55
Part IIb. A seminar on fluctuations in sedimentation May 13, 2014

Part IIb. A seminar on fluctuations in sedimentation · 2014. 5. 13. · Part IIb. A seminar on uctuations in sedimentation May 13, 2014. Fluctuations in the velocities of sedimenting

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Part IIb. A seminar on fluctuations insedimentation

    May 13, 2014

  • Fluctuations in the velocities of sedimentingparticles

    John Hinch

    DAMTP, Cambridge

    May 13, 2014

    In collaboration with Élisabeth Guazzelli & Laurence Bergougnoux

    and their students

    Guazzelli & Hinch (2011) Ann. Rev. Fluid Mech. 43, 97–116

  • Fluctuating velocitiesParticles do no fall at a constant speed in a suspension

    Trajectories of two spheres at φ = 0.3

    Nicolai, Herzhaft, Hinch, Oger & Guazzelli. (1995) Phys. Fluids 7, 12–23.

  • The divergence paradox

    I Theory: depend on size L of box w ′ = VS

    √φLa

    I Experiments: no such dependence

    w′/VS

    0

    0.5

    1

    1.5

    2

    2.5

    0 500 1000 1500 2000

    20 x 20 x 40 cm3

    10 x 10 x 40 cm3

    4 x 10 x 40 cm3

    4 x 4 x 40 cm3

    W

    t

    t/tS

    Nicolai & Guazzelli. (1995) Phys. Fluids 7, 3–5.

  • The divergence paradox

    I Theory: depend on size L of box w ′ = VS

    √φLa

    I Experiments: no such dependence

    w′/VS

    0

    0.5

    1

    1.5

    2

    2.5

    0 500 1000 1500 2000

    20 x 20 x 40 cm3

    10 x 10 x 40 cm3

    4 x 10 x 40 cm3

    4 x 4 x 40 cm3

    W

    t

    t/tS

    Nicolai & Guazzelli. (1995) Phys. Fluids 7, 3–5.

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,

    so averaging with p ∼ n (const)∫

    w ′2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL

    = VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Theory of scaling

    I Dilute: pair separated by r have w ′ ∼ VS ar ,so averaging with p ∼ n (const)

    ∫w ′

    2p dV diverges like V 2Sφ

    L

    a

    Caflisch & Luke (1985) Phys. Fluids 28, 759-60.

    I Explanation Hinch (1988) Disorder and Mixing 153–60

    N2 +√N N2 −

    √N

    ...................

    .................

    ........

    ........

    ........

    .......

    .............

    .................................. ............ ............. ............... ............... .............

    ..............................................

    .............

    ...............

    ................

    .................

    ..................I

    w ′

    w ′ =

    √Nmg

    6πµL= VS

    √φL

    a

    ‘Poisson’ value

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored.

    Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,

    then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3

    so ` = n1/5(−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a

    = VSφ3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Big effect of a little stratification

    B lawdziewicz c1995, private communication - ignored. Luke (2000) Phys. Fluids 12, 1619–21.

    I If vertical change in density exceeds statistical fluctuation,then heavy side sinks only to level of neutral buoyancy.

