PART 05 - Rock Foundations and Slopes

Embed Size (px)

Citation preview

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    1/61

    RockMechanicsMcaniquedesroches

    CourseLectures

    Part5 RockFoundationsandSlopes(a)

    ProfessorZHAOJian

    EPFLENACLMR

    RockMechanicsandTunnelEngineering

    Introduction

    Rockfoundations(ofbuildings,bridges,anddams)

    Rockslopes(andembankments)

    Rocktunnels(caverns,mines,andhydropowers)

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    2/61

    Foundationengineeringinvolvesthedesignandanalysisoftype,loadcarryingandsettlementof

    Introduction

    TypesofRockFoundations

    Introduction

    adequaterocksurface. Foundationissupportedbybearingoftherock.

    Socketed piles: Socketed orsinked intounderlyingadequaterock.Foundationis

    su ortedb sidewallshearresistanceandendbearing.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    3/61

    TypesofRockFoundations

    Introduction

    onadequaterocksurfacetosupportthegravityloadandwaterpressure.Foundationissupportedbybearingandslidingresistanceoftherock.

    Tensionfoundations: Steelboltandcableanchoredintorocktosupporttension(uplift)loads. Foundationis

    supportedbyshearresistanceoftheanchorandtherockmass.

    FailureofRockFoundations

    FailuresofRockFoundation

    mass

    Forheavilyfracturedandweakrockmassmayleadstogeneralwedgefailureoffoundation.

    Foropenjoints,failureisbycompression.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    4/61

    FailureofRockFoundations

    FailuresofRockFoundation

    Oftenforarigidlayeroverlyingsoftmaterial.

    (d)Breakingofpinnacles

    FailureofRockFoundations

    FailuresofRockFoundation

    (e)Collapseofshallowcaveandcavities.

    (f)Slopefailurebyfoundationloadingor

    byblocksliding.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    5/61

    FailureofRockFoundations

    FailuresofRockFoundation

    settlementofpiles.

    (h)Creepfailurewhenathighstresslevel. Creepmayalsooccurduetodegradationofrocksub ectedtoweatherin .

    FailureofRockFoundations

    FailuresofRockFoundation

    massfailureatdamtoeunderhighwaterpressure.

    (j)Failureofanchorgroutorrockmassaroundanchorbylarge

    tensileload.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    6/61

    InfluenceofGeologicalFeaturesonFoundationFailures

    Features EffectonFoundation

    Rocktype Strengthanddeformationcharacteristic bearingcapacityandsettlement.

    Creeprock creepandtimedependentfailure.Stratigraph Layeredstructure punchingorshearingofrigidlayerofrockabovesoft

    layer.

    Fold Rocksurfaceinclinedduetofolding bearingsurfacemaybeinclined.

    Rockhead contour drasticchangeofrocksurfaceandrocktype.

    Fault Daylightingfault slopefailurewithfoundation.

    Faultingofrockstructure drasticchangeofrocktype.

    Faultwithinfill displacementduetocompressionofinfillmaterial.

    Joint Openjoints failurebycompression.

    Closelyspacedjoints generalwedgefailure.

    Intersectingjointsets formingwedgeblockandshearalongthejoints.

    Daylightingjoint slidingofrockblock.

    Weathering Weatheredcavities punchingorshearofthinlayerofroofrock.

    Weatheringofrock maycausecreepfailure.

    Karst Karstic surface piletipbendinganddamage,failureofpinnacles.

    Solutioncavities punchingorshearofthinlayerofroofrock.

    InSituRockMassCompressiveStrength

    RockFoundationDesignParameters

    1 = 3 +(mb 3 ci +s ci2)a

    mb =mi exp[(GSI100)/28]

    Forrockmassesofreasonablequality,i.e.GSI>25,

    , .

    Forpoorrockmasses,i.e.,GSI

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    7/61

    RockFoundationDesignParameters

    Graniterockmass,GSI=75, ci=150MPa,a=0.5.mi forgraniteis32,

    3 (MPa) 1 (MPa)

    0 37

    0.2 43

    0.4 47

    51

    b i .

    s=exp[(GSI 100)/9]=0.062

    1 = 3 +(1956 3 +1395)0.5

    cm =37MPa, tm =0.7MPa

    .

