Part 1 Design Requirements

Embed Size (px)

Citation preview

  • 7/29/2019 Part 1 Design Requirements

    1/20

    317

    Part1DesignRequirements:AComparisonofVapourCloudExplosionModels

    andtheImportanceofProperlyAssessingPotentialIncidentImpact

    Part2AnalysisoftheBuncefieldOilDepotExplosion:ExplosionModelingand

    ProcessSafetyPerspective

    NoahL.Ryder,P.E.* ,ChristopherF.Schemel*,SamMannan#

    Abstract

    Thispaperdiscussesthevariousexplosionmodelsthatarefrequentlyusedinsupportoffacilitylayoutandriskassessmentsandexaminestheresultsthateachmodeltypewillproduceforcomparativepurposes.Itisshownthatwhileempiricalbasedmodels,suchastheTNTequivalencyandTNOMulti-EnergyMethodmaybesimpleinconcept,thatproperapplicationofthemodelcanbecomplex.Inadditiontheuseofthesemodelsprovideresultsthatresultinatotallossofspatialspecificity.Mostempiricalmodelsassumeauniformhemispherethatchangessolelyinaradial

    fashion,thespecificsofaplantlayoutandtheimpactthatlocalizedcongestionmayplayinthedevelopmentofaflammablecloudanditsignitioncanbeextremelyimportantintheproperdesignofafacilityorinconductinganappropriatehazardreview.Thedifficultyinassigningappropriatelevelsofcongestionandindeterminingwhetherappropriatespacingbetweenequipmentexistswhenapplyingthemodelcanresultinsignificantunderoroverpredictionofthepotentialimpact.Theseconceptuallysimpleconceptsareoftenquitedifficulttoimplementandhighlightsomeofthecomplexitiesofapplyingempiricalmodelsbroadly.Abriefoverviewonmodelingisprovidedinordertohighlightthepurposeofmodelingandthenecessityofensuringthattheappropriatemodelhasbeenconstructedorusedinassessingthesituation.Recentevents,Buncefield,aswellaspreviousevents,inwhichthesetoolswereapplied,clearlyshowthatincidentsinwhichalargevapourcloudreleasefollowedbyadelayedignitionareforeseeable.

    Evenifthespecificchainofeventsisdeemedimprobable,theendresult,namelyavapourcloudreleaseandsubsequentignition,issufficientlypredictablethatanappropriateapplicationofthecommontoolsoftheindustryshouldbeabletoadequatelycapturetheincidentimpact.Areviewofeachofthemodelsispresentedalongwiththeassumptionsthataccompanythemodel.SpecificexamplesfromtheRIGOStestseriesareexaminedtocomparetheMEM,TNT,andtheCFDtoolFLACSinordertoillustratethedifferencesthateachmodelwillproducewhenattemptingtoassessthesamesituation.Thedifferencesintheseresultsisthendiscussedfromthecontextthatachangeinrequirementsspecificationandscenariodevelopmentcanhaveamajorimpactwhenaforeseeableincidentoccurs,buttheinitialtoolsusedtoassessthescenariodontcapturethenecessarylevelofdetailedinformationorthetoolsareusedinappropriately.

    Introduction

    *Packer Engineering, Inc.

    Noah L. Ryder is the corresponding author and may be reached at (301)775-2967 or via email at [email protected]

    # Mary Kay OConnor Process Safety Center

  • 7/29/2019 Part 1 Design Requirements

    2/20

    318

    Thespacingofpetrochemicalprocessunitsandbuildingshasbeenacriticalsafetyandoperationsissuesincelargescalerefiningoperationsbegan.Numerousstandardsandguidelinesexistwhichattempttoprovideclarityontheproceduresforassessingfacilitysitingandlayout,howevermanyoftheseguidelinesareinconsistentwitheachotherinoneormoreareasandamajorityoftheguidelines

    areprescriptiveinnaturebearinglittlerelevancetorealworldperformance.Overthepast40yearsalargenumberofexplosion/fireincidentshaveoccurredinoilandpetrochemicalfacilities,whichhaveimpactedotheronsiteandoff-siteareas.Theseincidentshavecausedthevariousguidelinesandstandardstobereevaluatedandforchangestobemade,howeverthesechangesarereactionaryinnatureandareoftennotbasedinscience.Thedrivingforcebehindspacingandothersafetycriteriaisthepotentialconsequenceofanincident,todatetheprimarytoolsthathavebeenusedtoassistinmakingthesedeterminationsareempiricallyderivedtoolsthathavebeenshowntobedifficulttoapplyproperlyorimproperfortheapplication.Thiscreatesapotentialfortheconsequencesofaneventtobeseverely

    underpredictedandfordamagetobedonefarbeyondthatinitiallyanticipated.OverviewofModeling

    Brieflywewilldescribethefundamentalsofamodel,asitwillbeusefultosummarizetheprinciplesofmodelinginageneralfashiontounderstandthebasicapproachesthatmaybetaken.Amodelisapurposefulrepresentationofthephysicalworld,withmanytypesofmodelingexisting:visualmodels(pictures),verbalmodels(speech,articles,andbooks),three-dimensionalmodels(sculptures),andmathematicalmodels.Thepracticeofengineeringoftenrequirestheuseofmodelsinordertogeneratean

    engineeringsolutiontoadefinedproblem.Onceconstructed,amodelisverifiedandvalidatedbyaseriesoftestsandexperimentstoindicatehowwellthemodelrecreatesthephenomenamodeled.Thedifferencebetweenverificationandvalidationishoweversignificantandisoftenoverlooked.ASTME1355,definesVerificationas,Theprocessofdeterminingthattheimplementationofacalculationmethodaccuratelyrepresentsthedeveloper'sconceptualdescriptionofthecalculationmethodandthesolutiontothecalculationmethodanditdefinesValidationas,Theprocessofdeterminingthedegreetowhichacalculationmethodisanaccuraterepresentationoftherealworldfromtheperspectiveoftheintendedusesofthecalculationmethod.

