58
MU5PYN03 - DETECTOR PHYSICS PART 3 INTERACTION OF PHOTONS Julien Bolmont LPNHE [email protected] 2019/2020

PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 - DETECTOR PHYSICS

PART 3INTERACTION OF PHOTONS

Julien BolmontLPNHE

[email protected]/2020

Page 2: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

TABLE OF CONTENTS• Detection : some generalities• Interaction of photons

- How photons deposit their energy?- Application for gamma-ray spectroscopy‣ A very simple detector to understand a lot!

• Detection/spectroscopy of photons- Inorganic/Organic Scintillators- Photomultipliers and other photodetectors- Semiconductor detectors

• Applications- Detectors for gamma-ray astronomy: satellites and ground-based detectors

2

Page 3: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

MY TOPICS OF INTEREST• Gamma-ray astronomy in the MeV-TeV range

3

Fermi (~20 MeV - 300 GeV)

H.E.S.S. (30 GeV - 10 TeV)

Page 4: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

A FIRST WORD ON FERMI• Fermi-LAT : 20 MeV - 300 GeV

- Silicon Tracker- Calorimeter : CsI scintillators- Angular resolution ~0.15° for E > 10 GeV

• Fermi-GBM : 8 keV - 40 MeV- 12 NaI scintillators (a few keV - 1 MeV)- 2 BGO scintillators (150 keV - 30 MeV)- Angular resolution ~15°

4

Page 5: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

SOME GENERALITIES

Page 6: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

GENERALITIES• A detector allows to access different kinds of information:

- Number of particles (counters),- Energy of particles (spectrometer, calorimeter),- Energy deposit (dosimeter)

• There are different types of them- Gas detectors- Semiconductor detectors,- Scintillation detectors

• It is possible to combine several types of detectors to access different information: position, speed, etc.

6

Page 7: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DETECTION SYSTEM

• To be detected, a photon must interact in the detector‣ Concept of « event »

• The detector output consists in electric pulses for each interaction

• The electronics is used to convert these pulses and send it to…• … signal shaping and analysis, which allows to access the quantity

we look for

7

Source Detector Electronics Signal analysis

Page 8: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DETECTOR CHARACTERISTICS

• Each event produce a signal which contains some information about- The energy deposit during the interaction- The time of the interaction- The number of interactions per unit of time- The kind of interaction, etc.

• Sometimes it’s interesting to look at integrated values‣ E.g. by integrating the energies for a lot of interactions, we can get a

dose

8

Page 9: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DETECTOR CHARACTERISTICS• Linearity

- The measured quantity should vary linearly with the physical value we look for‣ E.g. SC+PM: the amplitude of the output electric pulse is

proportional to the energy deposit in the scintillator- Any non-linearity should be taken into account

• Energy resolution- The energy resolution is measured using spectral peaks. It depends

on the energy.- For a peak with centroid H0 and a width at half maximum FWHM:

9

(SC + PM)R =

FWHM

E=

p↵+ �E

ER ⌘ FWHM

H0<latexit sha1_base64="dSa8u67vpxILq1AaQQm8LKBtHaY=">AAAC8HicjVHLSsQwFD3W93vUpZviIAjC0FFBl6IgsxFUHEdwZEhjRoN9maaCDP0Id+7ErT/gVr9C/AP9C29iFR+IprQ999x7TnJz/SSQqfa8py6nu6e3r39gcGh4ZHRsvDQxuZfGmeKizuMgVvs+S0UgI1HXUgdiP1GChX4gGv7pusk3zoVKZRzt6otEHIbsOJJtyZkmqlWa33Gb4iyT526zrRjvNEOmT1TY2WjUNvP8I6y1vDxvlcpexbPL/QmqBSijWFtx6RFNHCEGR4YQAhE04QAMKT0HqMJDQtwhOsQpQtLmBXIMkTajKkEVjNhT+h5TdFCwEcXGM7VqTrsE9CpSupglTUx1irDZzbX5zDob9jfvjvU0Z7ugv194hcRqnBD7l+698r8604tGGyu2B0k9JZYx3fHCJbO3Yk7ufupKk0NCnMFHlFeEuVW+37NrNant3dwts/lnW2lYE/OiNsOLOSUNuPp9nD/B3kKlulhZ2F4qr64Vox7ANGYwR/Ncxipq2EKdvC9xh3s8OMq5cq6dm7dSp6vQTOHLcm5fAUZLoaE=</latexit>

Page 10: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

• Poor resolution (large value for R) leads to a broadening of spectral pulses and to a higher uncertainty for energy measurement

• Spectral peaks are Gaussians

10

DETECTOR CHARACTERISTICS

Ee

dN/dE

Eγ = hν Ee

dN/dE

Eγ = hν

FWHM = 2.35 �

H

H/2FWHM

Page 11: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

• Same spectrum obtained with two detectors with different energy resolutions: NaI(Tl) (R ~ 7%) et Ge (R ~ 0.4%).

