26
Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Embed Size (px)

Citation preview

Page 1: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Particule production and saturation

Cyrille MarquetSPhT, Saclay

ISMD 2005, Kromeriz, Czech Republic

Page 2: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

• IntroductionBjorken limit and Regge limit of perturbative QCD

• High-energy QCD (the Regge limit) and saturationscattering matrix for high-energy partonsqq dipoles, gg dipoles, multipoles, … observables at small-x

• HERA Phenomenologyforward jetsvector mesons, DVCSdiffractive jets

• Conclusion and outlook

Contents

Page 3: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Introduction

Page 4: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

The Bjorken limit of pQCDConsider a collision of hadronic particules with a center-

of-mass energy W and a hard scale Q >> QCD

• The Bjorken limit: Q² , W² with Q²/W² fixed ( xBj in DIS)

• Operator product expansion• At leading twist:

collinear factorizationgluon distributionDGLAP evolution

• Higher twists suppressed by powers of Q²

• Scattering amplitudes decrease with increasing Q²

Transverse view of

the proton in DIS

Page 5: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

The Regge limit of pQCD

• The Regge limit:W² with Q² fixed (xBj 0 in DIS)

• One has to introduce a new scale:the saturation scale Qsat(W²)

Consider a collision of hadronic particules with a center-of-mass energy W and a hard scale Q >> QCD

• If W is such that Qsat(W²) < Q,no higher-twist effectskT-factorization, unintegrated gluon distribution, BFKL evolutionscattering amplitudes increase with increasing W

• If W is such that Qsat(W²) > Q, density effects are important (higher-twist)need to go beyond the OPE,strong gluon fields, CGC, saturation …scattering amplitudes approach unitarity limit

Qsat(W²)

Page 6: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

High-energy QCD(the Regge limit)

Page 7: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

• For an incoming quark of color i, at transverse position x:

The action of the S matrix is

Scattering matrix for high-energy partons

target...,, iin x

)/1(target...,,)( 2WOjWS ijF

jinout xx

• For a gluon: the same with the adjoint Wilson line WA

• Wilson lines WF and WA: the degrees of freedom of high-energy QCD

),(exp)( xATdxigPW aaSF xx Y = log(W²) : total rapidity

Page 8: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Tqq(x, x’,Y): the scattering amplitude of a qq dipole off the target:

Tqq(x, x’; y, y’,Y): the scattering amplitude of two qq dipoles:

Tgg(x, x’,Y): the scattering amplitude of a gg dipole:

and more generally any multipole

Dipoles and multipoles

t

abA

bF

aF zWTWTWTr )....(....))()'(( xx

tFF

cqq WWTr

NYT ))()'((11),',( xxxx

tAA

cgg WWTr

NYT ))()'((

111),',( 2 xxxx

tAFFF

cqq WWTrWWTr

NYT ))()'(())()'((11),',;',( 2

)2( yyxxyyxx

(2)

• Instead of directly the Wilson lines, colorless combinations arise as the degrees of freedom:

• We have denoted target.target. t

Page 9: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Simplest illustration : DIS

r: transverse size of the dipole

b: impact parameter

z: longitudinal momentum fraction of the quark

qqzrrdzbdd )Q,,( 222*

2* pSfd f

does not depend on z in the high-energy limit

the qq dipole amplitude Tqq(r, b, Y) appears

2

22 )Q,,()Q,( zrdzr

Y: total rapidity

);,()Q,( 222 YbrTbdrrd qqDIS

Page 10: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Observables at small-x

• Particule production phenomenology: jet cross-sections, heavy-quark production, diffractive vector mesons production, di-lepton production, multiplicities …have been studied in this high-energy QCD framework

The same dipole amplitudes enter in the formulation of

inclusive, diffractive, exclusive cross-sections

Y[A], and therefore Tqq, Tgg, Tqqg … are mainly non-perturbative, however the Y evolution is computable (in the leading logarithmic approximation)

for more on these equations, see Larry McLerran’s talk tomorrow

and Robi Peschanski’s talk sunday

)()( YTKYTdYdH

dYd

qqqqYY

• More generally, any cross-section is a function of Tqq, Tgg, Tqqg …

• The more exclusive the final state is, the more complicated the corresponding multipoles are