    Inshorttheverificationprocessensuresthatthemodelsmathematicformulationsarecorrectlyyieldingwhatisintended(i.e.thealgorithmusedtodeterminetheproductof5and4yields20)whilethevalidationprocessensuresthattheresultsofthemodelprovideafairrepresentationoftherealworld.Fromanengineeringperspective,theintentionofamodelistoproduceananalysistoolthatadequatelyapproximatesrealityforthespecificsituationforwhichthemodelwascreated.

  • 7/29/2019 Part 1 Design Requirements

    3/20

    319

    Mathematicalmodeling,whichformsthebasisformostengineeringapplications,beginswithasituation/phenomenathatexistsintherealworldandaprecisedefinitionoftheproblembyreducingextraneousinformationandsimplifyingtheproblem,whilestillenablingthenecessaryinformationtobecaptured,Figure1.Thekeyinthisprocessisthatavalidatedandverifiedmodelmustbeusedinthe

    appropriatemanner;similartoanytypeoftoolifusedinappropriatelytheresultsorapplicationoftheresultswillbeincorrect.

    Figure1Firstorderviewofmathematicalmodelingi

    Forthepurposeoffacilitysitingandlayout,modelsareusedtoevaluatethedispersionofflammableandtoxicgasses,tomodelfiresandtheimpacttostructuresandpersonnel,andtomodelexplosionseverityanditsimpactonstructuresandpersonnel.Itisthislastissuewithwhichwearemostconcerned.Historyhasshownusthatexplosionscanhavedevastatingimpactsbothintermsofemployeeandpublicsafetyandintermsofcontinuityofbusinessoperations.Ofthelargestonshoreindustriallosses(>$150,000,000)asof200283%werearesultofexplosionsandVCEs.iiAftereachincidentoccurreddetailedanalyseswereperformedtotryanddeterminewhatcausedtheincidentandwhatcanbedonetopreventafuturesimilarincident,oftenthisincludedgoingbackandrevisingguidelinesandstandards.

    WhatModelsAreUsedFor

    Thepurposeofamodelistoobtaindatathatcanbeusedinausefulfashion,thusforexplosionsmostoftenthedatathatisdesiredis:whatthepressureprofilewilllooklike(i.e.whatisthedamagethatmightbeexpectedatvariouslocations);andwhatthenecessaryspacingbetweenprocessunitsorstructuresshouldbetominimizeimpact.Inordertoassesstheimpactofavapourcloudexplosionthegaseousfuelmustbeidentifiedforreactivity,energycontent,theconcentrationanddistributionofthecloudmustbeknown,andtheareasofcongestionandconfinementmustbeidentified.

  • 7/29/2019 Part 1 Design Requirements

    4/20

    320

    ForsimplifiedanalysesmuchoftheaboveinformationisassumedwhileforotherssuchasCFDamoredetailedprofileofthevapourcloudanditsinteractionswiththecongestion/confinementcanberesolved.

    Regardlessofthemodelusedthedesiredoutcomeistoobtainpressurecontoursasafunctionofdistancefromthepointofignition.Eachmodelattemptstocapturethisinformationeitherfromcorrelationstoexperimentaldataorbysimulatingthephysicalprocessesofanexplosion.

    Models

    Explosionmodelsmustbysomemethodaccountforthesizeofthecloud,theenergyofthecloud,andtheefficiencyofcombustionorthecongestionoftheareaofinterest.Acloudwilldisperseandtheempiricalmodelsassumethatthecloudisahomogeneous,stoichiometriccloudthatisdispersedsymmetricallyinaradialfashion.Clearlythisisnotrealisticineventhemostidealizedcaseandthusthe

    startingpointformostanalysesthatutilizetheseempiricaltoolsisgoingtobeflawedfromtheoutset.TNTEquivalencyMethod

    TheTNTequivalencymethodologyoriginatesfromearlymilitarytestingandisfrequentlyusedbecausethereisextensiveblastdamagedataavailablefromarangeofsources.ThemethodologyassumesthatavapourcloudexplosioncanbeequatedtoanequivalentquantityofTNTusingayield(efficiency)factor.OnceanequivalentamountofTNThasbeenestimatedthecharacteristicsoftheexplosionandexpectedlevelofdamagecanbeestimated.iii

    Thebasicmethodologyrequiresthattheweightofthefuelcontainedwithinthevapourcloudbeknownandthatanappropriateyieldfactorisassigned.Thisvolumeoffuelisthenassignedanenergyvaluebasedonthefuelheatofcombustionofthefuelandtheyieldfactor,theequationisbelow:

    WTNT =eWfQf

    QTNT

    whereeistheyield,Wfistheweightofthefuelinthecloud,Qfistheheatofcombustionofthefuel,andQTNTistheheatofcombustionofTNT.Thisisthenusedalongwithaformofthecuberootscalinglawtodeterminethedistanceatwhichtheblastwavepredictsthepeaksideonpressure.