11

DETECTOR CHARACTERISTICS

Page 12: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

EXERCICE 3.1• A gamma-ray spectrometer records peaks corresponding to two

different gamma-ray energies of 435 and 490 keV. What must be the energy resolution of the system (expressed as a percentage) in order just to distinguish these two peaks?

12

Go to the solution…

Page 13: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

• Detection efficiency- In general, the geometry of a detector do not allow to collect

all incoming particles- We define‣ The absolute efficiency:

‣ The intrinsic efficiency:

13

DETECTOR CHARACTERISTICS

✏abs =nb. of pulses

nb. of particles emitted=

4⇡✏int

<latexit sha1_base64="vlNBOuHrMuByDf3NyQHmW1H0aIU=">AAADTnicjVFNT9wwEJ2EfmxpKUurnioVq6tKnFZZigQXJEQvvZVKXUAiCDne2cXCSSzbQUJRfgD/rreq/4CeeusN0bGblYClAkdJnt/Me/bMZFpJ65LkZxTPPXr85Gnn2fzzFwsvF7tLr3ZtWRmBQ1Gq0uxn3KKSBQ6ddAr3tUGeZwr3spNPPr53isbKsvjmzjQe5nxSyLEU3BF11D1PUVupCKY5d8cmr3lmG7bJ0rHhop6SRdZPWTlOma6URds0d0S4cVIotCnDXDqHo+aaz5ccJ7yp11ItGzZzpixcc9TtJf0kLDYLBi3oQbt2yu4PSGEEJQioIAeEAhxhBRwsPQcwgAQ0cYdQE2cIyRBHaGCetBVlIWVwYk/oO6HdQcsWtPeeNqgFnaLoNaRk8IE0JeUZwv40FuJVcPbs/7zr4Onvdkb/rPXKiXVwTOx9umnmQ3W+Fgdj2Ag1SKpJB8ZXJ1qXKnTF35xdq8qRgybO4xHFDWERlNM+s6CxoXbfWx7iFyHTs34v2twKfvlb0oAHt8c5C3ZX+4OP/dWva72t7XbUHXgL72GF5rkOW/AZdmBI3r+jN9G7aDn+Hv+JL+Orf6lx1Gpew4011/kLmeHF5g==</latexit>

✏int =nb. of pulses

nb. of particles hitting the detector<latexit sha1_base64="8B32PwHJmrbObAFYXJyf6UpAnS0=">AAADMXicjVFNb9QwEJ2EQj/4WuDIxeoKidMqWyrBpVIFF45FYttKdVU53tldq04c2ROkapVfxT/hgnpDnED8AY6M3awEFASOkjy/mffsmSkbawIVxWWW31i7eWt9Y3Pr9p279+4PHjw8DK71GifaWeePSxXQmhonZMjiceNRVaXFo/L8VYwfvUMfjKvf0kWDp5Wa12ZmtCKmzgZWYhOMZSgrRQtfLU1NndgTcuaVXq7IuhxJ4WZSNK0NGLruDxHlyWiLQYqFITL1XApaoBRTJNTkfNedDYbFqEhLXAfjHgyhXwdu8BEkTMGBhhYqQKiBGFtQEPg5gTEU0DB3CkvmPCOT4ggdbLG25SzkDMXsOX/nvDvp2Zr30TMkteZTLL+elQKesMZxnmccTxMp3ibnyP7Ne5k8490u+F/2XhWzBAtm/6VbZf6vLtZCMIMXqQbDNTWJidXp3qVNXYk3Fz9VRezQMBfxlOOesU7KVZ9F0oRUe+ytSvEvKTOyca/73Ba+xlvygMe/j/M6ONwZjZ+Ndt7sDvdf9qPegMewDU95ns9hH17DAUzY+wN8z7Isz9/nl/mn/PNVap71mkfwy8q//QAXjrtl</latexit>

Page 14: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DETECTOR CHARACTERISTICS• Dead time

• The energy deposit of an incoming particle in a detector can be considered as instantaneous (O(ps - a few ns))

• The detector itself and the electronics can take a much longer time to deal with an event (O(tens of ns - hundreds of µs))‣ During that time, the detection system is « busy »‣ It’s not available to deal with a new event‣ « Dead time losses »

• The dead time should be as small as possible !