    I Blobs smaller than ` unaffected, with ` given by

    `∂n`3

    ∂z=√n`3 so ` = n1/5

    (−∂n∂z

    )−2/5

    Hence

    w ′ = Vs

    √φ`

    a= VSφ

    3/5

    (−a∂φ

    ∂z

    )−1/5

    Tee, Mucha, Cipelletti, Manley & Brenner (2002) PRL 89:054501

  • Computer simulations to test effect of stratificationInitially stratified

    z

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    φ

    Concentration profileat different times

    ∆φ/φ = 0.4, 2500 particles,

    average over 40 realisations

    w′2n

    0

    0.005

    0.01

    0.015

    0.02

    0 0.1 0.2 0.3 0.4 0.5

    t

    Velocity fluctuations for∆φ/φ = 0,. . . ,0.4

    104 particles, h = 10

    Decay to a plateau value w ′∞

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    z

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    φ

    Concentration profileat different times

    ∆φ/φ = 0.4, 2500 particles,

    average over 40 realisations

    w′2n

    0

    0.005

    0.01

    0.015

    0.02

    0 0.1 0.2 0.3 0.4 0.5

    t

    Velocity fluctuations for∆φ/φ = 0,. . . ,0.4

    104 particles, h = 10

    Decay to a plateau value w ′∞

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    z

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    φ

    Concentration profileat different times

    ∆φ/φ = 0.4, 2500 particles,

    average over 40 realisations

    w′2n

    0

    0.005

    0.01

    0.015

    0.02

    0 0.1 0.2 0.3 0.4 0.5

    t

    Velocity fluctuations for∆φ/φ = 0,. . . ,0.4

    104 particles, h = 10

    Decay to a plateau value w ′∞

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    z

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    φ

    Concentration profileat different times

    ∆φ/φ = 0.4, 2500 particles,

    average over 40 realisations

    w′2n

    0

    0.005

    0.01

    0.015

    0.02

    0 0.1 0.2 0.3 0.4 0.5

    t

    Velocity fluctuations for∆φ/φ = 0,. . . ,0.4

    104 particles, h = 10

    Decay to a plateau value w ′∞

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    Plateau value w ′∞2 plotted against stratification

    w ′∞2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5

    n1/5(−∂n/∂z)−2/5

    Different n & δx

    I Hence

    w ′∞ = 0.94VSφ3/5

    (−a∂φ

    ∂z

    )−1/5

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    Plateau value w ′∞2 plotted against stratification

    w ′∞2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5

    n1/5(−∂n/∂z)−2/5

    Different n & δx

    I Hence

    w ′∞ = 0.94VSφ3/5

    (−a∂φ

    ∂z

    )−1/5

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially stratified

    Plateau value w ′∞2 plotted against stratification

    w ′∞2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5

    n1/5(−∂n/∂z)−2/5

    Different n & δx

    I Hence

    w ′∞ = 0.94VSφ3/5

    (−a∂φ

    ∂z

    )−1/5

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    Viewed in windows at different heights: top, bottom

    w ′2

    Poisson

    ∂φ∂z

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5 3 3.5

    t

    Velocity fluctuations reduced when front arrives in window

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    Viewed in windows at different heights: top, bottom

    w ′2

    Poisson

    ∂φ∂z

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5 3 3.5

    t

    Velocity fluctuations reduced when front arrives in window

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    Viewed in windows at different heights: top, bottom

    w ′2

    Poisson

    ∂φ∂z

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5 3 3.5

    t

    Velocity fluctuations reduced when front arrives in window

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    w ′2 in front plotted against stratification

    w ′2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.5 1 1.5 2

    aLφ

    1/5(−a∂φ∂z

    )−2/5

    Fair agreement only, but recall time delay for initial value to decay

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    w ′2 in front plotted against stratification

    w ′2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.5 1 1.5 2

    aLφ

    1/5(−a∂φ∂z

    )−2/5

    Fair agreement only, but recall time delay for initial value to decay

  • Computer simulations to test effect of stratificationInitially uniform - stratified in descending front

    w ′2 in front plotted against stratification

    w ′2

    Poisson

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.5 1 1.5 2

    aLφ

    1/5(−a∂φ∂z

    )−2/5

    Fair agreement only, but recall time delay for initial value to decay

  • ExperimentsInitially uniform - stratified in descending front

    I Four experiments at φ = 0.3%, with different box size anddifferent particle sizes and densities. View in fixed window.

    I Open symbols w ′/VS . Filled symbols −a∂φ/∂z (difficult).

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    a ) b )

    d )c )

    w′VS

    w′VS

    t/tS t/tS

    t/tSt/tS

    − adφdz

    − adφdz

    − adφdz

    I II III I II III

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    I II III I II III

    -1

    0

    1

    2

    3

    4

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    w′VS

    w′VS

    − adφdz

    I – Decay of initial state, II – plateau, III – in front

  • ExperimentsInitially uniform - stratified in descending front

    I Four experiments at φ = 0.3%, with different box size anddifferent particle sizes and densities. View in fixed window.