    0.8 55

    1.0 59

    1.2 63

    1.5 67

    2.0 75

    0.7( tm)0

    Siltstonerockmass,GSI=20, ci=65MPa,s=0.3 (MPa) 1 (MPa)

    0 0.8

    0.2 1.8

    i

    mb =mi exp[(GSI 100)/28]=0.40

    GSI

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    8/61

    RockMassCohesionandFrictionfromRMR

    RockFoundationDesignParameters

    strengthcriteria.

    RMR c(MPa) (degree)< 20

    0.4 >

    45

    c=4.5 =50

    InSituRockMassDeformationModulus

    RockFoundationDesignParameters

    Em =25logQ forQ>1

    Em =10(Q ci/100)1/3

    Em =2RMR 100 forRMR>50

    Em =10(RMR10)/40 for20

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    9/61

    RockFoundationDesignParameters

    SurfaceFootingonUniformRockMass

    1

    BearingCapacityofFootFoundations

    Maximumsupportisthestrength( 1)oftherockmassunderfootingintriaxial compression(red),whoseconfiningstress

    3

    1

    equalstotheuniaxialstrength cmoftheadjacentrockmass(green).

    cm3

    Uniaxial

    Triaxial

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    10/61

    Uniaxialstrengthoftherockmass(green): Uniaxial

    BearingCapacityofFootFoundations

    cm = s

    ci

    Triaxial strengthoftherockmass(red):

    1 = cm+(mb cm ci+s ci2)

    cm

    1

    riaxial

    cm

    3 = cm3 = cm

    1 = s

    ci+(mbs

    ci2+s ci

    2)T

    1

    Allowablebearingcapacityofsurfacefooting

    BearingCapacityofFootFoundations

    qa =Cf1 1 /FS

    Cf1 istheshapecorrectionfactor,giveninChartF1. FSisfactorofsafety,23,typically3.

    Foundation sha e C C B

    ChartF1

    Strip (L/B > 6) 1.0 1.0

    Rectangular (L/B = 2) 1.12 0.9

    Rectangular (L/B = 5) 1.05 0.95

    Square 1.25 0.85

    Circular 1.2 0.7

    L

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    11/61

    RecessedFooting 1

    BearingCapacityofFootFoundations

    1

    massunderfoundationisintriaxial compression(red),whoseconfiningstress( 3)equalstothetriaxial strength( 1)oftheadjacentrock

    1 3 isthesurchargepressure

    3 =qs

    ,confiningstressisthe

    surcharge

    pressure

    ( 3).

    33

    Triaxial

    Triaxial

    1

    Surchargepressure 3 =qs =unitweighttimetherecessdepth. Uniaxial

    3 =qs

    BearingCapacityofFootFoundations

    Triaxial strengthofmass(green):

    1 =qs+(mbqs ci+s ci2)1/2

    Triaxial strengthofmass(red):

    1=

    1+(m

    b 1 ci+s

    ci

    2)1/2

    1

    1

    riaxial

    =

    Allowablebearingcapacity

    qa =Cf1 1 /FS (Cf1 inChartF1)

    T3 1

    1

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    12/61

    BearingCapacityofWeak/PoorRock(BellSolution)

    BearingCapacityofFootFoundations

    a f1 c f2 q

    istherockunitweight,crockmasscohesion,Cf2inChartF1.

    Nc =2N (N +1), N =N (N 2 1), Nq =N

    2

    = 2 +

    Nc,N ,Nq canalsobefoundchart.

    BearingCapacityofWeakandPoorRockMass

    BearingCapacityofFootFoundations

    large(>>weightofrockmass),theequationcanbesimplified:

    qa =(Cf1cNc)/FS

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    13/61

    BearingCapacityofFootingonSlope

    Chart F2

    BearingCapacityofFootFoundations

    qa =(Cf1cNcq+Cf2B N q) /FS

    istherockunitweight,crockmasscohesion,Cf2 inChartF1.

    Ncq andN q arebearing

    (USNavyDept,1982)

    capac y ac ors, n ar .

    StabilityNumber

    N0 = H/c

    StressDistributionbelowFootFoundation

    SettlementofFootFoundations

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    14/61

    SettlementofFootFoundations

    Distributionofverticalstressduetoaloadedcircularfootingonelasticmaterial:(a)alongverticallines;(b)alonghorizontallines.

