66
PBL Modeling for Air Quality Models Jonathan Pleim U.S. EPA/ORD/NERL NOAA/OAR/ARL Atmospheric Modeling Division Research Triangle Park, NC `

PBL Modeling for Air Quality Models - WSU LARlar.wsu.edu/nw-airquest/docs/06_JP_Seattle.pdf · 2011. 4. 27. · ACM2 Summary • ACM2 is a combination of local and non-local closure

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • PBL Modeling for Air Quality Models

    Jonathan PleimU.S. EPA/ORD/NERL

    NOAA/OAR/ARLAtmospheric Modeling Division

    Research Triangle Park, NC

    `

  • Outline• Overview of PBL modeling

    Interdependencies with land surface model (LSM), and radiation and clouds

    • Our approach in WRF-CMAQ systemNew PBL and LSM in WRFConsistent PBL and surface flux in CMAQ

    • Description and testing of the Asymmetric Convective Model v2 (ACM2)

    • Model results in WRF and CMAQ• PBL modeling issues

  • Goal: To model effects of PBL processes on air quality

    1. AQM PBL should be consistent with PBL model in Met model

    Same subgrid transport schemeSame PBL heightSame grid structure (horizontal and vertical)

    2. Met model PBL model should realistically represent fluxes and profiles of heat, momentum, and all tracers

    3. Land surface model should produce realistic representation of surface fluxes of heat, momentum, and moisture

    4. Chemical surface fluxes should be consistent with LSM (e.g. Rst, Ra)

  • WRF PBL/Surface Fluxes

    • PBL/Surface model components are in three separate, but interdependent modules in WRF

    1. Land surface model – computes soil moisture and temperature and moisture fluxes from ground, wet leaves, evapotranspiration. Added PX LSM

    2. Surface layer – Solves flux-profile relationships. Outputs: L, u*, Ra. Added Pleim (2006) surface layer scheme

    3. PBL – Computes subgrid turbulent vertical transport. Added ACM2

  • PBL Modeling for Met and AQ

    • Need simple computationally efficient schemes (generally 1st order)

    • Stable:Local diffusion that’s responsive to wind shear, stability, and eddy length scale

    • Unstable:Local and non-local transport scaled by surface heat flux and depth of PBL

  • Convective conditions• Local flux-gradient proportionality (i.e. Eddy diffusion)

    is not appropriate for Convective Boundary LayersUpward heat flux penetrates to ~80% of h while potential temperature gradients are very small through most of the PBLEddies in CBL are larger that vertical grid spacing (local closure is not appropriate)

    • Two common alternative approaches:1. Gradient adjustment term:

    ⎟⎠

    ⎞⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛ −∂∂

    ∂∂

    =∂∂

    hh zK

    ztγθθ Deardorff 1966,Troen and Mahrt 1986,

    Holstlag and Boville 1993, Noh et al. 2003

    2. Transilent or non-local closure:

    jiji M

    tθθ =

    ∂∂ Stull 1984, Blackadar 1976,

    Pleim and Chang 1992

  • Asymmetric Convective Model version 2 (ACM2)

    • Combined local and nonlocal closure for convective conditions

    • Simple Transilient model (asymmetric)Rapid upward transport by convectively buoyant plumes Gradual downward transport by compensatory subsidence

    • Combined with local eddy diffusionAllows local mixing at all levelsMore realistic (continuous) profiles in lower layersSmooth transition from stable to unstable

    • Mass flux scheme is equally applicable to heat, momentum, and any tracer

  • ACM ACM2

  • Partitioning local and non-localMixing rate, defined by Kz, is partitioned into local andnon-local components

    ( ) MfzhzzKf

    Mu convzconv =−∆

    =+

    +

    21

    21

    11

    1 )(

    ( )convzi fzKK −= 1)(

    The Question is: How to define fconv? Clearly it should increase with increasing instability, but what is its upper limit for free convection?

