Part Design Specification

Embed Size (px)

Citation preview

  • 7/27/2019 Part Design Specification

    1/49

    2- 110/1/99

    T.C. Chang

    Chapter 2

    PART DESIGN SPECIFICATION

    Dr. T.C. Chang

    School of Industrial EngineeringPurdue University

  • 7/27/2019 Part Design Specification

    2/49

    2- 210/1/99

    T.C. Chang

    THE DESIGN PROCESS

    Design Process

    1. Conceptualization

    2. Synthesis

    3. Analysis4. Evaluation

    5. Representation

    Design Process

    (VDI)

    1. Clarification of the task

    2. Conceptual design

    3. Embodiment design

    4. Detailed design

    Functional requirement -> Design

    Steps 1 & 2 needs creativity, sketch is sufficient3 mathematical, engineering analysis4 simulation, cost, physical model5 formal drawing or modeling

  • 7/27/2019 Part Design Specification

    3/49

    2- 310/1/99

    T.C. Chang

    DESIGN REPRESENTATION

    Design Representation Manufac-turing

    Verbal

    Sketch

    Multiview orthographic drawing (drafting) CAD draft ing

    CAD 3D & surface model

    Solid model

    Feature based design

    Requirement of the representation method

    precisely convey the design concept easy to use

  • 7/27/2019 Part Design Specification

    4/492- 410/1/99

    T.C. Chang

    A FREE-HAND SKETCH

  • 7/27/2019 Part Design Specification

    5/492- 510/1/99

    T.C. Chang

    A FORMAL DRAWING

    0.9444"

    4 holes 1/4" diaaround 2" dia , firsthole at 45

    A

    2.0000.001

  • 7/27/2019 Part Design Specification

    6/492- 610/1/99

    T.C. Chang

    DESIGN DRAFTING

    Third angle projection

    P r o f ile p la n e

    Y

    Z

    XI I I

    H o r i z o n t a l

    F ro n t a l p la n e

    I

    I V

    I I

    top

    front

    side

    a

    b c d ef

    g

    h i

    j

    Drafting in the third angle

  • 7/27/2019 Part Design Specification

    7/492- 710/1/99

    T.C. Chang

    INTERPRETING A DRAWING

  • 7/27/2019 Part Design Specification

    8/492- 810/1/99

    T.C. Chang

    DESIGN DRAFTING

    Partial view

    Cut off view and auxiliary view

    Provide more local details

    A

    2.0000.001

    AA

    A - A

  • 7/27/2019 Part Design Specification

    9/492- 910/1/99

    T.C. Chang

    DIMENSIONING

    Requirements

    1. Unambiguous

    2. Completeness

    3. No redundancy

    0.83 ' 0.95 ' 1.22 '

    3.03 '

    Redundant dimensioning

    0.83 ' 1.22 '

    3.03 '

    1.72 '

    0.86 '

    Adequate dimensioning

    Incompletedimensioning

  • 7/27/2019 Part Design Specification

    10/492- 1010/1/99

    T.C. Chang

    TOLERANCE

    Dimensional tolerance - conventional

    Geometric tolerance - modern

    unilateral

    bilateral

    1.00 0.05+-

    nominal dimension

    tolerance

    0.95+ 0.10- 0.00 1.05

    + 0.00- 0.10

    1.00 0.05+-

    0.95 - 1.05means a range

    T C Ch

  • 7/27/2019 Part Design Specification

    11/49

    2- 1110/1/99

    T.C. Chang

    TOLERANCE STACKING

    "TOLERANCE IS ALWAYS ADDITIVE" why?

    What is the expected dimension and tolerances?

    d = 0.80 +1.00 + 1.20 = 3.00

    t = (0.01 + 0.01 + 0.01) = 0.03

    0.80 ' 0.01 1.20 ' 0.01

    1.00 ' 0.01

    ?

    1. Check that the tolerance & dimension specifications arereasonable - for assembly.

    2. Check there is no over or under specification.

    T C Chang

  • 7/27/2019 Part Design Specification

    12/49

    2- 1210/1/99

    T.C. Chang

    TOLERANCE STACKING (ii)

    What is the expected dimension and tolerances?

    d = 3.00 - 0.80 - 1.20 = 1.00

    t = (0.01 + 0.01 + 0.01) = 0.03

    0.80 ' 0.01 1.20 ' 0.01

    3.00 ' 0.01

    ?