    I Open symbols w ′/VS . Filled symbols −a∂φ/∂z (difficult).

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    a ) b )

    d )c )

    w′VS

    w′VS

    t/tS t/tS

    t/tSt/tS

    − adφdz

    − adφdz

    − adφdz

    I II III I II III

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    I II III I II III

    -1

    0

    1

    2

    3

    4

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    w′VS

    w′VS

    − adφdz

    I – Decay of initial state, II – plateau, III – in front

  • ExperimentsInitially uniform - stratified in descending front

    I Four experiments at φ = 0.3%, with different box size anddifferent particle sizes and densities. View in fixed window.

    I Open symbols w ′/VS . Filled symbols −a∂φ/∂z (difficult).

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    a ) b )

    d )c )

    w′VS

    w′VS

    t/tS t/tS

    t/tSt/tS

    − adφdz

    − adφdz

    − adφdz

    I II III I II III

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    I II III I II III

    -1

    0

    1

    2

    3

    4

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    w′VS

    w′VS

    − adφdz

    I – Decay of initial state,

    II – plateau, III – in front

  • ExperimentsInitially uniform - stratified in descending front

    I Four experiments at φ = 0.3%, with different box size anddifferent particle sizes and densities. View in fixed window.

    I Open symbols w ′/VS . Filled symbols −a∂φ/∂z (difficult).

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    a ) b )

    d )c )

    w′VS

    w′VS

    t/tS t/tS

    t/tSt/tS

    − adφdz

    − adφdz

    − adφdz

    I II III I II III

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    I II III I II III

    -1

    0

    1

    2

    3

    4

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    w′VS

    w′VS

    − adφdz

    I – Decay of initial state, II – plateau,

    III – in front

  • ExperimentsInitially uniform - stratified in descending front

    I Four experiments at φ = 0.3%, with different box size anddifferent particle sizes and densities. View in fixed window.

    I Open symbols w ′/VS . Filled symbols −a∂φ/∂z (difficult).

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    a ) b )

    d )c )

    w′VS

    w′VS

    t/tS t/tS

    t/tSt/tS

    − adφdz

    − adφdz

    − adφdz

    I II III I II III

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    -0.5

    0

    0.5

    1

    1.5

    2

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    I II III I II III

    -1

    0

    1

    2

    3

    4

    -5 10-7

    0

    5 10-7

    1 10-6

    1.5 10-6

    2 10-6

    0 200 400 600 800 1000 1200

    w′VS

    w′VS

    − adφdz

    I – Decay of initial state, II – plateau, III – in front

  • ExperimentsInitially uniform - stratified in descending front

    I Velocity fluctuations inhibited by stratification

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.2 0.4 0.6 0.8 1 1.2

    w′VPoisson

    (βc/β)1/5

    Filled symbols on plateau (II),open in front (I).

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Experiments

    And initial values are the old divergent scaling

    w ′0 = VS

    √φL

    a

    φ0L/a

    v ′

    VS

    w′

    VS

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5

    0

    0

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Experiments

    And initial values are the old divergent scaling

    w ′0 = VS

    √φL

    a

    φ0L/a

    v ′

    VS

    w′

    VS

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5

    0

    0

    Chehata Gómez, Bergougnoux, Guazzelli & Hinch (2009) Phys. Fluids 21: 093304

  • Diffusing front

    I Does front between top of suspension and clear fluid diffuse?

    I Self-diffusivity D = w ′` = 2.75Vsaφ4/5 (−a∂φ/∂z)−3/5

    I Nonlinear diffusion equation

    ∂φ

    ∂t− ∂(Vsφ)

    ∂z=

    ∂z

    (2.75Vsa

    2/5φ4/5(−∂φ∂z

    )2/5)

    Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

    I Numerical value 2.75 of diffusivity from similarity solution . . .

  • Diffusing front

    I Does front between top of suspension and clear fluid diffuse?