    First a sensitivity study for convective conditions

  • 309.5 310 310.5 311 311.5 312 312.5 313

    0

    500

    1000

    1500

    2000

    Eddy25%50%75%ACM1

    Theta (K)

    1-D experiments –

    Variations in partitioning of local and non-local transport

  • -0.2 0 0.2 0.4 0.6 0.8 1 1.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    H/Hsfc

    θ-θmin

    H/Hscf

    , potential temperature (K)

    Normalized heat flux and potential temperature profiles

    LES (Stevens 2000) ACM2

  • Non-local partitioning

    • These tests suggest that the upper limit of fconv should be about 50%

    • An expression for fconv can be derived from gradient adjustment models (e.g. Holstlag and Boville 1993) at top of surface layer:

    13

    13

    2

    1.01

    −−−

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛−+=

    Lh

    akfconv

  • Non-local fraction (fconv) as function of stability

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 5 10 15 20

    -h/L

  • Testing and evaluation of ACM2

    • LES experiments• Participation in the GABLS2 experiment• Evaluation of MM5 w/ ACM2 and PX LSM• Evaluation of WRF w/ ACM2 and PX LSM• Testing in CMAQ

  • LES experiment low heat flux (Q* = 0.05 K m s-1), weak cap

  • -0.05 0 0.05 0.1 0.15 0.2 0.250

    200

    400

    600

    800

    1000

    1200

    1400Kinematic heat flux - 24SC

    LESACM2-localACM2-nonlocalACM2-total

    kinematic heat flux (K-m/s)

    Profiles of sensible heat flux. Local, non-local, and total sensible heat flux compared to LES

  • Comparisons of ACM2 PBL Heights to Observations

    • MM5 and WRF simulations using ACM2 and the PX LSM

    • PBL heights derived for radar wind profilers by Jim Wilczak and Laura Bianco NOAA/ESRL

    • 2 profiler site from ICARTT 2004• 10 radar sites in Texas area - TexAQS

    II, 2006• Observations and models averaged by

    hour of the day

  • PBL Height averaged from July 13 to August 18, 2004

    Concord, NH

    0

    500

    1000

    1500

    2000

    12 14 16 18 20 22

    ETAMM5ACM2OBS

    Hour (UT)

    0

    500

    1000

    1500

    2000

    12 14 16 18 20 22

    ETAMM5ACM2OBS

    Hour (UT)

    Pittsburgh, PA

  • PBL height averaged for August 2006

    0

    500

    1000

    1500

    2000

    10 12 14 16 18 20

    aclSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    500

    1000

    1500

    2000

    8 10 12 14 16 18 20 22

    bhmSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    500

    1000

    1500

    2000

    2500

    3000

    8 10 12 14 16 18 20

    mdySTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    500

    1000

    1500

    2000

    2500

    8 10 12 14 16 18 20 22

    lvwSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

  • 0

    200

    400

    600

    800

    1000

    1200

    1400

    8 10 12 14 16 18 20

    lptSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    500

    1000

    1500

    2000

    8 10 12 14 16 18 20 22

    hveSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    500

    1000

    1500

    2000

    2500

    3000

    8 10 12 14 16 18 20

    cleSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    8 10 12 14 16 18 20 22

    bpaSTATS

    OBSNOAHYSUPXACM2

    Hour (LT)

  • Further WRF Development

    • Implement new, high resolution, more accurate 2001 National Land Cover Data

    Based on 30 m Landsat-7 ETM• WRF-CMAQ 2-way “On-line” system

    under development Beta release September 2008

  • WRF12km Grids and NLCD DataResearch Triangle Park, NC

  • CMAQ

    • PBL options:Eddy diffusion

    • Boundary layer scaling approach • PBL height read from Met model• Default option up-through version 4.5 (2005)

    ACM2• Local and nonlocal transport identical to ACM2 in

    Met model • Default option starting for version 4.6 (2006)

    • Surface fluxesDry deposition and bidirectional fluxes (ammonia and mercury) use Ra and Rstdirfectly from LSM in Met model

  • Eddy vs ACM2

    Hourly COMaximum 1-hr Ozone

  • O3 Vertical Profiles for urban andrural grid cells

    40 50 60 70 80 90 1000

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C48

    O3 ACM2O3

    O3

    45 50 55 60 650

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C88

    O3 ACM2O3

    O3

  • NOx

    0 5 10 15 200

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C48

    NOX ACM2NOX

    NOX

    0 0.2 0.4 0.6 0.8 1 1.2 1.40

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C88

    NOX ACM2NOX

    NOX

  • CO

    50 100 150 200 250 300 3500

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C48

    CO ACM2CO

    CO

    65 70 75 80 85 900

    500

    1000

    1500

    2000

    2500

    3000

    Aug 1, 16-22Z - R97C88

    CO ACM2CO

    CO

  • Ozonesonde at BeltsvilleJuly 19, 16 Z

    295 300 305 310 315 3200

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    Obs719beltsville 16Z?