    T C Chang

  • 7/27/2019 Part Design Specification

    13/49

    2- 1310/1/99

    T.C. Chang

    TOLERANCE STACKING (iii)

    Maximum x length = 3.01 - 0.79 - 1.19 = 1.03Minimum x length = 2.99 - 0.81 - 1.21 = 0.97

    Therefore x = 1.00 0.03

    0.80 ' 0.01 1.20 ' 0.01

    3.00 ' 0.01

    ?

    x

    T C Chang

  • 7/27/2019 Part Design Specification

    14/49

    2- 1410/1/99

    T.C. Chang

    TOLERANCE GRAPH

    G(N,d,t)

    N: a set of reference lines, sequenced nodes

    d: a set of dimensions, arcs

    t: a set of tolerances, arcs

    A B C D Ed,t d,t d,t

    d,t

    d : dimension between references i & j

    t : tolerance between references i & jij

    ij

    Reference i is in front of reference j in the sequence.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    15/49

    2- 1510/1/99

    T.C. Chang

    EXAMPLE TOLERANCE GRAPH

    A B C D E

    A B C D Ed,t d,t d,t

    d,t

    different propertiesbetween d & t

    dDE

    = dDA

    +dAE

    = dAD

    +dAE

    = (dAB

    +dBC

    +dCD) +d

    AE

    tDE =

    tAB+

    tBC+

    tCD +

    tAE

    T.C. Chang

  • 7/27/2019 Part Design Specification

    16/49

    2- 1610/1/99

    g

    OVER SPECIFICATIONIf one or more cycles can be detected in the graph, we say that the

    dimension and tolerance are over specified.

    A B C

    A B C

    A B C

    d1 d2

    d3d1,t1 d2,t2

    d3,t3

    t1 t2

    t3

    Redundant dimension

    Over constraining tolerance(impossible to satisfy) why?

  • 7/27/2019 Part Design Specification

    17/49

    T.C. Chang

  • 7/27/2019 Part Design Specification

    18/49

    2- 1810/1/99

    PROPERLY TOLERANCED

    A B C D E

    A B C D Ed,t d,t d,t

    d,t

    dDE

    = dDA

    +dAE

    = dAD

    +dAE

    = (dAB

    +dBC

    +dCD) +d

    AE

    tDE = tAB+tBC+ tCD +tAE

    T.C. Chang

  • 7/27/2019 Part Design Specification

    19/49

    2- 1910/1/99

    TOLERANCE ANALYSISFor two or three dimensional tolerance analysis:

    i. Only dimensional tolerance

    Do one dimension at a time.

    Decompose into X,Y,Z, three one dimensional problems.

    ii. with geometric tolerance

    ? Don't have a good solution yet. Use simulation?

    true position

    diameter & tolerance

    A circular tolerance zone, the size is influenced

    by the diameter of the hole. The shape of thehole is also defined by a geometric tolerance.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    20/49

    2- 2010/1/99

    3-D GEOMETRIC TOLERANCE

    PROBLEMS

    t

    datum surfacedatumsurface

    Referenceframe

    perpendicularity

    T.C. Chang

  • 7/27/2019 Part Design Specification

    21/49

    2- 2110/1/99

    TOLERANCE ASSIGNMENT

    Tolerance is money

    Specify as large a tolerance as possible as long as functional andassembly requirements can be satisfied.

    (ref. Tuguchi, ElSayed, Hsiang, Quality Engineering in ProductionSystems, McGraw Hill , 1989.)

    function

    cost

    Tolerance value

    d ( no mina l d im e ns io n)

    Q u a l i t yC o s t

    - t

    + t

    Quality cost

    T.C. Chang

  • 7/27/2019 Part Design Specification

    22/49

    2- 2210/1/99

    REASON OF HAVING TOLERANCE

    No manufacturing process is perfect.

    Nominal dimension (the "d" value) can not beachieved exactly.

    Without tolerance we lose the control and as aconsequence cause functional or assemblyfailure.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    23/49

    2- 2310/1/99

    EFFECTS OF TOLERANCE (I)

    1. Functional constraints

    e.g.

    d t

    flow rate

    Diameter of the tube affects the flow. What is the allowedflow rate variation (tolerance)?