    R = Z WTNT( )1

    3 whereRisthedistancetopeakoverpressure,Zisthescaleddistance(takenfromFigure2,andWTNTistheequivalentweightofTNT.

  • 7/29/2019 Part 1 Design Requirements

    5/20

    321

    Figure2Peakside-onoverpressurevs.Scaleddistance(Baker,et.al1996)

    TheTNTmethoddoesnottakeintoaccountthevaporcloudsizeortheobstaclesandcongestionintheregionofthevaporcloud,andthusiswidelyusedbecauseofitsrelativesimplicityandthevastamountofdatathatexistsfromexperiments(compiledintoFigure2).However,theTNTmethodologyhasbeenshowninnumerousstudiesiv,v,vitohavesignificantlimitationswhenappliedtoVCEsnamely:

    ATNTblastwaveisofashorterdurationandproducesahigheroverpressurethananequivalentenergyVCEexplosion

    TheTNTblastwaveresultsinadifferentimpactonstructuresthanthatofaVCE

    AVCEhasalongerpositivephasedurationwhichinturnresultsinalargerimpulse

    Degreeofmixing,ignitionstrength,confinement,congestion,andturbulencearenotconsidered

    ThewiderangeofTNTequivalenciesthatarefoundwhenreviewingarangeofVCEsoffuelswithsimilarheatsofcombustion.vii,viii,ix,x

    TheoverallconclusionregardingtheTNTmethodologyisthatforcertainfirst-orderapproximationsregardingbuildingvulnerabilityitmaybeacceptable,howeverfortheinterpretationofaVCEitisinappropriate.Multi-energymethodThemulti-energymethodassumesthatonlythevolumeofgasthatiswithinaconfinedorobstructedareacontributestotheoverpressuregeneratedinanexplosion.xiThefuelthatisburnedinunconfinedregionsistreatedasafireballwithnoassociatedoverpressure.Itisassumedthattheflameburnsinahemisphericalshapefromthepointofignitionandthatthereisaconstantflamespeed.Themixturewithintheconfinedareaisassumedtobehomogeneousand

  • 7/29/2019 Part 1 Design Requirements

    6/20

    322

    stoichiometricandthereisnomechanismfordifferentiatingbetweenfuelstypes.xiiTheunderlyingassumptionisthatvaporcloudsarenon-homogenousmixturesandthatintheabsenceofconfinementadetonationcannotsupportitself.xiiiThemethodologyisentirelydependentontheassumedlevelof

    congestion/confinementwithinaparticularregionorsetofregions.Themethodreliesonsummingorseparatingcongestionzonesinordertodeterminewhetherignitionwouldresultinasingleormultipleblasts.Theoverpressureisthendeterminedasafunctionofthecombustionenergyandthescaleddistancefromignitiontoatarget.Theblaststrengthisassignedavaluefrom1-10.Theequationstodeterminetheoverpressureareasfollows:

    R = R PO/ E( )

    13, P

    S= P

    S/ P

    O

    whereR istheenergyscaleddistance,Risthedistancefromthecenterofthe

    assumedhemisphere,Poistheambientpressure,Eistheavailableenergy,PS isthe

    dimensionlesspeakoverpressure,andPSisthepeakside-onoverpressure.

    Figure3Dimensionlessoverpressurevs.EnergyScaledDistance(vandenBerg,1989)

    TheBaker-Strehlowmethodologyusesessentiallythesamemethod,howeverinsteadofspecifyinganexplosionstrengththismethodrequirestheusertoassumeaflamespeed,andthecurvesarerepresentedasafunctionoftheflamespeed.Thereremainmanyquestionsastowhenanareacontributestothepressureandwhencongestionzonesshouldbelumpedtogetherintoasinglelargerarea.Inparticularthesafeminimumclearancebetweenzonesisatopicofgreatinterestand

  • 7/29/2019 Part 1 Design Requirements

    7/20

    323

    hasyettobeclearlydefined.TheMEMmethodologyhassomemajorobstaclestoitsuse:

    Themodeldoesnotaccountforfuelreactivity Themodelassumesahomogeneous,hemisphericalcloud,withspherically

    symmetricalisopleths Themodeldoesnottakeintoaccounttheobstaclesthatmayaffectthepressurecontours Determiningtheminimumseparationdistanceisnon-trivial Determiningtheinitialblaststrengthisnon-trivial

    CFD

    Acomputationalfluiddynamicsmodelsimulatesthephysicsinthousandsormillionsofcells.CFDmodelsthebasicconservationequationsusingtheNavier-Stokesequationsgoverningfluidflow.Submodelsthensimulateturbulenceandcombustion.MostmodelsuseaPorosityDistributedResistance(PDR)tomodelsmall-scaleobjects(suchasgratingonanoffshoreplatform).Mostmodelscan

    simulatethedispersionofagassubsequentlyafterthedispersionhasbeenmodeleddirectly,theexplosionmaybesimulated.Thesimulationofthegasdispersionwillmodelthegasflowthroughthecomputationaldomaininandaroundthestructures,vegetation,etc.thatexistaswellastakingintoaccountanyenvironmentalfactors.Thisthenproducesacloudthatisvariedinconcentration,isnon-symmetric,andhasapreexistinglevelofinducedturbulence.