14

Page 15: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DETECTOR CHARACTERISTICS• Dead time

• Two extreme and idealized cases for counting applications:• Non-paralyzable (non-extendable)• Paralyzable (extendable)

15

Events in the detector

DeadLive

DeadLive

Time

Time

Time

Non-paralyzable

Paralyzableτ

✔ ✔ ✔ ✔

✔ ✔ ✔

« Real » detectors lie in between

Page 16: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont 16

DETECTOR CHARACTERISTICSO

bser

ved

rate

m

True rate n

m = n

Nonparalyzable

Paralyzable

1/τ

• Non-paralyzable: any event occurring during dead time τ is lost• Paralyzable: the system needs a rest of at least τ to be ready to

accept another event

Page 17: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

DEADTIME - EXAMPLE

• Plot showing a distribution of the time difference between two consecutive events

• The sharp cut at 20 µs is due to the dead time (20 µs)

• Events for which the time difference is less than 20 µs are « ghosts »: false triggers due to electronics noise

17

H.E.S.S. - CT5

Page 18: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

INTERACTION OF PHOTONS IN MATTER1 - CROSS-SECTION (QUICK RECAP)

Page 19: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

• Given an element of volume S dx with n target atoms (« scattering centres ») per unit volume

‣ n in atoms/m3, ρ in g/m3, ℳ in g/mol (= A), NA in atoms/mol

• N particles enter the volume through a surface S

INTERACTION PROBABILITY

19

n =⇢

M NA

dxN(x) N(x+dx)

Surface S

σ

σσ

σσσ

σσ

Page 20: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

• Each scattering center has a cross-sectional area σ• We consider a particle interacts if its path hits one of the areas σ. It is then

removed from the beam.• σ is the geometric reaction cross-section

- Expressed as a surface- Commonly used unit: the barn (1 b = 10-28 m2)- It depends on many factors (energy, particle type, target type, etc.) but it

does not depend on the experimental design

INTERACTION PROBABILITY

20

dxN(x) N(x+dx)

Surface S

σ

σσ

σσσ

σσ

Page 21: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

INTERACTION PROBABILITY• For an homogeneous medium, diluted enough, the total surface

of interaction is the sum of cross-sections:

• The interaction probability is given by

• By definition, the interaction probability is the ratio between photons which interact and the total number of incoming photons entering the volume

21

s = nV �

P =s

S=

nV �

S=

nS dx�

S= n� dx

P = �dN

N= n� dx

Page 22: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

NUMBER OF INTERACTIONS• It can be interesting to compute the number of interactions in a

given volume, knowing the incident flux of particles• We consider a flux of particles coming on particles at rest (target)

- We note ϕ the flux of incoming particles (m-2s-1)- We note n’ the number of target particles per unit area (m-2) =

n.dx- N’ is the number of particles which interacted (disappeared) per

unit of surface and time (m-2s-1) = ϕ.𝒫 with ‣ Then:

N 0 = � n0 �

P = n� dx

Page 23: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

CROSS-SECTION - LUMINOSITY• The flux of particles (in a beam) can be expressed as a luminosity :

cm-2 s-1

• Integrating over time, we get integrated luminosity en cm-2 ou b-1

• If a detector integrateL = 1 fb-1 of p-p collisions over a year and if the cross-section for a given channel is σ = 1 mb, thenumber of events in that channel is σ/L = 1012

23

Page 24: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

INTERACTION PROBABILITY• The resolution of the differential equation of slide 21 gives

• μ is the linear attenuation coefficient:• Its dimension is L-1

• The mean free path is λ = 1/μ• The mass attenuation coefficient is μ/ρ. It is usually given in cm2/g‣ Then it is possible to deduce that

• The half-value layer x1/2 is defined by• So

24

µ = n�

N(x1/2) = N0/2

N(x) = N0 e�n� x = N0 e

�µx

x1/2 =ln 2

µ

� =µ

A

NA(see slide 19)

Page 25: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

USE FOR RADIOPROTECTION

• The thicker the screen is, the more attenuated the beam is• Hypotheses:

- « Narrow beam »- A photon which interacts is « lost »

• A more general expression: N(D) = N0 B(D,E) e-µD where B is the « buildup factor ».