    T.C. Chang

  • 7/27/2019 Part Design Specification

    24/49

    2- 2410/1/99

    EFFECTS OF TOLERANCE (II)

    2. Assembly constraints

    e.g. peg-in-a-hole dp

    dh

    How to maintain theclearance?

    Compound fitting

    The dimension ofeach segmentaffects others.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    25/49

    2- 2510/1/99

    RELATION BETWEEN

    PRODUCT & PROCESSTOLERANCES

    S e t u pl o c a t o r s

    0 . 0 0 5

    0 . 0 0 5

    0 . 0 0 5

    Design specifications

    Process tolerance

    Machine uses the locators as

    the reference. The distancesfrom the machine coordinatesystem to the locators areknown.

    The machining tolerance ismeasured from the locators.

    In order to achieve the 0.01tolerances, the processtolerance must be 0.005 or

    better. When multiple setups are used,

    the setup error need to be takeninto consideration.

    A0 .0 1 t o le rance s

    T.C. Chang

  • 7/27/2019 Part Design Specification

    26/49

    2- 2610/1/99

    TOLERANCE CHARTINGA method to allocate process tolerance and verify that the processsequence and machine selection can satisfy the design tolerance.

    0 .0 1 0 .0 1

    0 . 0 1

    s t o c k

    b oundary

    Dim tol

    1 . 0 0 . 0 11 . 0 0 . 0 13 . 0 0 . 0 1

    Op co de

    10 la the

    10 la the

    20 la the

    20 la the

    1 0

    1 2

    2 0

    2 2

    blue print

    Operationsequence

    Not shown areprocess toleranceassignment andbalance

    produced tolerances:

    process tol of 10 + process tol of 12

    process tol of 20 + process tol 22

    process tol of 22 + setup tol

    T.C. Chang

  • 7/27/2019 Part Design Specification

    27/49

    2- 2710/1/99

    SURFACE FINISH

    waviness widt h

    roughness width

    waviness

    roughness

    63 0.010

    0.005

    0.002 - 2roughnessheight

    waviness height

    waviness width

    roughness width cutoffdefault is 0.03" (ANSI Y14.36-1978)

    roughness widthLay

    ( inch)

    (inch)

    63

    Usuallysimplified:

    T.C. Chang

  • 7/27/2019 Part Design Specification

    28/49

    2- 2810/1/99

    PROBLEMS WITH DIMENSIONAL

    TOLERANCE ALONE

    1 . 0 0 1

    1 . 0 0 11 . 0 0 1

    6 . 0 0

    1 .000 .001

    6 .000 .001

    As designed:

    As manufactured:

    Will you accept the partat right?

    Problem is the control ofstraightness.

    How to eliminate theambiguity?

    T.C. Chang

  • 7/27/2019 Part Design Specification

    29/49

    2- 2910/1/99

    GEOMETRIC TOLERANCES

    FORM

    straightness

    flatness

    Circularity

    cylindricity

    ORIENTATION

    perpendicularity

    angularity

    parallelism

    LOCATION

    concentricity

    true positionsymmetry

    RUNOUT

    circular runouttotal runout

    PROFILE

    profileprofile of a line

    ANSI Y14.5M-1994 GD&T (ISO 1101, geometric tolerancing;ISO 5458 posit ional tolerancing; ISO 5459 datums;and others)

    Squareness

    roundness

    T.C. Chang

  • 7/27/2019 Part Design Specification

    30/49

    2- 3010/1/99

    DATUM &

    FEATURE CONTROL FRAMEDatum: a reference plane, point, line, axis where usually a plane

    where you can base your measurement.

    Symbol:

    Even a hole pattern can be used as datum.

    Feature: specific component portions of a part and may include oneor more surfaces such as holes, faces, screw threads, profiles, orslots.

    Feature Control Frame:

    A

    // 0.005 M A

    symbol tolerance valuemodifier

    datum

    T.C. Chang

  • 7/27/2019 Part Design Specification

    31/49

    2- 3110/1/99

    MODIFIERS

    M Maximum material condition MMC assembly

    Regardless of feature size RFS (implied unless specified)

    L Least material condition LMC less frequently usedP Projected tolerance zone

    O Diametrical tolerance zone

    T Tangent plane

    F Free state

    maintain criticalwall thickness orcritical location of

    features.

