64
rt III: Models of synaptic plasticity BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 10-12 aboratory of Computational Neuroscience, LCN, CH 1015 Lausann Swiss Federal Institute of Technology Lausanne, EPFL

Part III: Models of synaptic plasticity

Embed Size (px)

DESCRIPTION

Swiss Federal Institute of Technology Lausanne, EPFL. Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne. Part III: Models of synaptic plasticity. BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 10-12. - PowerPoint PPT Presentation

Citation preview

Page 1: Part III: Models of synaptic plasticity

Part III: Models of synaptic plasticity

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapters 10-12

Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne

Swiss Federal Institute of Technology Lausanne, EPFL

Page 2: Part III: Models of synaptic plasticity

Chapter 10: Hebbian Models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 10

-Hebb rules-STDP

Page 3: Part III: Models of synaptic plasticity

Hebbian Learning

pre jpost

iijw

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j’s efficiency as oneof the cells firing i is increased

Hebb, 1949

k

- local rule- simultaneously active (correlations)

Page 4: Part III: Models of synaptic plasticity

Hebbian Learning in experiments (schematic)

posti

ijwEPSP

pre j

no spike of i

post

u

spikes of i

u

pre j i

ijw

Page 5: Part III: Models of synaptic plasticity

Hebbian Learning in experiments (schematic)

posti

ijwEPSP

pre j

no spike of i

EPSP

pre j

posti

ijw no spike of i

pre j

posti

ijwBoth neuronssimultaneously active

Increased amplitude 0 ijw

u

Page 6: Part III: Models of synaptic plasticity

Hebbian Learning

Page 7: Part III: Models of synaptic plasticity

Hebbian Learning

item memorized

Page 8: Part III: Models of synaptic plasticity

Hebbian Learning

item recalled

Recall:Partial info

Page 9: Part III: Models of synaptic plasticity

Hebbian Learning

pre jpost

iijw

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j’s efficiency as oneof the cells firing i is increased

Hebb, 1949

k

- local rule- simultaneously active (correlations)

Page 10: Part III: Models of synaptic plasticity

Hebbian Learning: rate model

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

posti

prej

corrij aw

dt

d 2

activity (rate)

Page 11: Part III: Models of synaptic plasticity

Hebbian Learning: rate modelpre jpost

iijw

k

posti

prej

corrij aw

dt

d 2

cawdt

d posti

prej

corrij 2

)(2 posti

prej

corrij aw

dt

d

))((2 posti

prej

corrij aw

dt

d

pre

poston off on offon offon off

+ +

+ 0 0 0

- -

+ 00 -

+ - - -

Page 12: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

Taylor expansion

Page 13: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

a = a(wij)

a(wij) wij

Page 14: Part III: Models of synaptic plasticity

Rate-based Hebbian Learningpre jpost

iijw

k

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

222 ][ post

ipostpost

iprej

corrij aaw

dt

d

0][ 22 post

iposta

Oja’s rule

Page 15: Part III: Models of synaptic plasticity

Spike based model

Page 16: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

- local rule- simultaneously active (correlations)

0 Prebefore post

posti

prej tt

Page 17: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

causal rule‘neuron j takes part in firing neuron’ Hebb, 1949

0 Prebefore post

posti

prej tt

prejt

EPSP

)( posti

prejij ttWw

Page 18: Part III: Models of synaptic plasticity

Spike-time dependent learning window

pre jpost

iijw

0

Prebefore post

posti

prej tt

prejt

posti

prej tt

posti

prej tt 0

0

Temporal contrast filter

)( posti

prejij ttWw

Page 19: Part III: Models of synaptic plasticity

Spike-time dependent learning window

pre jpost

iijw

prejt

postit

Prebefore post

Zhang et al, 1998review:Bi and Poo, 2001

Page 20: Part III: Models of synaptic plasticity

Spike-time dependent learning: phenomenol. model

pre jpost

iijw

Prebefore post

prejt

posti

prej tt 0

o

post

t

pre

t

posti

prej

tt

ij bbbttWwprej

prej

posti

prej

)(,

Page 21: Part III: Models of synaptic plasticity

spike-based Hebbian Learning

pre j

post i

ijw),;( post

iprejijij uuwFw

dt

d

dsstusbdsstusbbwdt

d posti

postprej

preij )()()()( 110

...')'()()',(2 dsdsstustussb posti

prej

corr

Page 22: Part III: Models of synaptic plasticity

spike-based Hebbian Learningpre j

post i

ijw

)()( fjf

prej tttu

)()( 110f

ipost

f

fj

pre

fij ttbttbbw

dt

d

...),(2,

kj

fi

corr

kj

ttttb

BPAP

)()( fif

posti tttu

Translation invariance

W(tif-tj

k )