25

N0 N(D) = N0 e-µD

Screen (µ)

D

Collimated beam

Small size detector

Page 26: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

INTERACTION OF PHOTONS• Depending on its energy, a photon (X, γ) can interact through

different processes:- Photoelectric effect (absorption): γA → A+e-

- Compton scattering: γe- → γe-

- Pair production: γN → e+e-N- Rayleigh scattering, Thomson scattering, Hadron/Lepton pair

production…• Only photons which interact deposit their energy

26

Dominant for E > 10 eV

Page 27: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

INTERACTION OF PHOTONS

• Absorption length, expressed in g cm-2 (≡ λρ)• Lead at 100 eV → λρ ~ 3.5x10-5 g cm-2 → λ ~ 30 nm

27

Photon energy

100

10

10 – 4

10 – 5

10 – 6

1

0.1

0.01

0.001

10 eV 100 eV 1 keV 10 keV 100 keV 1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV

Abs

orpt

ion

leng

th λ

(g/

cm2 )

Si

C

Fe Pb

H

Sn

Page 28: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

INTERACTION OF PHOTONS• The total cross-section is

simply the sum of cross-sections for individual processesand sincewe have simply

28

�tot = �PE + �C + �CP

� =µ

A

NA

µtot = µPE + µC + µCPPhoton Energy

1 Mb

1 kb

1 b

10 mb10 eV 1 keV 1 MeV 1 GeV 100 GeV

(b) Lead (Z = 82)- experimental σtot

σp.e.

κe

Cro

ss se

ctio

n (b

arns

/ato

m)

Cro

ss se

ctio

n (b

arns

/ato

m)

10 mb

1 b

1 kb

1 Mb(a) Carbon (Z = 6)

σRayleigh

σg.d.r.

σCompton

σCompton

σRayleigh

κnuc

κnuc

κe

σp.e.

- experimental σtot

22 32. Passage of particles through matter

Photon Energy

1 Mb

1 kb

1 b

10 mb10 eV 1 keV 1 MeV 1 GeV 100 GeV

(b) Lead (Z = 82)- experimental σtot

σp.e.

κe

Cro

ss se

ctio

n (b

arns

/ato

m)

Cro

ss se

ctio

n (b

arns

/ato

m)

10 mb

1 b

1 kb

1 Mb(a) Carbon (Z = 6)

σRayleigh

σg.d.r.

σCompton

σCompton

σRayleigh

κnuc

κnuc

κe

σp.e.

- experimental σtot

Figure 32.15: Photon total cross sections as a function of energy in carbon and lead,showing the contributions of different processes [51]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excitedσCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear fieldκe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [52].In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).

February 8, 2016 19:56

Photoelectric

Compton

Pair production

Page 29: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

ENERGY DEPOSIT BY A X-RAY BEAM• A photon deposits its energy only if it interacts• The number of photons interacting per unit of length as a function of

depth isso, assuming µ does not depend on x (homogeneous material), and all photons have the same energy,

• Variation of the deposited energy as a function of distance traveled:

29

�dN(x)

dx

�dN(x)

dx= µN0 e

�µx ) dE(x)

dx= �E�

dN(x)

dx= µE� N0| {z }

E0

e�µx

dE

dx(x) = E0 e

�µx

Page 30: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

ENERGY DEPOSIT BY A X-RAY BEAM• The energy deposit is maximum at the entrance in the material

and then decrease exponentially• By definition of x1/2, the energy deposited is divided by 2 at this

depth

30

x

At high energies, the way electrons interact will have an important

effect on overall energy deposit

dE/dxE0

E0/2

x1/2

Photons γ HEPhotons γ BE

Page 31: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

Photons cannot be detected if they do not interact…

INTERACTION OF PHOTONS IN MATTER2 - HOW PHOTONS INTERACT (1)

Page 32: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• If the photon has an energy hν greater

than ionization energy EI of an electron, it can be absorbed and the electron ejected with an energy Ee so that

• For energies above a few hundred keV, the electron carry most of the energy of the photon

• The vacancy left behind the electron is filled by another electron from another shell or by a free electron‣ Emission of X-rays or of Auger

electrons, usually quickly absorbed

32

γe-

E� = h ⌫ = Ee + EI

X

e- e-

e- Auger

Page 33: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• Complexity !

