier Pressure:

    UAPKmin ==&

    ( )ohihh

    hh mmV

    RT

    dt

    dP&& =

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    7/15

    Page 1

    Applied Circuit Analogy for P-Spice

    l Voltage-Current Integration

    Pressure=Voltage

    Mole Flow=Current

    Volume/RT=Capacitance

    C

    i

    dt

    dV=

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    8/15

    f1(I)

    I- +

    +

    -

    +

    V

    -

    f2(I)

    - +

    f3(I)

    - +

    R1 R

    2

    C

    where:

    RT

    2F

    PH2

    1.2

    PO2

    PH2O

    f

    1(I) = ln

    -RT

    F

    I

    IO

    f2(I) = ln

    RT

    2F

    I

    Imax

    f

    3(I) = ln 1 -

    Main Circuit

    Electrochemical over potential

    Concentration over potential

    Nernst factor

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    9/15

    Humidifier Circuits

    2iOm& V

    O2/(RT

    O2)

    2oOm&R

    O2

    EO2

    +P

    hO2

    -

    2iH

    m&

    VH2/(RTH2)

    2oHm&

    RH2

    EH2

    +P

    hH2

    -

    Air supply

    Fuel Supply

    ( )22222

    oHiHH

    HhH

    mmV

    RT

    dt

    dP&&

    =

    ( )222

    22oOiO

    O

    OhO mm

    V

    RT

    dt

    dP&& =

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    10/15

    Conservation Circuits

    inHm _2& I/2F

    +

    PH2

    -

    Va/(RT)

    H2

    UA

    H2O

    O2

    H2

    F

    IUAm

    dt

    dP

    RT

    VoutHinH

    Ha

    2)()(

    2_22 = &

    F

    IUAm

    dt

    dP

    RT

    VoutOinO

    Oc

    4)()( 2_2

    2 = &inOm _2& I/4F

    +

    PO2

    -

    Vc/(RT)

    O2

    UA

    inOHm _2&

    I/2F

    +

    PH2O

    -

    Vc/(RT)

    H2OUAF

    IUAm

    dt

    dP

    RT

    VoutOHinOH

    OHc

    2)()( 2_2

    2 += &

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    11/15

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    12/15

    Output Voltage

    Stacks voltage at 100% flow rate at 1.4 kW

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    13/15

    V-I for Different Fuel Flow Rates

    PEM Output Voltage vs. Current for Different Fuel

    Flow Rates

    0

    10

    20

    30

    40

    50

    60

    70

    0.0 10.0 20.0 30.0 40.0 50.0

    Output Current (A)

    Ou

    tputVoltage(V)

    100% Flow

    75% Flow

    50% Flow

    25% Flow

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    14/15

  • 8/7/2019 PEM_Fuel_Cell_Electric_Circuit_Model

    15/15

    Conclusion

    An electric circuit model for a PEM fuel cell isdeveloped based on

    Cathode and anode humidifier circuit models

    Cathode and anode mole conservation circuit models Model simulation behaves similar to PEM fuel cell

    Experimental verification is planned

    Development of SOF circuit model is next