    Akeyaspectofexplosionsistheextentandconcentrationofthevapourcloud,thusaccuratedispersionmodelingcanplayasignificantrole.AswasshownintheBPTexasCityincidentreport1,usingCFDtomodelthedispersionandaccountingforwind,obstacles,andthetwo-phaseflowgeneratedaflammablecloudinthesame

    areaswheredamagewasobserved,whiletheempiricalmodelsdidnotaccuratelycapturetheextentofthevapourcloud.Thusinordertoaccuratelymodelanexplosionthemodelmustbeabletosimulatethereleaseandflowofgastakingintoaccounttheobstacles,structures,andtheambientweatherconditions.Afterthecloudhasdispersedanignitionsourceisintroduced.Withcfdthelocationandenergyoftheignitionsourcecanbemodeledtoseetheimpactthatvaryingignitionconditionsmayhaveonthedevelopmentofthevapourcloudexplosion.Theturbulenceismodeledusingak-turbulencemodelwhilethecombustion

    chemistryismodeledusingaflameandburningvelocitymodel.Therehavebeennumerousarticlesandbooksauthoredontheimplementationofthesemodelsandit

    issuggestedtorefertotheseifadditionalinformationisrequired.xivCFDmodelshavelimitationsinthatthey:

    Requiresignificantlymoreinformationregardingthegeometry1Appendix 17 of the BP Texas City Fatal Accident Report details the cfd dispersion modeling and provides a comparison of the areasof the plant that were damaged with the extent of the vapour cloud.

    http://www.bp.com/liveassets/bp_internet/us/bp_us_english/STAGING/local_assets/downloads/t/final_appendix_17.pdf

  • 7/29/2019 Part 1 Design Requirements

    8/20

    324

    Mayrequiresubstantiallymoreresourcestoutilize Mayrelyonsub-gridmodelstomodelphysicalphenomenathatcantbe

    resolvedatthemodelscale

    RequirementsSpecification/ScenarioDevelopment

    Eachcorporationorplanthasitsownlevelofrisktolerancethatisgeneratedbasedontheplantlocation,proximitytootherprocessunits,off-sitepersonnelandstructures,regulations,etc.Oftenthisrisktolerancemaynotbeformallycodifiedinthecorporatestructure,howeverthisisthedeterminingfactorinspecifyingthedesignofaprocessunitandsitespacing.Nosingleprescriptiveguidelineisappropriateforallapplications,insteadananalysisneedstobeperformedtodeterminewhatthepotentialconsequencesmaybeasaresultofanincidentandwhethertheoutcomeistolerableornot.Whatneedstobedoneistoassesseachsitebasedonitsownsite-specificconditionsandinordertodothisthetoolsutilizedmustbeappropriateandallow

    fortheproposedscenariostobemodeledcorrectly.CCPSGuidelinesforEvaluatingProcessPlantBuildingsforExternalExplosionsandFiresstatesmanyofthesebuildingdesignandsitingcriteriaarebaseduponbroadplantdesignguidelinesand

    notuponanevaluationofspecificmaterials,releaseconditions,orplantgeography.Whileeffectiveinmanyapplications,thisapproachcanleadtodesignsthatareoverly

    conservativeinsomeinstancesorthatfailtoprovidethedesireddegreeofprotection

    inotherinstances.Therecommendedframeworkassetoutintheguidelineallowsforengineeredsolutionstobearrivedatthatmeetallthestakeholdersrequirements.

    CurrentGuidanceonSpacing

    Theprocessofdesigningthelayoutandspacingofequipmentinanewrefineryorothercomplexoperationisadifficulttask.Manyfactorscompeteagainsteachotherandoftensafetymaysuffer.Ifissuessuchascost,schedule,sitesecurity,andoperationalefficiencycouldbeignoreditwouldbesimpletoplaceunitprocessesandequipmentfaroutsideoftherangeofpotentialharmtootherstructures,equipment,orpersonnel.Thisclearlyisnotthecase,andthusadetailedassessmentmustbedonetodeterminetheoptimalcombinationthatresultsinanoperationthatcanrunefficientlychemically,financially,securely,andyetstillposeaminimalrisktotheplantitselfaswellastoanyneighboringstructuresandpersonnel.Withexistingsitesthatareexpandingorrevisingoperationstheoptionsareevenmorelimitedandthusclearlydeterminingwhatthepotentialexplosionscenariosare,

    whatanacceptablelossis,andwhatthepotentialrepercussionsarebecomeevenmoreimportant.InfollowingtheprocessassuggestedbyCCPS,Figure4,aftertheinitialsiteischosenallofthehazardsmustbeidentifiedandtheconsequencesofeachincidenttypemustbeevaluatedinordertoproperlyassessthenecessaryspacingofequipment.