    MMC, RFS, LMC

    MMC, RFS

    RFS

    T.C. Chang

  • 7/27/2019 Part Design Specification

    32/49

    2- 3210/1/99

    SOME TERMS

    MMC : Maximum Material Condition

    Smallest hole or largest peg (more material left on the part)

    LMC : Least Material Condition

    Largest hole or smallest peg (less material left on the part)

    Virtual condition:

    Collective effect of all tolerances specified on a feature.

    Datum target points:

    Specify on the drawing exactly where the datum contact pointsshould be located. Three for primary datum, two for secondarydatum and one or tertiary datum.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    33/49

    2- 3310/1/99

    DATUM REFERENCE FRAMEThree perfect planes used to

    locate the imperfect part.

    a. Three point contact on theprimary plane

    b. two point contact on thesecondary plane

    c. one point contact on the tertiaryplane

    O 0.001 M A B C

    primary Secondary

    Tertiary

    P r i m a r y

    S e c o n d a r y

    Te r t ia r y

    A

    B

    C

    T.C. Chang

  • 7/27/2019 Part Design Specification

    34/49

    2- 3410/1/99

    STRAIGHTNESS

    Value must be smallerthan the size tolerance.

    1.000 ' 0.002

    0 . 0 0 1

    Me as ure d e rro r 0 .0 0 1

    1.000 ' 0.002

    0 . 0 0 1

    0 . 0 0 1

    Design Meaning

    Tolerance zone between two straightness l ines.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    35/49

    2- 3510/1/99

    FLATNESS

    1.000 ' 0.002

    0 . 0 0 1

    0 . 0 0 1

    p a r a lle lp la n e s

    Tolerance zone defined by two parallel planes.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    36/49

    2- 3610/1/99

    CIRCULARITY (ROUNDNESS)

    1.00 ' 0.05

    0.01

    0.01 Tole rance zone

    At any section along the cylinder

    a. Circle as a result of the intersection by any plane perpendicular toa common axis.

    b. On a sphere, any plane passes through a common center.

    Tolerance zone bounded by two concentric circles.

    T.C. Chang

  • 7/27/2019 Part Design Specification

    37/49

    2- 3710/1/99

    CYLINDRICITY

    1.00 ' 0.05

    0.01

    0.01

    Rotate in a V

    Rotate between points

    Tolerance zone bounded by two concentric cylinderswithin which the cylinder must lie.

    T.C. Chang

    C

  • 7/27/2019 Part Design Specification

    38/49

    2- 3810/1/99

    PERPENDICULARITYA surface, median plane, or axis at a right angle to the datum planeor axis.

    0 . 0 0 2

    tolerancezone perpendicularto the da tum plane

    . 0 0 2 A

    O 1 .00 0 .01

    A

    0 .002 d i amete r t o l

    zone is perpendicularto the da tum plane

    1.000 ' 0.005

    .0 0 2 A

    0.500 ' 0.005

    2.000 ' 0.005

    A

    .0 0 2 T A

    T.C. Chang

    ANGULARITY

  • 7/27/2019 Part Design Specification

    39/49

    2- 3910/1/99

    ANGULARITYA surface or axis at a specified angle (orther than 90) from a datumplane or axis. Can have more than one datum.

    0.005 to lerance zonewhich is exactly 40from the datum plane

    3.500 ' 0.005

    1 .5 0 0 0 .0 0 5

    4 0

    0 .0 0 5 A

    A

    T.C. Chang

    PARALLELISM

  • 7/27/2019 Part Design Specification

    40/49

    2- 4010/1/99

    PARALLELISM

    1.000 " 0.005

    2.000 " 0.005

    .0 0 1 A

    A

    The condition of a surface equidistant at all points from a datum plane,or an axis equidistant along its length to a datum axis.

    0 . 0 0 1

    T.C. Chang

    PROFILE

  • 7/27/2019 Part Design Specification

    41/49

    2- 4110/1/99

    PROFILEA uniform boundary along the true profile within whcihthe elements of the surface must lie.