    I Self-diffusivity D = w ′`

    = 2.75Vsaφ4/5 (−a∂φ/∂z)−3/5

    I Nonlinear diffusion equation

    ∂φ

    ∂t− ∂(Vsφ)

    ∂z=

    ∂z

    (2.75Vsa

    2/5φ4/5(−∂φ∂z

    )2/5)

    Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

    I Numerical value 2.75 of diffusivity from similarity solution . . .

  • Diffusing front

    I Does front between top of suspension and clear fluid diffuse?

    I Self-diffusivity D = w ′` = 2.75Vsaφ4/5 (−a∂φ/∂z)−3/5

    I Nonlinear diffusion equation

    ∂φ

    ∂t− ∂(Vsφ)

    ∂z=

    ∂z

    (2.75Vsa

    2/5φ4/5(−∂φ∂z

    )2/5)

    Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

    I Numerical value 2.75 of diffusivity from similarity solution . . .

  • Diffusing front

    I Does front between top of suspension and clear fluid diffuse?

    I Self-diffusivity D = w ′` = 2.75Vsaφ4/5 (−a∂φ/∂z)−3/5

    I Nonlinear diffusion equation

    ∂φ

    ∂t− ∂(Vsφ)

    ∂z=

    ∂z

    (2.75Vsa

    2/5φ4/5(−∂φ∂z

    )2/5)

    Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

    I Numerical value 2.75 of diffusivity from similarity solution . . .

  • Diffusing front

    I Does front between top of suspension and clear fluid diffuse?

    I Self-diffusivity D = w ′` = 2.75Vsaφ4/5 (−a∂φ/∂z)−3/5

    I Nonlinear diffusion equation

    ∂φ

    ∂t− ∂(Vsφ)

    ∂z=

    ∂z

    (2.75Vsa

    2/5φ4/5(−∂φ∂z

    )2/5)

    Mucha & Brenner (2003) Phys. Fluids 15: 1305-13

    I Numerical value 2.75 of diffusivity from similarity solution . . .

  • Diffusing front

    I Similarity thickness of front

    δ = 3.07aφ1/7(Vst/a)5/7

    δ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.5 1 1.5 2 2.5 3

    10000, 10, 103072, 6, 83072, 6, 5

    3072, 6, 12750, 6, 5

    10368, 6, 12

    t5/7(N/h)1/7

  • Diffusing front

    I Similarity thickness of front

    δ = 3.07aφ1/7(Vst/a)5/7

    δ

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.5 1 1.5 2 2.5 3

    10000, 10, 103072, 6, 83072, 6, 5

    3072, 6, 12750, 6, 5

    10368, 6, 12

    t5/7(N/h)1/7

  • Diffusing front

    Similarity plot of concentration profile

    c

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    -2 -1 0 1 2 3 4

    t=0.5t=1.0t=1.5t=2.0

    thy

    [z − z(c = 0.5)]/δ(t)

    I Nonlinear diffusion equation predicts concentration profile indiffusing front at top of suspension

  • Diffusing front

    Similarity plot of concentration profile

    c

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    -2 -1 0 1 2 3 4

    t=0.5t=1.0t=1.5t=2.0

    thy

    [z − z(c = 0.5)]/δ(t)

    I Nonlinear diffusion equation predicts concentration profile indiffusing front at top of suspension

  • Open question: effect of small inertia

    The Poisson estimate was for blobs at low Reynolds numbers.

    With inertia, estimate:

    w ′ = Vsφ1/3Re

    −1/3p

    Recent preliminary experiments(Bergougnoux 2011)

  • Open question: effect of small inertia

    The Poisson estimate was for blobs at low Reynolds numbers.With inertia, estimate:

    w ′ = Vsφ1/3Re

    −1/3p

    Recent preliminary experiments(Bergougnoux 2011)

  • Open question: effect of small inertia

    The Poisson estimate was for blobs at low Reynolds numbers.With inertia, estimate:

    w ′ = Vsφ1/3Re

    −1/3p

    Recent preliminary experiments(Bergougnoux 2011)