  • 7/29/2019 Part 1 Design Requirements

    9/20

    325

    Figure4Sitelayoutflowchart(afterGuidelinesforFacilitySitingandLayout,CCPS)xv

    Spacingtablesoriginallyweredevelopedforfireriskandwerebasedonengineeringjudgmentandhavebeenadjustedperiodicallybasedonincidents,regulations,andadvancesinengineeringanalysis.CommonspacingtablessuchasthoseprovidedinGuidelinesforFacilitySitingandLayout,CCPSwerecompiledfromvariousindustrysourcesandhistoricalprecedent.Bothspacingtablesortheuseofsimplifiedmethodologiestotryanddetermineappropriatespacingaimsatachievingonegoal,minimizingtheextentofdamageassuminganincidentoccurs.Inthecaseofexplosionsthegoalistospaceequipmentfarenoughawayfromeachotherthatanexplosioninoneareaorprocessunitdoesnotpropagateandcauseacontributingorsecondaryexplosioninanotherareaorprocessunit.Inadditionwe

    wouldliketominimizethedamagetofacilitiesasaresultofthepressurewavegeneratedduringtheexplosionincident.Theminimumspacingisoftenreferredtoasthecriticalseparationdistanceandtheproperidentificationofthisdistanceisessentialinproperlyapplyinganyofthesimplifiedempiricalapproachesusedtoassistinassessingthepotentialimpactofanexplosion.Theexistingguidanceonseparationdistancevariesgreatly,theYellowBooksuggestsspacingequalto10obstaclediameters,whileCCPShascompiledalistofspacingfromnational,industry,andinternalcorporatestandardswhichisshowninTable1.MuchoftheCCPSspacingwasoriginallyforfirescenariosbutoftenisappliedtoexplosionriskassessmentsaswell.Themostextensivetesting

    performedtodatetodeterminetheseparationdistanceindicatesthattheguidancesuggestedbytheYellowBookmaybeinsufficient.TheRIGOStestingshowedthatthedeterminationoftheseparationdistanceiscomplexandthatitemssuchaspiperackswhichmightnormallybeignoredplayasignificantroleincontributingtoanexplosionandpushingwhatwouldnormallybealow-pressureeventintothehighexplosionoverpressurerange.

  • 7/29/2019 Part 1 Design Requirements

    10/20

    326

    Table1ComparisonofSelectedOilandChemicalPlantMinimumSpacingCriteriaxvi

    Betweenprocessunits 50-200ft(15-60m)

    Betweencontrolhouse&processunit 50-1200ft(15-365m)

    Betweencontrolhouseandstoragetanks 50-350ft(15-105m)

    Betweenotherbuildingsand:

    Processunits 100-400ft(30-120m)

    Pumps,compressors 0-100ft(0-30m)Storagetanks 5-400ft(2-120m)

    Betweenmotorcontrolcentersand:

    Processunits 0-200ft(0-60m)

    Pumps,compressors 0-100ft(0-30m)

    Storagetanks 0-250ft(0-75m)

    Thisisofimportancebecausemostoftheexistingguidanceandcurrentpracticeistypicallyfarlessthanthe10obstaclediameterssuggestedbytheYellowBookandthelargestpoolofexperimentaldata,nottomentiontheincidentsthathaveoccurred,indicatethattherecommendedseparationdistanceisinsufficientintheeventofanexplosion,evenwhensignificantlyhighoverpressuresarenotinvolved

    asinthecaseofBuncefield.TheSkikdaLNGfacilityisanotherexampleofafacilitywheresimplespacingruleswereappliedandtheresultingincidentshowedtheinadequacyofthedeterminedspacing.Multipleexplosionsinvolvingmultipleprocesstrainsoccurredfollowedbyafire.Anadditionalfactorregardingspacingisthattheminimumspacingforanexplosionorfirescenarioisnotthesame.IntheBuncefieldincident,whiletheexplosioncauseddamage,itwasthefiresthatragedfordaysandwereabletospreadbetweentanksandunitsthatcausedthemostdamageonsite.

    ExistingResearchonCongestion

    Thedynamicsofanexplosionareinfluencedgreatlybyseveralfactorsnamely:cloudprofile,ignitionstrength,confinement,andcongestion.ThesefactorswilllargelydeterminethecharacteristicsoftheVCE.Theconfinementofthecloudcanbeviewedaswhethertherearehorizontalorverticalbarriersthatconfinethecloudtoaparticularvolume,whereasthecongestionisthepercentofthespacethatisoccupiedbyobstructions(vegetation,equipment,piping,etc.).ThelevelofcongestionistypicallymorerelevantinonshoreVCEsthanconfinement.Onceignitionoccursthelevelofcongestionplaysacrucialroleinthedevelopmentofthepressurewave.Intheabsenceofcongestionthefuelinthevaporcloudwillcombustintheformofafireball/flashfirethattypicallyproducesminimaloverpressuresontheorderofseveralmillibars.Ascongestionistheprimarydriverofturbulenceandturbulenceissubstantialinthedevelopmentoftheexplosionthisinteractioniskey.