33

γe-

X

e- e-

e- Auger

Page 34: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• Most of the time, the electron is absorbed and all the energy of

the photon is deposited• Question: how the energy of electrons is distributed (for

monochromatic photons) ?

34

Ee

dN/dEγ

e-?

Page 35: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• Most of the time, the electron is absorbed and all the energy of

the photon is deposited• Assuming a mono-energetic photon beam, all the electrons have

the same energy and the spectrum is a Dirac peak at Ee = hν.‣ Photo-peak or full-energy peak

35

Ee

dN/dE

Photo-peak or full-energy peak γ

e-

Page 36: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• In practice, if the interaction takes place on the edge of the

detector, the electron may escape without depositing all of its energy

36

Ee

dN/dE

Photo-peak or full-energy peak

γ

e-

Page 37: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• In practice, if the interaction takes place on the edge of the

detector, the electron may escape without depositing all of its energy

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Edep (MeV)

1

10

210

310

410

510

610

Edep in absorber - First Interaction = P.E. + e- exit (MeV)

Result from a simulation:662 keV photons interact only through p.e. effect(other interactions are

ignored)

« Perfect » resolution

98,7 %

Page 38: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• For decreasing photon energies, the electrons ejected are from K

shell, L shell, etc.• The cross-section decrease fast with increasing photon energies• It increases quickly with target nuclei mass

38

At 100 keV :σPE(Fe) = 19 bσPE(Pb) = 1800 b

(From XCOM NIST database)

L3

L2

L1

K

�PE / Zn

E3.5�

<latexit sha1_base64="5KMWHQ1Te/nV2VYaWHOyug8gvIw=">AAAC83icjVHLbtNAFD01hZaWRwpLNlajSqwspwHRZVRUiWWQSFJRN9F4Ogmj2h5rPK4UWf6L7tghtvxAt+UfEH8Af9E7U0dqiVA7lu0z595zZu69cZ7IwoTh7xXvwerDR2vrjzc2nzx99ry19WJYqFJzMeAqUfowZoVIZCYGRppEHOZasDROxCg+fW/jozOhC6myT2aei+OUzTI5lZwZoiatICrkLGWTqn9Q+1GuVW6UH00149XncVZXB5NoxtKUjatu8LauJ612GIRu+cug04A2mtVXrV+IcAIFjhIpBDIYwgkYCnqO0EGInLhjVMRpQtLFBWpskLakLEEZjNhT+s5od9SwGe2tZ+HUnE5J6NWk9LFDGkV5mrA9zXfx0jlb9n/elfO0d5vTP268UmINvhB7l26ReV+drcVgij1Xg6SacsfY6njjUrqu2Jv7N6oy5JATZ/EJxTVh7pSLPvtOU7jabW+Zi/9xmZa1e97klvhrb0kD7vw7zmUw3A063WD345t2b78Z9TpeYRuvaZ7v0MMH9DEg73Nc4BI/vdL76n3zvl+neiuN5iVuLe/HFebgopI=</latexit>

n varies with energy between 4 and 5

Page 39: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

PHOTOELECTRIC ABSORPTION• The breaks correspond to ionization energies for K electrons, L

electrons, etc.

39

Photon energy is too low to eject K electrons. K

electrons are not available.

Photon energy is high enough to eject

K electrons.K electrons are

available.

(From XCOM NIST database)

Page 40: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING• Scattering of a photon on a lightly bounded

electron• The photon is scattered and loose energy,

which is given to the recoil electron• We can show that

• The energy of the electron is• Compton scattering dominates for Eν

between ~10-100 keV and ~10-100 MeV

40

γ

γ’

e-

θ

E�0 =E�

1 + E�

me c2 (1� cos ✓)

Ee = E� � E�0

The scattered photon « lives its life » !It can interact again or not !

Page 41: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING

• The energy of the scattered photon, and so the one of the electron, varies continuously when θ varies between 0 and π- For θ = 0, Eγ’ = Eγ, and Ee = 0- For θ = π, and in this case,

• The difference between the maximum energy of the recoil electron and the energy of the incoming photon is

41

EC ⌘ E� � Ee(✓ = ⇡) =E�

1 + 2 E�

me c2

Ee(✓ = ⇡) = E�

2 E�

me c2

1 + 2 E�

me c2

E�0(✓ = ⇡) =E�

1 + 2 E�

me c2

E�0 =E�

1 + E�

me c2 (1� cos ✓)

Page 42: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

EXERCICE 3.1• We want the peaks to be separated by at least 1 FWHM• The separation is 55 keV so we need a resolution of 55/435 =

12.6% or less at 435 keV and 11.2% or less at 490 keV.• So, we need a resolution of 11.2% or less.