Learning window

Page 23: Part III: Models of synaptic plasticity

Detailed models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 10

Page 24: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at restingpotential

Page 25: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at restingpotential

NMDAchannel

Page 26: Part III: Models of synaptic plasticity

Detailed models of Hebbian learning

pre j

post i

ijw

i at highpotential

BPAP

NMDA channel : - glutamate binding after presynaptic spike - unblocked after postsynaptic spike

elementary correlation detector

Page 27: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

badt

dwij

)( prej

a

tta

dt

da

prea

)( posti

a

ttb

dt

db

post

b

w

)( postj

prejij ttWw

Page 28: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

][ dcbadt

dwij

4-factor modelpre

post

sophisticated 2-factor

][ babadt

dw qqij

)( postj

prejij ttWw

Prebefore post

posti

prej tt 0

Abarbanel et al. 2002

Gerstner et al. 1998Buonomano 2001

Page 29: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learningpre j

post i

ijw

BPAP

prejt

badt

dwij

)( prej

a

tta

dt

da

prea

)( posti

a

ttb

dt

db

post

b

w

)( postj

prejij ttWw

1 pre, 1 post

Page 30: Part III: Models of synaptic plasticity

Mechanistic models of Hebbian learning

pre j

post i

ijw

BPAP

Dynamics of NMDA receptor (Senn et al., 2001)

Prebefore post

posti

prej tt 0

prejt

Page 31: Part III: Models of synaptic plasticity

Which kind of model?

exp , if

exp , if

j ij i

j ij i

t tA t t

wt t

A t t

Descriptive Models

Optimal Models

Mechanistic Models

( ) ( ) ( ) ( )w a t b t a t b t

Song et al. 2000Gerstner et al. 1996

Abarbanel et al. 2002Senn et al. 2000

Chechik, 2003Hopfield/Brody, 2004Dayan/London, 2004

Shouval et al. 2000

Gütig et al. 2003

Page 32: Part III: Models of synaptic plasticity

Chapter 11: Learning Equations

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 11

-rate based Hebbian learning-STDP

Page 33: Part III: Models of synaptic plasticity

Rate-based Hebbian Learning

pre jpost

iijw

),;( posti

prejijij wFw

dt

d

...2110 posti

prej

corrposti

postprej

preij aaaaw

dt

d

a = a(wij)

a(wij) wij

Page 34: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

prejij

posti w

txk

x1 xkx2

.2post

iprej

corrij aw

dt

d

Linear model

Analysis - separation of time scales, expected evolution

.2prek

prejik

corrij waw

dt

d

Correlationsin the input

Page 35: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

prejij

posti w

txk

x1 xkx2

Linear model

.2prek

prejik

corrij waw

dt

d

Correlationsin the input

.2 jkkcorr

j Cwawdt

d

supress index i

wCawdt

d corr 2

eigenvectors

nnn eeC

)exp()( 2 taetw ncorr

nn

Page 36: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

txk

x1 xkx2

wCawdt

d corr 2

)exp()( 2 taetw ncorr

nn

x1

12 xaw

dt

d postcorr

prej

posti

corrij aw

dt

d 2

)(tw

moves towards data cloud

w

Page 37: Part III: Models of synaptic plasticity

Analysis of rate-based Hebbian Learning

ijw

txk

x1 xkx2

wCawdt

d corr 2

)exp()( 2 taetw ncorr

nn

x1

12 xaw

dt

d postcorr

)(tw

becomes aligned with principal axis

w

Page 38: Part III: Models of synaptic plasticity

spike-based Hebbian Learning

pre j

post i

ijw),;( post

iprejijij uuwFw

dt

d

dsstusbdsstusbbwdt

d posti

postprej

preij )()()()( 110

...')'()()',(2 dsdsstustussb posti

prej

corr

Page 39: Part III: Models of synaptic plasticity

spike-based Hebbian Learningpre j

post i

ijw

)()( fjf

prej tttu

)()( 110f

ipost

f

fj

pre

fij ttbttbbw

dt

d

...),(2,

kj

fi

corr

kj

ttttb

BPAP

)()( fif

posti tttu

Translation invariance

W(tif-tj

k )