  • 7/29/2019 Part 1 Design Requirements

    11/20

    327

    Alargenumberofexperimentalandtheoreticalstudiesxvii,xviii,xixhavebeenundertakentoexaminetheimpactofcongestiononthedevelopmentofanexplosionandthegeneralconclusionsarethatincreasingtheVolumeBlockageRatio(VBR,percentofthevolumeblockedbyobstacles)willincreasetheflamespeedandthusincreasetheoverpressure.Theexactmechanismshoweverarenotwellunderstood

    astheprocessisacomplexinteractionoftheacceleratingflamefrontandtheobstruction.Thisinteractionoftheflameandtheobstaclecausesbothturbulencebyvortexsheddingandlocalwakerecirculationwherebytheflamecanbewrappedin

    onitself.xxTherearebothdirectandindirecteffectscausedbytheobstruction.Indirectlytheobstaclealterstheflowfield,turbulence,andreducestheavailablevolume,andthedirecteffectistheflameinteractionwiththeobstacle.TheMEM,Baker-Strehlow,andTNTmethodologiesallrelyoncharacteristiccurvestodefinetheoverpressure,howeveronlytheMEMandBaker-Strehlowtakeintoaccountcongestion.Themultienergymethodrequirestheusertodeterminethelevelofcongestionandtothenapplyablaststrengthtodeterminetheresulting

    overpressure,whiletheBakermethodologyrequirestheusertoestimatetheflamespeed(whichislargelybasedoncongestioninadditiontofuelproperties)inordertodetermineoverpressure.Inbothcasesthedeterminationoftheappropriatecriteriaislargelyajudgmentcall,howeverstudiescomparingtheempiricalblastcurvestoexperimentaldataindicatethatforsubsonicdeflagrationsthecurvesmatchreasonablywellwiththeexperimentaldataxxiindicatingthatifthecorrectblastcurvecanbespecifiedintheriskassessmentthenthemethodologymaybesound.Thedifficultyhoweveristhatthereisnosolidguidanceonchoosinganappropriatecombinationofblastcurvesthathasbeenshowntobeanaccurateportrayalofthe

    realworldphenomena.Alsotheempiricalcorrelationswerederivedbasedonalimitedsetofexperimentsandthusanysituationwhichisnotthesameastheexperimentsislikelygoingtoresultinadifferentblastprofilewhichmaynotfallonthederivedblastcurves.Aseriesofexperiments(MERGE&EMERGE)xxii,xxiiiwereperformedinthe1990stoattempttoderiveacorrelationbetweenthesizeoftheoverpressurewiththesizeanddensityofobstructionsinacongestedarea.Theresearchallowedsomelevelofdirectguidancetobeusedbypractitionerswhendeterminingtheblockageinacongestedarea,theobstaclediameters,andtheflamepathlength.Thisinformationhoweverislargelylimitedinitsusefulnessasthedataonlytranslatestosimilar

    geometriesandnobroadaccuratecorrelationhasbeenfoundforgeneraluse.Morerecentlytherehasbeenextensiveworkusingcomputationalfluiddynamics(CFD)toolsforriskassessments.Inthiswaytheimpactofcongestionontheexplosiondevelopmentcanbedirectlyobservedgivenawiderangeofpotentialscenarios.Thisresearchhasshownthatamuchgreaterlevelofdetailcanbeobtainedusingthismethodologyandthatamorerealisticunderstandingofthe

  • 7/29/2019 Part 1 Design Requirements

    12/20

    328

    hazardsofcongestionandtheresultingseparationdistancescanbeobtained.xxiv,xxv,xxvi

    TNOxxvii,Mercxxxviii,HSExxix,andKinsellaxxx(seeTable2)haveprovidedguidelinesforinterpretingfieldconditionsandapplyingthemforusewiththeMultiEnergyMethodology.Theseguidelineshoweverarenotconsistentwitheachother,still

    leavemuchopenendedandallowforsignificanterror.Theconclusionsofmanypeer-reviewedarticles,includingthosethatsetouttheguidelines,isthattheappropriatedeterminationisnon-trivial.InKinsellasarticle,whichisoftencitedasthejustificationforthechoiceofanSTvaluehestates,itshouldbenotedthatthedataissomewhatlimitedandthatstructuraldamagereportsofincidentsarefraught

    withuncertaintiesandassumptions.Inthelightoftheseuncertaintiesthemethod

    proposedinthispapershouldberegardedmoreasascreeningtoolratherthana

    detailedexplosionassessmentmethod.xxxi

    Table2Kinsellaguidelinesontheselectionofinitialblaststrengths.

    InadditionthemostrecentversionoftheYellowBookrecognizesthelimitationsintheguidanceandthefactthatusingthisguidanceasthebasisforananalysiscan

    leadtoanunderpredictionoftheoverpressurebyafactorofupto30.xxxiiTheYellowBookstates,itisthereforerecommendedtobeconservativeinthechoiceofasourcestrengthfortheinitialblastandnottousethisguidanceatall.FurthertheYellowBooksuggeststhatwithoutadditionalinformationanyobstructedregionshouldbegivenaninitialblaststrengthof10.

    Thusatitsmostbasiclevelandwiththosewhoaremostfamiliarwiththemethodologyandguidelinestheimplicationisthatthereissignificantroomforerror.IfoneweretofollowtheguidanceprovidedinKinsellaorfromothersourcesandtousearangeofSTvaluesfrom5-7,asKinsellasuggests,thepeakoverpressurewithintheinitialblaststrengthsvariesbyafactorof5.FinallyamongstalltheguidancethereislittletonoactualphotographsorconcreteexamplesofwhatwouldconstituteaparticularSTcurve,inessenceitbecomesaneducatedguess.