    (Winterkorn &Fang

    1975)

    SettlementofFootFoundations

    (Winterkorn &Fang1975)

    Stresscontoursforfootingsonelasticmaterial:(a)verticalnormalstressesbelowcirculararea;(b)radialstressesbelowlineload.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    15/61

    SettlementofFootFoundations

    (Winterkorn &Fang1975)

    Verticalnormalstressbelowcircularareaoftwolayerselasticmaterials.

    Radialstresscontourunderlineloadsontransverselyisotropicrock.

    FootingonHomogeneousandIsotropicRockMass

    SettlementofFootFoundations

    =CdqD(12)/E

    qistheuniformlydistributedbearingpressure,Dcharacteristicdimensionoftheloadedarea( forcircleandBfor

    rectan le , andEPoissonsratioand

    E,

    D

    Youngsmodulus.

    Cd istheshapeandrigidityfactor,giveninChartF3.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    16/61

    SettlementofFootFoundations

    Cd forsettlementcalculations(Winterkorn &Fang1975)Shape Centre Corner MiddleofBside Middle ofLside Average

    ChartF3

    . . . . .

    Circle(rigid) 0.79 0.79 0.79 0.79 0.79Square 1.12 0.56 0.76 0.76 0.95

    Square(rigid) 0.99 0.99 0.99 0.99 0.99Rectangle (L/B=1.5) 1.36 0.67 0.89 0.97 1.15

    Rectangle (L/B=2) 1.52 0.76 0.98 1.12 1.30

    Rectan le L B=3 1.78 0.88 1.11 1.35 1.52. . . . .

    Rectangle (L/B=5) 2.10 1.05 1.27 1.68 1.83

    Rectangle (L/B=10) 2.53 1.26 1.49 2.12 2.25

    Rectangle (L/B=100) 4.00 2.00 2.20 3.60 3.70

    Rectangle (L/B=1000) 5.47 2.75 2.94 5.03 5.15

    FootingonCompressibleLayeroverRigidBase

    SettlementofFootFoundations

    =CdqD(12)/E

    qthebearingpressure,Ddimensionoftheloadedarea, andEPoissonsratioandYoungsmodulusofthe

    compressiblelayer.

    E,D

    Cd istheshapefactor,giveninChartF4.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    17/61

    SettlementofFootFoundations

    Cd forsettlementofcentreonelasticlayeroverrigidbase(Winterkorn &Fang1975)

    H/D Circle Rectangle

    ChartF4

    D ia me te r D L /B =1 L/ B=1.5 L/B=2 L/B=3 L/B=5 L/B=10 L/B=

    0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

    0.25 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23

    0.5 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.47

    1.0 0.70 0.75 0.81 0.83 0.83 0.83 0.83 0.83

    1.5 0.80 0.86 0.97 1.03 1.07 1.08 1.08 1.08

    2.5 0.88 0.97 1.12 1.22 1.33 1.39 1.40 1.40

    3.5 0.91 1.01 1.19 1.31 1.45 1.56 1.59 1.60

    5.0 0.94 1.05 1.24 1.38 1.55 1.72 1.82 1.83

    1.00 1.12 1.36 1.52 1.78 2.10 2.53

    FootingwithCompressibleLayerbetweenStiffLayers

    SettlementofFootFoundations

    =CdqD(12)/E

    E=(E1H1+E2H2)/(H1+H2)

    Cd isgiveninChartF5.ItisthesameasChartF4,byreplacingH

    E1

    E2

    H1

    H2

    1 2 .

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    18/61

    SettlementofFootFoundations

    Cd forsettlementofelasticlayerbetweenstifflayers(Winterkorn &Fang1975)

    (H1+H2)/Circle Rectangle

    ChartF5

    D Di am et er D L /B =1 L /B =1.5 L/B=2 L/B=3 L/B=5 L/B=10 L/B=

    0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

    0.25 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23

    0.5 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.47

    1.0 0.70 0.75 0.81 0.83 0.83 0.83 0.83 0.83

    1.5 0.80 0.86 0.97 1.03 1.07 1.08 1.08 1.08

    2.5 0.88 0.97 1.12 1.22 1.33 1.39 1.40 1.40

    3.5 0.91 1.01 1.19 1.31 1.45 1.56 1.59 1.60

    5.0 0.94 1.05 1.24 1.38 1.55 1.72 1.82 1.83

    1.00 1.12 1.36 1.52 1.78 2.10 2.53

    FootingonStiffLayeroverCompressibleFormation

    SettlementofFootFoundations

    (i)Calculatesettlementasifallcompressiblebelow,withshapefactorCd fromChartF4.