    OTHTMTHT

    OTHT

    0 2 4 6 80

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    Obs719beltsville

    OQVMQV

    OQV

    MM5 w/ ACM2

    10 12 14

  • CMAQ ozone Eddy vs ACM2

    45 50 55 60 65 70 75 800

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    Obs719beltsville

    O3ppbMO3acm2MO3eddy

    O3ppb

  • Pellston, MI July 25, 18Z

    290 295 300 305 3100

    500

    1000

    1500

    2000

    2500

    3000

    Obs725pellston

    OTHTMTHT

    OTHT

    0 2 4 6 8 100

    500

    1000

    1500

    2000

    2500

    3000

    Obs725pellston

    OQVMQV

    OTHT

  • 30 40 50 60 70 800

    500

    1000

    1500

    2000

    2500

    3000

    Obs725pellston

    O3ppbMO3acm2MO3eddy

    O3ppb

  • ACM2 Summary• ACM2 is a combination of local and non-local closure

    techniquesSimilar capabilities to eddy diffusion w/ counter-gradient adjustment but more readily applicable to any quantity (e.g chemistry)

    • LES and 1-D tests show accurate simulation of vertical profiles and PBL heights

    • MM5 and WRF tests show good ground level performance and accurate PBL heights

    • CMAQ testing shows comparable ground level performance as the eddy diffusion model

    • Vertical profiles show larger differences from eddy diffusion with shallower and more well mixed CBL

    • Ozonesonde comparisons often show good agreement for θ and qv but not as often for O3

    • Recent publications: Pleim (2007) Part 1 and 2 JAMC

  • Conclusions

    • PBL treatment in Air Quality models should be identical to PBL model in the Meteorology model

    • PBL scheme used should be equally valid for Heat, momentum, met scalars, and chem tracers.

    • PBL models should be evaluated in terms of vertical profiles of θ,q,u,v,χ

    • PBL performance depends on other physics, especially LSM but also radiation and clouds

  • Issues• Stable Boundary layers becoming more

    important in AQ modeling (beyond O3)Daily average standardsNocturnal cold pools

    • Nocturnal SBL mixing is often determined by minimum eddy diffusivity

    Min Kz is usually larger in AQ model than in Met modelMet model issue is run-away coolingAQ model issue is extreme surface concs

    • Great need to develop more realistic SBL models that address both met and AQ needs

  • Acknowledgements

    • Rob Gilliam for help with WRF development and evaluation

    • Jim Wilczak and Laura Bianco for the PBL height data

    • Keith Ayotte for the LES dataDisclaimerDisclaimer: The research presented here was performed under the : The research presented here was performed under the

    Memorandum of Understanding between the U.S. Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce’s National Oceanic and Atmospheric Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA) and under agreement number Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not EPA and NOAA and approved for publication, it does not necessarily reflect their views or policies.necessarily reflect their views or policies.

  • Land-Atmosphere Interactions

  • Extra

  • Met Modeling Summary• Both MM5-PX-ACM2 and WRF-PX-

    ACM2 show good performance for surface statistics (at least as good as other PBL/LSM combinations)

    • Preliminary PBL height analysis shows that PX-ACM2 generally agrees well with observations and is generally better than other options