    ComparisonofModelResults

    ToattempttocomparedirectlythemodelsdiscussedinthisarticleanumberoftheRIGOSxxxiiiexperimentsweremodeledusingtheMEM,TNT,andtheFLACScfdcode.

  • 7/29/2019 Part 1 Design Requirements

    13/20

    329

    Theseexperimentswerewellcharacterizedandcaneasilybeclassifiedusingtheexistingguidanceforboththespacingoftheunitsaswellastheappropriatesourcestrength.Thepressureprofilewascomparedforthemodelsandcomparedagainsttheexperimentaldata.AlsotheinfluenceofthelocationoftheignitionsourcerelativetothevapourcloudwasexaminedusingtheFLACScode.

    AbriefsummaryoftheRIGOSexperimentsisprovidedhere,howeverfulldetailsmaybefoundinHSEResearchReport369:Researchtoimproveguidanceonseparationdistanceforthemulti-energymethod(RIGOS).TheRIGOSexperimentswereaseriesofexperimentsdesignedtomeasuretheoverpressureandflamelocationofaVCEinordertodevelopaguidelinefordeterminingthecriticalseparationdistancebetweenprocessunits/areasinordertodiscriminatebetweenasingleormultipleblasts.Theexperimentscontainedtwoconfigurationsofstructures,arepresentationofwhichisseeninFigure5,adonorstructureandanacceptor.Theacceptorsizeand

    densityoftheacceptorwerekeptconstantforallexperiments.

    Figure5RepresentationofonetestconfigurationofRIGOStests(donorleft,acceptorright)

    Thedimensionsofthedonor,theseparationdistance,thedonorVBR,andthefuel(ethyleneandmethane)werevaried.Theentiregeometrywasencapsulatedinplasticsheetingandastoichiometricfuel/airmixturewasintroducedintothevolumeatwhichtimethecloudwasignitedinthecenterofthedonor.TheAEtestseriesusedethylenewhiletheAMtestseriesusedmethane.

    TheguidanceinKinsella,withregardstotheMEMblaststrength,suggestedthattheRIGOSstructureswerelowenergyignition,lowcongestion(

  • 7/29/2019 Part 1 Design Requirements

    14/20

    330

    BasedontheguidanceintheYellowBooktheinitialblaststrengthwaschosenasanST10.DetailedpressuremeasurementsusingFLACSandcomparedwiththeexperimentsfortheAE08,AE09,AM01,andAM05RIGOStestseriesareshownbelowinFigure9-Figure12.

    Figure6SliceofthepressureprofileforAEseriesDD2donorrigconfiguration

    WhencomparingtheresultsoftheexperimentswiththeFLACSresultsitisevidentthatthemodeldoesarelativelygoodjobofreproducingboththepositiveandnegativephasealongwiththepressuresobservedatthesensorlocations.BasedonthepositiveresultsofthemodeladditionalpressuredatawasextractedatotherlocationsfromthecfdresultstocomparethepressuresatspecificdistancesusingtheTNTandMEMmethodologies.TheresultsforseveraloftheRIGOSmodelsusingbothsimplyadonorconfigurationandadonor/acceptorconfigurationareshowninTable3.Whatisclearisthattheresultsvarywidelydependingonthemodelandwithinamodelbasedontheguidancechosen.

    OnelimitationthatisclearimmediatelywiththeMEMmethodologyisthatthereisnowaytoaccountforfuelreactivity.GuidancefromFMRCfortheTNTmethodallowssomeaccountingforreactivitybyincreasingtheyieldbasedontheclassificationofthefuel,howeversimplyincreasingtheyielddoesnttrulysolvetheproblem.Whilemosthydrocarbon/airstoichiometriccombustionresultsinapproximately3.5MJ/m3thefuelreactivitycanvaryandthiswillhaveanimpactontheoverpressuredevelopment.ThisbecomesveryobviousastheAE09andAM05structuresarethesameonlythefuelhasbeenalteredfromethylene(AE09)tomethane(AM05),areductionoftheheatofcombustionfrom3.64to3.23MJ/m3.Thepressurecontourslooksignificantlydifferenthoweverifyourelyontheempiricalmodelstheywillproducethesameoverpressurevalueandthussignificantlyunderpredicttheoverpressureforethylene.Additionallytheinabilitytotakeintoaccounttheignitionlocationisevidentandpotentiallyimportant.TheAE/AMtestserieswereignitedinthecenterofthedonorrig,howeverusingtheMEMorTNTmethodologyignitionisassumedinthecenterofthecloud.Forthesamesizecloudanendignitionwillresultin

  • 7/29/2019 Part 1 Design Requirements

    15/20

    331

    significantlydifferentpressureprofiles.ThisisclearlyshowninacomparisonoftheignitionlocationsinFigure7andFigure8.