• How does one compute Tqq, Tgg, Tqqg …? With ][][][ AfADAAf Yt

Page 11: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

HERA phenomenologyfor particule production

* -proton collisions

Page 12: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Forward-jet production• proton + * forward-jet + X

photon virtuality: Qjet transverse momentum: kwith Q k » QCD and xBj <<1, small-x effets expected

• photon qq dipole and jet emission gg dipole

C.M., R. Peschanski and C. Royon, Phys. Lett. B 599 (2004) 236

C.M. and C. Royon, in preparation

• the different observables are well described by BFKL and saturation models

• NLOQCD is a factor 2 below the data at small-x

data: see Leif Joensson’s talk later today

Page 13: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Diffractive vector-meson productionS. Munier, A. Stasto and A. Mueller, Nucl. Phys. B 603 (2001) 427

),()Q,,()Q,( 22 zrzrdzr V

22.22 )Q,();,(

161 reYbrTbdrd

dtd biq

qq

)Q,,( 2zr ),( zrV

t = -q²

• the S-matrix is extracted from the data for • S(1/r 1Gev, b 0, x 5.10-4) 0.6

HERA is entering the saturation regime

biqqq eYbrTbd .2 );,();,( YbrT qq or

need a parametrization for

Page 14: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Diffractive J-Psi production (1)H. Kowalski and D. Teaney, Phys. Rev. D 68 (2003) 114005

dipole amplitude: ansatz for the b dependence

),()Q,,()Q,( /22 zrzrdzr PsiJ

22.22 )Q,();,(

161 reYbrTbdrd

dtd biq

qq

))()/1,(exp(1);,( 22 bTrxxgarYbrT qq 2

)( bebT Y = log(1/x)

Page 15: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Diffractive J-Psi production (2)E. Gotsman, E. Levin, M. Lublinsky, U. Maor and E. Naftali, Acta Phys. Polon. B34 (2003) 3255

• dipole amplitude obtained from a numerical solution of the BK equation

• ansatz for the b dependence in the initial condition

2222 );,()Q,( YbrTrrdbd qq

),()Q,,()Q,( /22 zrzrdzr PsiJ

Page 16: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Deeply Virtual Compton Scattering

• they compute

• they assume

L. Favart and M. Machado, Eur. Phys. J C29 (2003) 365Eur. Phys. J C34 (2004) 429

Bt

te

dtd

dtd

0

2222

0)Q,();,(

161 rYbrTbdrd

dtd

qqt

0

1

t

dtd

B

Bartels Golec-biernatKowalski model

• to do better and compute , one needs a model for

• need an analysis of the BK equation at non zero momentum transfer:

biqqq eYbrTbd .2 );,(

dtd

with t = -q²

C.M. and G. Soyez, Nucl. Phys. A, in pressC.M., R. Peschanski and G. Soyez, Nucl. Phys. A 756 (2005) 399

))/1,(exp(1 22 rxxgar

Y = log(1/x)

Page 17: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

• Diffractive photon dissociation is the dominant contribution to the diffractive cross-section diff at large MX in DIS:

elas: involves the qq dipole fluctuation, dominant for small-mass final states dissoc: involves higher Fock state fluctuations: qqg, …dominant for large-mass final states

Diffractive jet production (1)

= Q²/MX² <<1

dissocelasdiff

rapidity gap

= log(1/xpom)xpom<<1target

proton

k: transverse momentum of the final-state gluon

C. M., Nucl. Phys. B 705 (2005) 319

K. Golec-Biernat and C. M., Phys. Rev. D 71 (2005) 114005

• 1/k0: typical size at which the S-matrices are cut off

observable strongly sensitive to unitarity effects

• measuring could select between saturation and Regge-based models

kddMd

X 2

0 k

modeldependent

kddMdk

X

dissoc2

2

k²1/k²

modelindependent

modelindependent

k0

Tqq and Tqq

(2)

Page 18: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Diffractive jet production (2)kmax/QS = independent of Q², QS

1.5

saturation predictions for HERA:

Page 19: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

RHIC phenomenologysee Larry McLerran’s talk tomorrow

quark-antiquark pair productionsee Hiro Fujii’s talk sunday

recent review on particule production and saturation at RHIC: J. Jalilian-Marian and Y. Kovchegov, hep-ph/0505052