42

Back to the exercice...

Page 43: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING• Scattering of a photon on a lightly bounded

electron• The photon is scattered and loose energy,

which is given to the recoil electron• We can show that

• The energy of the electron is• Compton scattering dominates for Eν

between ~10-100 keV and ~10-100 MeV

43

γ

γ’

e-

θ

E�0 =E�

1 + E�

me c2 (1� cos ✓)

Ee = E� � E�0

The scattered photon « lives its life » !It can interact again or not !

Page 44: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING• Electron spectrum is continuous• Since really often Eγ >> mec2/2, EC ≈ mec2/2 ≈ 0.256 MeV

44

Ee

dN/dEθ = 0 θ = π

Compton continuum

EC

Compton edge

γ

e-

EC ⌘ E� � Ee(✓ = ⇡) =E�

1 + 2 E�

me c2

Page 45: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING• Shape of Compton continuum for various gamma-ray energies• Variation of the energy of the scattered photon as a function of the angle

45

'Y = -y Ray energy

1.5 'Y = 0.4 moc2 _ Electron energy t -\ m c2

\ 0 \ \ '0.5

\ \

t \ \

\ \

N 1.0 E \ (,,)

\ N 1 0 .-X

cl 1.1 ""= ""= ?'-- 2

' 3 ,45

.1°20 50

0 0 0.2 0.4 0.6 0.8 1.0

€/-y >

Figure 10.1 Shape of the Compt?n. co~tinuum for various gamma-ray energies. (From s. M. Shafroth ( ed. ), Sczntzllation Spectroscopy of Gamma Radiation. Copyright 1964 by Gordon & Breach, Inc. By permission of the publisher.)

-> Q)

-> O') ... Cl) C: Cl)

C 0 ... 0 .c o..

2.80

2.40

1.60

1.20

0.80

0.40

Compton scattered photon energy as a function of scatter ing angle

o~-+---+---+---+--+---+---t----ti--~~-..,__,.___. 0 30 60 90 120 150 180

Scattering angle (degrees)

Figure 10. 7 Variation of scattered gamma .. ray energy with scattering angle.

~ Cste ~ 200 keVWhatever the initial

energy

Page 46: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

COMPTON SCATTERING• Electron spectrum is continuous• Since really often Eγ >> mec2/2, EC ≈ mec2/2 ≈ 0.256 MeV

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Edep (MeV)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Edep in absorber - First Interaction = Compton (MeV)

Result from a simulation:662 keV photons interact only through Compton

scattering(other interactions are

ignored)

« Perfect » resolution + only one scattering is

allowed

Page 47: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

e+e- PAIR PRODUCTION

• The photon disappear creating a electron-positron pair• This process can only occur in the EM field of a nuclei (or of an e-)• Threshold energy: • The energy in excess of ~2mec2 is transferred as kinetic energy of

the e+ and e-:

47

γ

e-

e+

Ee+ + Ee� = E� � 2mec2

E� � 2me c2

✓1 +

me

mN

<latexit sha1_base64="X0TQlhDKAAspJjLz6FvpNv54OgA=">AAADAHicjVHNahUxGD0dq9b6d9Wlm+BFqFguM0Wo4KYogiup4G0LnXrJpLnT0PlrJiOUy934Ju7ciVtfwK2uxDfQt/AknYJaRDNMcnK+75zky5c1hWldHH9biM4tnr9wcenS8uUrV69dH9y4udXWnVV6rOqitjuZbHVhKj12xhV6p7Fallmht7PDJz6+/Vrb1tTVS3fc6L1S5pWZGiUdqcng0dNJmsuylCLN9ZFYS1fLiU5X1SuitNBTtyKS++nUSjVjYM7p+Vyk1uQH7t5kMIxHcRjiLEh6MEQ/NuvBV6TYRw2FDiU0KjjiAhItv10kiNGQ28OMnCUyIa4xxzK1HbM0MyTZQ845d7s9W3HvPdugVjyl4G+pFLhLTc08S+xPEyHeBWfP/s17Fjz93Y65Zr1XSdbhgOy/dKeZ/6vztThM8TDUYFhTExhfnepduvAq/ubil6ocHRpyHu8zbolVUJ6+swiaNtTu31aG+PeQ6Vm/V31uhx/+lmxw8mc7z4KttVESj5IXD4Ybj/tWL+E27mCF/VzHBp5hE2N6v8UnfMaX6E30LnoffThJjRZ6zS38NqKPPwFC6aXl</latexit><latexit sha1_base64="X0TQlhDKAAspJjLz6FvpNv54OgA=">AAADAHicjVHNahUxGD0dq9b6d9Wlm+BFqFguM0Wo4KYogiup4G0LnXrJpLnT0PlrJiOUy934Ju7ciVtfwK2uxDfQt/AknYJaRDNMcnK+75zky5c1hWldHH9biM4tnr9wcenS8uUrV69dH9y4udXWnVV6rOqitjuZbHVhKj12xhV6p7Fallmht7PDJz6+/Vrb1tTVS3fc6L1S5pWZGiUdqcng0dNJmsuylCLN9ZFYS1fLiU5X1SuitNBTtyKS++nUSjVjYM7p+Vyk1uQH7t5kMIxHcRjiLEh6MEQ/NuvBV6TYRw2FDiU0KjjiAhItv10kiNGQ28OMnCUyIa4xxzK1HbM0MyTZQ845d7s9W3HvPdugVjyl4G+pFLhLTc08S+xPEyHeBWfP/s17Fjz93Y65Zr1XSdbhgOy/dKeZ/6vztThM8TDUYFhTExhfnepduvAq/ubil6ocHRpyHu8zbolVUJ6+swiaNtTu31aG+PeQ6Vm/V31uhx/+lmxw8mc7z4KttVESj5IXD4Ybj/tWL+E27mCF/VzHBp5hE2N6v8UnfMaX6E30LnoffThJjRZ6zS38NqKPPwFC6aXl</latexit><latexit sha1_base64="X0TQlhDKAAspJjLz6FvpNv54OgA=">AAADAHicjVHNahUxGD0dq9b6d9Wlm+BFqFguM0Wo4KYogiup4G0LnXrJpLnT0PlrJiOUy934Ju7ciVtfwK2uxDfQt/AknYJaRDNMcnK+75zky5c1hWldHH9biM4tnr9wcenS8uUrV69dH9y4udXWnVV6rOqitjuZbHVhKj12xhV6p7Fallmht7PDJz6+/Vrb1tTVS3fc6L1S5pWZGiUdqcng0dNJmsuylCLN9ZFYS1fLiU5X1SuitNBTtyKS++nUSjVjYM7p+Vyk1uQH7t5kMIxHcRjiLEh6MEQ/NuvBV6TYRw2FDiU0KjjiAhItv10kiNGQ28OMnCUyIa4xxzK1HbM0MyTZQ845d7s9W3HvPdugVjyl4G+pFLhLTc08S+xPEyHeBWfP/s17Fjz93Y65Zr1XSdbhgOy/dKeZ/6vztThM8TDUYFhTExhfnepduvAq/ubil6ocHRpyHu8zbolVUJ6+swiaNtTu31aG+PeQ6Vm/V31uhx/+lmxw8mc7z4KttVESj5IXD4Ybj/tWL+E27mCF/VzHBp5hE2N6v8UnfMaX6E30LnoffThJjRZ6zS38NqKPPwFC6aXl</latexit><latexit sha1_base64="X0TQlhDKAAspJjLz6FvpNv54OgA=">AAADAHicjVHNahUxGD0dq9b6d9Wlm+BFqFguM0Wo4KYogiup4G0LnXrJpLnT0PlrJiOUy934Ju7ciVtfwK2uxDfQt/AknYJaRDNMcnK+75zky5c1hWldHH9biM4tnr9wcenS8uUrV69dH9y4udXWnVV6rOqitjuZbHVhKj12xhV6p7Fallmht7PDJz6+/Vrb1tTVS3fc6L1S5pWZGiUdqcng0dNJmsuylCLN9ZFYS1fLiU5X1SuitNBTtyKS++nUSjVjYM7p+Vyk1uQH7t5kMIxHcRjiLEh6MEQ/NuvBV6TYRw2FDiU0KjjiAhItv10kiNGQ28OMnCUyIa4xxzK1HbM0MyTZQ845d7s9W3HvPdugVjyl4G+pFLhLTc08S+xPEyHeBWfP/s17Fjz93Y65Zr1XSdbhgOy/dKeZ/6vztThM8TDUYFhTExhfnepduvAq/ubil6ocHRpyHu8zbolVUJ6+swiaNtTu31aG+PeQ6Vm/V31uhx/+lmxw8mc7z4KttVESj5IXD4Ybj/tWL+E27mCF/VzHBp5hE2N6v8UnfMaX6E30LnoffThJjRZ6zS38NqKPPwFC6aXl</latexit>

Page 48: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

ANNIHILATION

• Positons travel through matter losing their energy‣ Remember part 2 of this course!