    A

    B

    0 .0 0 5 A B

    0.001

    T.C. Chang

    RUNOUT

  • 7/27/2019 Part Design Specification

    42/49

    2- 4210/1/99

    RUNOUT

    0.361 " 0.002

    1.500 " 0.005A

    0 . 0 0 5 A

    A composite tolerance used to control the functional relationshipof one or more features of a part to a datum axis. Circular runoutcontrols the circular elements of a surface. As the part rotates360 about the datum axis, the error must be within the tolerancelimit.

    Datuma x i s

    De viat ion on e achcircula r che ck ringis le ss t han t het o l e r a n c e .

    T.C. Chang

    TOTAL RUNOUT

  • 7/27/2019 Part Design Specification

    43/49

    2- 4310/1/99

    TOTAL RUNOUT

    Datuma x i s

    De viat io n on t het ot al s we pt whe nt he part is rot at ingis le ss t han t het o l e r a n c e .

    0.361 " 0.002

    1.500 " 0.005A

    0 . 0 0 5 A

    T.C. Chang

    TRUE POSITION

  • 7/27/2019 Part Design Specification

    44/49

    2- 4410/1/99

    TRUE POSITION

    1 . 2 0 0 . 0 1

    1 . 0 0 0 . 0 1

    1 . 2 0

    1 . 0 0

    To le ra nc e z on e

    0 . 0 1 d i a

    O 0 .0 1 M A B

    O .8 0 0 .0 2

    Dimensionaltolerance

    True position

    tolerance

    Hole center tolerance zone

    A

    B

    Tolerance zone

    0 .02 2

    T.C. Chang

    HOLE TOLERANCE ZONE

  • 7/27/2019 Part Design Specification

    45/49

    2- 4510/1/99

    HOLE TOLERANCE ZONE

    Tolerance zone for dimensional tolerancedhole is not a circle. This causes some assemblyproblems.

    For a hole using true position tolerancethe tolerance zone is a circular zone.

    T.C. Chang

    TOLERANCE VALUE MODIFICATION

  • 7/27/2019 Part Design Specification

    46/49

    2- 4610/1/99

    TOLERANCE VALUE MODIFICATION

    Produced True Pos tol

    hole size

    0.97 out of diametric tolerance

    0.98 0.01 0.05 0.01

    0.99 0.02 0.04 0.01

    1.00 0.03 0.03 0.01

    1.01 0.04 0.02 0.01

    1.02 0.05 0.01 0.01

    1.03 out of diametric tolerance

    1 . 2 0

    1 . 0 0

    O 0 .0 1 M A B

    O 1 .00 0 .02

    M L S

    The default modif ier fortrue position is MMC.

    MMC

    LMC

    For M the allowable tolerance = specified tolerance + (produced holesize - MMC hole size)

    A

    B

    T.C. Chang

    MMC HOLE

  • 7/27/2019 Part Design Specification

    47/49

    2- 4710/1/99

    MMC HOLE

    Given the same peg (MMC peg), when the produced hole sizeis greater than the MMC hole, the hole axis true positiontolerance zone can be enlarged by the amount of differencebetween the produced hole size and the MMC hole size.

    hole axis tolerance zone

    MMC holeLMC hole

    MMC pe g will fit in t he ho leaxis must be in the tolerance zone,

    T.C. Chang

    PROJECTED TOLERANCE ZONE

  • 7/27/2019 Part Design Specification

    48/49

    2- 4810/1/99

    PROJECTED TOLERANCE ZONEApplied for threaded holes or press fit holes to ensure interchangeabilitybetween parts. The height of the projected tolerance zone is the thicknessof the mating part.

    O .0 1 0 M A B C

    .2 5 0 p

    .375 - 16 UNC - 2B

    Projected tolerancezone0 .25

    0 .01

    Produced part

    T.C. Chang

    SOME NUMBERS

  • 7/27/2019 Part Design Specification

    49/49

    2- 4910/1/99

    SOME NUMBERSKrulikowski, A., GD&T Challenges the Fast Draw, MFG ENG, feb 1994.

    GD&T drawings are more expansive to make, however, saves revisioncost.

    Drawing revision costs $500 - $2000 on the paper work