Page 20: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

• Particule-production cross-sections are sensitive to the small-x regime of QCD they contain important complementary information w.r.t. DIS for Tqq but also for Tgg, Tqqg, … on impact parameter/momentum transfer dependence

• Diffractive vector meson production at HERA: saturation models with ansatz for the impact parameter profile work quite well but that is not evidence for saturation need to start working with the momentum transfer

• Jet production in diffraction at HERA: great place to look for saturation effect can distinghuish between soft models and saturation

Conclusions

Page 21: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

• Universality of Tqq:there are several parametrizations for Tqq

but could we describe everything that Tqq should describe with only one? new global analysis

• Has RHIC really provided evidence for saturation? waiting for the LHCor listen to Larry McLerran tomorrow

Outlook

Page 22: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

RHIC phenomenologysee also Larry McLerran’s talk tomorrow

see recent review: J. Jalilian-Marian and Y. Kovchegov, hep-ph/0505052

Page 23: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

R. Baier, A. Kovner and U. Wiedemann, Phys. Rev. D 68 (2003) 054009D. Kharzeev, Y. Kovchegov and K. Tuchin, Phys. Rev. D 68 (2003) 094013E. Iancu, K. Itakura and D. Triantafyllopoulos, Nucl. Phys. A 742 (2004) 182J.P. Blaizot, F. Gélis and R. Venugopalan, Nucl. Phys. A 743 (2004) 13J.Albacete, N. Armesto, A. Kovner, C. Salgado and U. Wiedemann, Phys. Rev. Lett 92 (2004) 082001

Nuclear modification factor in deuteron-gold collisions (1)

);,()/1log()(1 20

/1

022

beamgg

gXdA

brTbdr

rr

rkrJdrkkdd

dN

kdddN

kdddN

NR hXpp

hXdA

colldA

2

21

with the parton-level cross-section

predictions with a toy-model for Tgg and with a numerical solution of the BK equation

Page 24: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Nuclear modification factor in deuteron-gold collisions (2)

first comparisons to the data:

D. Kharzeev, Y. Kovchegov and K. Tuchin,Phys. Lett. B 599 (2004) 23D. Kharzeev, E. Levin and M. Nardi, Nucl.Phys. A 747 (2005) 609

A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, hep-ph/0506308

recent work:

shows the importance

of both x and DGLAP

evolutions

shows the importance

of the quark component

Page 25: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Azimutal correlationsD. Kharzeev, E. Levin and L. McLerran, Nucl. Phys. A 748 (2005) 627

J. Jalilian-Marian and Y. Kovchegov, Phys. Rev. D 70 (2004) 114017N. Nikolaev, W. Schäfer, B. Zakharov and V. Zoller, hep-ph/0504057R. Baier, A. Kovner, M. Nardi and U. Wiedemann, hep-ph/0506126

but: correlators with product of up to four Wilson lines enter in the formulation

of the cross-section

preliminary data:predictions using kT-factorization assumption

Page 26: Particule production and saturation Cyrille Marquet SPhT, Saclay ISMD 2005, Kromeriz, Czech Republic

Other Observables• Dilepton production

electromagnetic probe very clear signal, no fragmentation functionbut need data

• Heavy quark productionsee Hiro Fujii’s talk sunday

N. Armesto and M. Braun, Eur. Phys. J C22 (2001) 351B. Kopeliovich and A. Tarasov, Nucl. Phys. A 710 (2002) 180K. Tuchin, Phys. Lett. B 593 (2004) 66N. Nikolaev and W. Schäfer, Phys. Rev. D 71 (2005) 014023J.P. Blaizot, F. Gélis and R. Venugopalan, Nucl. Phys. A 743 (2004) 57

B. Kopeliovich, J. Raufeisen and A. Tarasov, Phys. Lett. B 503 (2001) 91F. Gélis and J. Jalilian-Marian, Phys. Rev. D 66 (2002) 094014M. Betemps, M. Gay Ducati, M. Machado and J. Raufeisen, Phys. Rev. D 67 (2003) 114008R. Baier, A. Mueller and D. Schiff, Nucl. Phys. A 741 (2004) 358