    Figure7AE09testwithdonorcenterignition

    Figure8AE09testwithignitionbetweendonor/acceptor

  • 7/29/2019 Part 1 Design Requirements

    16/20

    332

    Figure9AE09ExperimentalResults

    Figure10AE09FLACSResults

  • 7/29/2019 Part 1 Design Requirements

    17/20

    333

    Figure11AE08ExperimentalResults

    Figure12AE08FLACSResults

  • 7/29/2019 Part 1 Design Requirements

    18/20

    334

    Conclusions

    Thispaperalongwithextensiveresearchbeforeitclearlyshowsthatthesimpleempiricaltools,suchastheMEM,TNT,andBaker-StrehlowareinsufficientfordetailedanalysesofVCEseitherforriskassessmentpurposesorforreconstruction.Amplepeerreviewedliterature,whichhasbeencitedhere,indicatesalackof

    knowledgeregardingappropriateselectionofinitialblaststrengths,specifyingcongestionlevels,ignitionstrength,etc.Thesehoweverarecriticalpiecesofinformationifthesemethodologiesaretobeproperlyapplied.Fromascientificperspectivetheempiricalapproachesareinterestingandworthfurtherpursuit,howeverfromanengineeringstandpointtheyhaveseriousdeficiencieswhenbeingemployedtoassessscenariosthataffectsafetyandbusinesscontinuity.Partoftheproblemwithcomparingcorrelationmodels,oranymodel,totherealworldisthattheyareoftencomparedagainstdamagefromincidentsandthedamageobservedinanincidentisusedtodeterminetheoverpressuresthatoccurredintheincident.Thiscanbeaninherentlyflawedsystemasmostofthe

    experimentsexaminingdamageweredoneusingpointsourceexplosivesandidealstructures,thiscombinationwillrespondsignificantlydifferentthanaVCEandanimperfectobject(i.e.newcaroffthelotvs.10yearoldvehicle).StudiessuchasthatdonebyJiangetalthatcomparethecorrelationmodelstopastincidentsstartwiththeunderlyingassumptionthattheoverpressureobservedcanbeaccuratelydeterminedmerelyfromthephysicalobserveddamage.Thesimplecomparisonofawell-documentedsetofexperimentsusingthevariousmethodsclearlyshowstheinabilityofthemodelstoadequatelycapturethepotentialimpactofanincident.ShortofchoosinganST10valueforallapplications,whichwillmostlikelyresultinextremelyconservativeresults,theonlywayto

    capturetherelevantinformationandtogenerateresultsofsufficientdetailistouseatoolthatadequatelysimulatesthereal-worldphenomena.TheFLACStoolhasbeenshowninnumerousstudiesincludingthisonetobeabletoadequatelymatchexperimentaloverpressuresandtoprovideamoreaccurateoverpressureprofileforuseinariskassessment.Inordertobeabletoconductathoroughassessment,thespecificsiteconditionsmustbeabletoberesolvedinsufficientdetail.Inmostcasesthislevelofdetailcannotbeobtainedusingempiricalmodelsrathertheanalystmustrefertoacfdtool,orresorttooverlyconservativeassumptions.Withempiricaltoolssincethephysicalphenomenaarenotbeingmodeleditisimpossibletoaccuratelypredict

    whatwillhappeninanevent,theestimatewilleitherunderoroverpredictthepressurecontours.

  • 7/29/2019 Part 1 Design Requirements

    19/20

    335

    Table3ComparisonofTNT,MEM(St2,3,&10),andFLACSresultsofRIGOSExperiments

    RIGOSTest# CongestedVapour

    CloudVol(m3)

    Distancefrom

    IgnitionSource(m)

    MEMST2

    Pressure(barg)

    MEMST3

    Pressure(barg)

    MEMST10

    Pressure(barg)

    TNTPressure2

    (barg)

    FLACSPressure

    (barg)

    AE09 2.8 .704 .02 .050 20 40.7 .713

    SD/DD=0.25 1.35 .02 .050 8.19 11.8 1.48

    1.76 .02 .050 3.72 7.10 .639

    2.46 .02 .050 1.16 3.75 1.14

    3 .02 .050 .897 2.57 4.469

    6.16 .010 .024 .356 .650 .158

    9.16 .006 .016 .214 .305 .103AE08 2.8 .704 .02 .050 20 40.7 .478

    SD/DD=1.50 1.35 .02 .050 8.19 11.8 .751

    1.76 .02 .050 3.72 7.10 .376

    2.46 .02 .050 1.16 3.75 .149

    3 .02 .050 .897 2.57 .086

    6.16 .010 .024 .356 .650 .008

    9.16 .006 .016 .214 .305 .005

    AE08/09 1.4 .704 .02 .050 20 26.2 .713

    DonorOnly 1.35 .02 .050 4.18 7.58 1.47

    1.76 .02 .050 1.55 4.57 .639

    2.46 .02 .050 .859 2.41 .176

    3 .016 .040 .665 1.65 .086

    6.16 .08 .019 .265 .418 .008

    9.16 .05 .013 .159 .196 .005

    2

    Factory Mutual Research Corporation assigns classifications to fuel based on reactivity and assigns a yield to the fuel, methane is a Class I fuel which has a 5%

    yield, ethylene is a Class II fuel which has a 10% yield

  • 7/29/2019 Part 1 Design Requirements

    20/20

    336

    Figure13AE09donoronly:Comparisonofmodelresults,peakTNTandST10valuestruncated

    Figure14AE09ComparisonofmodelresultsPeakTNT(40barg)&MEMSt10(20barg)valuestruncated