  • Model equations

    i

    i

    zz∆∆

    ∂∂ +1

    1+i1+iii1i CMd + CMd - CMu =

    tC

    ⎟⎟⎠

    ⎞⎜⎜⎝

    −+

    ∆ −

    −−

    +

    ++

    21

    21

    21

    21 )()(1 11+

    i

    iii

    i

    iii

    i zCCK

    zCCK

    z

    ( ) iii zzhMuMd ∆−= − /21

    Where Ci is mass mixing ratio at center of Layer iKi+1/2 is eddy diffusivity at top of layer i [m2s-1]Mu is upward convective mixing rate [s-1]Mdi is downward mixing rate from layer i to layer i-1 [s-1]

    h is top of PBL

  • Non-local Mixing ratesConvective mixing rate derived by conservation of buoyancy flux:

    ( )( )[ ]2111 2121 / vvzhBM θθ −−= ++

    ( )2

    12

    12

    1

    1

    1211 )(

    +++ ∆

    −=

    zzKB vvz

    θθBuoyancy flux at top of first layer defined by eddy diffusion:

    ( ) ( )hzzhzzukK sLzz s

    1.0,min;/1)(

    2* =−=φ

    Where:

    Thus, Convective mixing rate is a function of Kz but not a function of potential temperature gradient:

    ( )2

    1

    21

    11

    1 )(

    +

    +

    −∆=

    zhzzK

    M z

  • vegetation

    PBL model in Met andAQM

    Surface layer

    Root zonesurface

    L, u*, Ra

    Stomatal conductance

    q-flux

    Tg

    H-flux

    T2Soil Moisture

  • T-2m, WRF PX – Analysis, August 2006

  • T-2m, WRF NOAH – Analysis, August 2006

  • WRF Analysis 2-m Temperature Statistics

  • 2006 WRF 12km T-2m Stats

    Temperature Error

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    RM

    SE/M

    AE

    (K)

    Analysis (RMSE)Analysis (MAE)WRF PX ACMWRF PX ACMWRF NOAH YSUWRF NOAH YSU

  • Temperature BIAS

    -1

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    BIA

    S (K

    )

    Analysis (RMSE)WRF PX ACMWRF NOAH YSU

  • WRF PX 2-m Temperature Statistics

  • WRF NOAH 2-m Temperature Statistics

  • Mixing Ratio Error

    0.5

    1

    1.5

    2

    2.5

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    RM

    SE/M

    AE

    (g/k

    g)

    Analysis (RMSE)Analysis (MAE)WRF PX ACMWRF PX ACMWRF NOAH YSUWRF NOAH YSU

  • Mixing Ratio BIAS

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    BIA

    S (g

    /kg)

    Analysis (RMSE)WRF PX ACMWRF NOAH YSU

  • WRF PX 2-m MixR Statistics

  • WRF NOAH 2-m MixR Statistics

  • Wind Speed Error

    0.75

    1

    1.25

    1.5

    1.75

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    RM

    SE/M

    AE

    (m/s

    )

    WRF PX ACMWRF PX ACMWRF NOAH YSUWRF NOAH YSU

  • Revised PBL Height• Original Ri based scheme (e.g. Troen

    and Mahrt,1986):

    • Revised scheme for CBL:

    ))(()( 2

    sv

    vcrit hg

    hURihθθ

    θ−

    =

    mixsv

    mixvcrit zhg

    zUhURih +−

    −=

    ))(())()(( 2

    θθθ

    zmix is where θv(zmix) = θs

  • Wind Speed BIAS

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1-Aug

    2-Aug

    3-Aug

    4-Aug

    5-Aug

    6-Aug

    7-Aug

    8-Aug

    9-Aug

    10-A

    ug11

    -Aug

    12-A

    ug13

    -Aug

    14-A

    ug15

    -Aug

    16-A

    ug17

    -Aug

    18-A

    ug19

    -Aug

    20-A

    ug21

    -Aug

    22-A

    ug23

    -Aug

    24-A

    ug25

    -Aug

    26-A

    ug27

    -Aug

    28-A

    ug29

    -Aug

    30-A

    ug

    Day

    BIA

    S (m

    /s)

    WRF PX ACMWRF NOAH YSU

  • 290

    292

    294

    296

    298

    300

    4 8 12 16 20 24

    Mean ObsMean Model

    Hour of day (UT)

    -0.5

    0

    0.5

    1

    1.5

    2

    4 8 12 16 20 24

    Mean Abs ErrorMean Bias

    Hour of day (UT)