Learning window

Page 40: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

ijwvk

Linear model

vj1 vj

k

Analysis - separation of time scales, expected evolution

Correlationspre/post

.)()()(

)()( 110

dsstStSsW

tSatSaawdt

d

posti

prej

prej

preposti

postij

)()( fj

f

prej tttS

)(}{obPr fj

fjij

posti ttwt )()( post

ipost

posti tttS

)( fjtt

Point process

Average over doublystochastic process

Page 41: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

][ FPpost

ipost

idt

d

Rewrite equ.(i) fixed point equation for postsyn. rate

post

pre

FP aW

aa

1

10

wQwdt

d

.)()()( dssWQ prek

prejjk Covariance of input

(ii) input covariance

(plus extra terms)

Stable if01 postaW

Average over ensemble of rates

Rate stabilization

dssWW )(

Page 42: Part III: Models of synaptic plasticity

Analysis of spike-based Hebbian Learning

)( posti

posti tt

.)()( dsssW

(iii) extra spike-spike correlations

)( fjtt

pre j

)( s

)(sW

spike-spike correlations

Page 43: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

.)()( dsssW

- picks up spatio-temporal correlations on the time scale of the learning window W(s)

)( s

)(sW

)(sW

- non-trivial spike-spike correlations

- rate stabilization yields competition of synapses

ijw Synapses grow at the expense of others

Neuron stays in sensitive regime

Page 44: Part III: Models of synaptic plasticity

Chapter 12: Plasticity and Coding

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 45: Part III: Models of synaptic plasticity

Learning to be fast: prediction

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 46: Part III: Models of synaptic plasticity

Derivative filter and prediction

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Page 47: Part III: Models of synaptic plasticity

Derivative filter and prediction

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Postsynaptic firing shifts, becomes earlier

Page 48: Part III: Models of synaptic plasticity

Derivative filter and prediction

posti

prej dt

dw

derivative of postsyn. rate

pre j Mehta et al. 2000,2002

Song et al. 2000

+

-

Roberts et al. 1999Rao/Sejnowski, 2001Seung

Page 49: Part III: Models of synaptic plasticity

Learning spike patterns

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 50: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

pre jpost

iijw

k

causal rule‘neuron j takes part in firing neuron’ Hebb, 1949

0 Prebefore post

posti

prej tt

prejt

EPSP

)( posti

prejij ttWw

Page 51: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning: sequence learning

pre

jpost

iijw

0 Prebefore post

posti

prej tt

prejt

EPSP

Strengthen the connection with the desired timing

Page 52: Part III: Models of synaptic plasticity

Subtraction of expectations: electric fish

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 53: Part III: Models of synaptic plasticity

Spike-based Hebbian Learning

suppressestemporal structure

experiment model

C.C. Bell et al.,Roberts and Bell

Novelty detector(subtracts expectation)

Page 54: Part III: Models of synaptic plasticity

Learning a temporal code: barn owl auditory system

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 12

Page 55: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Accuracy 1 degree

Temporal precision <5us

Page 56: Part III: Models of synaptic plasticity

Jeffress model

Accuracy 1 degree

Temporal precision <5us

Page 57: Part III: Models of synaptic plasticity

Jeffress model

Page 58: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

1

mst 5

Sound source

k

Tuning of delay lines

Jeffress, 1948Carr and Konishi, 1990

Gerstner et al., 1996

Page 59: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Page 60: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

ca. 150 ca. 150

Page 61: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Problem: 5kHz signal (period 0.2 ms) but distribution of delays 2-3 ms

Page 62: Part III: Models of synaptic plasticity

Spike-timing dependent plasticity: phenomenol. model

pre jpost

iijw

Prebefore post

prejt

posti

prej tt 0

)()(,

prej

pre

t

posti

prej

tt

ij ttbttWwprej

posti

prej

1ms

Page 63: Part III: Models of synaptic plasticity

Delay tuning in barn owl auditory system

Page 64: Part III: Models of synaptic plasticity

Conclusions (chapter 12)

-STDP is spiking version of Hebb’s rule

-shifts postsynaptic firing earlier in time

-allows to learn temporal codes