• After a short time (~few ps), when they are (almost) at rest, they interact with electrons

• e+ form a bound state with e-, called positronium• Para-positronium (2, 4, 6… photons produced, T~125 ps) or• Ortho-positronium (3, 5, 7… photons produced, T~142 ns)

48

e+ + e� ! 2 �

e-

e+ γγ

Page 49: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

ANNIHILATION• Energy conservation :• Momentum conservation

‣ It’s impossible to produce only one particle !‣ In case of two photons, they are emitted at 180° from each other

• Energy and momentum of the photon:

• So,• Energy conservation gives:

49

E� = h ⌫ p� = E�/c

�!P�1 +

�!P�2 =

�!0 ) E�1 = E�2

E�1 = E�2 = me c2 = 511 keV

�!P�1 +

�!P�2 =

�!0

me c2 +me c

2 = E�1 + E�2

Page 50: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

RELATIVE IMPORTANCE OF THE THREE MODES OF INTERACTION

• The relative importance of the three modes depends on the Z of target material and on the energy of incoming gamma-rays

• On the plot below, the lines are for equal cross sections

50

Page 51: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

CONTRIBUTIONS TO THE ABSORPTION COEFFICIENT

• Each of the effects seen above contribute to the total cross section

• For a composite material,

51

NaI

✓µ

tot

=X

i

wi

✓µ

i

X

i

wi = 1

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

Page 52: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

CONTRIBUTIONS TO THE ABSORPTION COEFFICIENT

52

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

Page 53: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

EXERCICE 4.1• Let’s imagine a photon with hν >> 2 mec2 interact through pair

production, that the electron is absorbed, and the positon annihilates.

• Draw the possible cases.• What deposited energy(ies) can be measured ?

53

Ee

dN/dEhν

Page 54: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

e+e- PAIR PRODUCTION• The probability of pair production increase above • Peaks in the spectrum are difficult to observe when • The positon quickly annihilates to give (mostly) two 511 keV photons

which may interact, or not.

54

Ee

dN/dEhν

hν - 2mec2 hν - mec2

E� < 4mec2

E� > 2mec2

γ

e-e+

The two photons escape: « double escape ».If only one of them escapes: « single escape ».

« Double escape » peak

« Single escape » peak

(Solution for Exercice 4.2…)

Page 55: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

TOTAL ABSORPTION• Whatever the type of the first interaction, or the exact way the

event develops, the deposited energy is the incident energy !‣ « Full energy peak »

55

γe- γ

e-

e-

e-

γ

e- e-

e-e-

e+

« Total absorption » - « Full energy peak »

Page 56: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

SMALL DETECTOR• Scattered photons, or photons

produced by e+ annihilation can escape the detector

• If they escape (before interacting), their energy is not deposited‣ We don’t measure all the

incident energy !‣ Missing energy !

56

γe-

γ

e-γ

e-e+

Page 57: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

SPECTRUM FOR A SMALL DETECTOR

57

Ee

dN/dE

Eγ = hνhν - 2mec2

Ee

dN/dE

Eγ = hν

Eγ < 2mec2

Eγ >> 2mec2

hν - mec2

WARNING !

Perfect resolution !No multiple scattering !Amplitudes of the peaks are not to scale !

Page 58: PART 3 INTERACTION OF PHOTONSnpac.lal.in2p3.fr/wp-content/uploads/2019/Cours-S1/... · 2019-09-24 · INTERACTION OF PHOTONS IN MATTER 1 - CROSS-SECTION (QUICK RECAP) MU5PYN03 J

MU5PYN03 J. Bolmont

SPECTRUM FOR A SMALL DETECTOR

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Edep (MeV)

10

210

310

410

510

610

Edep in absorber (MeV)

Result from a simulation:662 keV photons interact in

a small size detector. All three interaction modes are

included.

« Perfect » resolution