    2 m TemperatureAveraged over all NWS/FAA sites 7/15 – 8/18 2004

    Mean Absolute ErrorMean Bias

  • 2.5

    3

    3.5

    4

    4.5

    0 5 10 15 20 25

    ObsModel

    Hour (UT)

    -1

    -0.5

    0

    0.5

    1

    1.5

    0 5 10 15 20 25

    MAEMB

    Hour (UT)

    10 m Wind speedAveraged over all NWS/FAA sites 7/15 – 8/18 2004

    Mean Absolute ErrorMean Bias

  • The second GABLS model intercomparison

    • Multi-day Intercomparison of 23 PBL models for CASES99 field study

    Given initial profilesTg time series Constant geostrophic windLarge scale subsidence2.5% of potential evaporationP, zo

  • GABLS T-2m Intercomparison

  • 270

    275

    280

    285

    290

    295

    24 32 40 48 56 64 72

    1.5-m Air Temperaturemain towerstn 1stn 2stn 3stn 4stn 5stn 6H

    Hour (LT)

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    24 32 40 48 56 64 72

    Sensible Heat Flux

    main towerACM2

    Hour (LT)

    GABLS Experiment –Simulation of CASES99October 22-24, 1999

  • CASES99 profiles

    286 288 290 292 294 296 298 3000

    500

    1000

    1500

    2000Leon, KS October 23, 1999 - 19z

    RadiosondeACM2

    Theta (K)

    0 5 10 15 20 250

    500

    1000

    1500

    2000Leon, KS October 23, 1999 - 19z

    RadiosondeACM2

    wind speed (m/s)

  • Near surface Temperature profile from CASES99 main tower

    283.5 284 284.5 285 285.5 2860

    10

    20

    30

    40

    50

    60

    70

    80Temperature profile at 19Z (hr 38) October 23, 1999

    TowerACM2

    T (K)

  • MM5 Evaluations• Domain: 202 x 208 x 34 @ 12 km res• Physics:

    ACM2 PX LSMKF2Reisner 2RRTM w/ Dudhia SW

    • Data Assimilation:Winds at all levels, T and qv above PBLIndirect soil moisture nudging

    • July 13 – August 18, 2004

  • Evaluation of WRF-PX-ACM2 and WRF-NOAH-YSU

    • Grid configuration:Horizontal grid resolution = 12 km34 vertical layer

    • Physics:RRTM long wave radiationDudhia SWWSM6 microphysicsKF2 convective cloud scheme

    • FDDA3-D analysis nudging for winds (all levels), T, qv(above PBL only)Indirect soil moisture nudging using NCEP surface analysis of T and RH for PX LSM

    PBL Modeling for Air Quality ModelsOutlineGoal: To model effects of PBL processes on air qualityWRF PBL/Surface FluxesPBL Modeling for Met and AQConvective conditionsAsymmetric Convective Model version 2 (ACM2)Partitioning local and non-localNormalized heat flux and potential temperature profilesNon-local partitioningNon-local fraction (fconv) as function of stabilityTesting and evaluation of ACM2LES experiment low heat flux (Q* = 0.05 K m s-1), weak capProfiles of sensible heat flux. Local, non-local, and total sensible heat flux compared to LESComparisons of ACM2 PBL Heights to ObservationsFurther WRF DevelopmentWRF12km Grids and NLCD Data Research Triangle Park, NCCMAQEddy vs ACM2Ozonesonde at BeltsvilleJuly 19, 16 ZPellston, MI July 25, 18ZACM2 SummaryConclusionsIssuesAcknowledgementsExtraMet Modeling SummaryModel equationsNon-local Mixing ratesT-2m, WRF PX – Analysis, August 2006T-2m, WRF NOAH – Analysis, August 20062006 WRF 12km T-2m StatsRevised PBL HeightThe second GABLS model intercomparisonGABLS T-2m IntercomparisonGABLS Experiment – Simulation of CASES99October 22-24, 1999CASES99 profilesNear surface Temperature profile from CASES99 main towerMM5 EvaluationsEvaluation of WRF-PX-ACM2 and WRF-NOAH-YSU