    =CdqD(1 22)/E2

    E1

    E2, 2

    H D

    , thecorrectionfactorafromChartF6,calculateactualsettlement

    =a

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    19/61

    SettlementofFootFoundations

    Correctionfactora forsettlementelasticlayerbelowstifflayer(Winterkorn &Fang1975)

    H/D E1/E2

    ChartF6

    1 2 5 10 100

    0 1.0 1.000 1.000 1.000 1.000

    0.1 1.0 0.972 0.943 0.923 0.760

    0.25 1.0 0.885 0.779 0.699 0.431

    0.5 1.0 0.747 0.566 0.463 0.228

    1.0 1.0 0.627 0.399 0.287 0.121

    2.5 1.0 0.550 0.274 0.175 0.058

    5.0 1.0 0.525 0.238 0.136 0.036

    1.0 0.500 0.200 0.100 0.010

    StressesbelowEccentricallyLoadedFooting

    SettlementofFootFoundations

    (i)ForeccentricdistanceeB/6,

    q1 =(4/3Q)/(B 2e) Pressuredistributionq1

    e

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    20/61

    SettlementofFoundationwithComplexFormationsandLoads

    SettlementofFootFoundations

    Stressdistributionandsettlementoffoundationsoncomplexformationand/orwithcomplexloadscanbecalculatedbynumericalmodelling,e.g.,FEM.

    RockSocketed PileFoundations

    (1)Pileinrockat

    sidesandbase,

    su ortedb

    (2)Pileinrockat

    sideswithloose

    cuttin orweak

    (3)Pileinsoilat

    sidesandbaseon

    oodrock,sidebothsidefriction

    andendbearing.

    UsuallyQs>Qb

    seamatbase,

    supportedbyside

    frictiononly.

    Qb=0

    frictionissmall,

    supportedmainly

    byendbearing.

    Qb>>Qs

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    21/61

    SideFrictionandEndBearingofPileFoundation

    RockSocketed PileFoundations

    and/orsidefriction.

    SideFriction:needtoestimaterockconcreteshearresistance.

    EndBearing:userockmassstrengthtoestimate.

    Settlement:needtoconsiderdisplacementsofbothrockmassandconcrete.

    SideFrictionofPileFoundation

    RockSocketed PileFoundations

    Qs = s DL/FS

    s issidewallshearresistance,Dpilediameter,Lsocketlength

    = a s m s

    m(s) isrockmassuniaxial compressivestrength,Rissocketwallroughnesscoefficient,0.3forundulating>10mm,0.25forundulating

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    22/61

    EndBearingofPileFoundation

    RockSocketed PileFoundations

    Qb = D2 1m(b) /FS

    1m(b) triaxial compressivestrengthofrockmassbelowpile,Dpilediameter.

    HoekBrowncriterion.

    SettlementofFrictionPileQ

    Ec

    RockSocketed PileFoundations

    m(s)

    Qappliedload,Dpilediameter,Em(s) surroundingrockmassmodulus.

    Iisthesettlementinfluence

    D

    Em(s)

    R=Ec/Em(s)

    ChartP1

    , .

    (Pell&Turner1979)

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    23/61

    SettlementofEndBearingPile2 2 2

    RockSocketed PileFoundations

    c d m(b)

    Qappliedload,Dpilediameter,Ldepthtopileend,Ec ofconcrete,

    andEm(b) ofrockmass.Cdshapefactor(ChartF4).

    ,RF

    Deformationofpile Deformationofrockmassbelowpile

    ReductionfactorRFisgivenin

    ChartP2.(Pell&Turner1979)

    Reduc

    tion

    factor

    Q

    L

    D

    Em(b)

    Ec ChartP2

    SettlementofSideFrictionandEndBearingPile

    RockSocketed PileFoundations

    m(s)

    Qistheappliedload,Dpilediameter,Em(s) socketrockmassmodulus,IthesettlementinfluencefactorgiveninChartP3.

    UseChartP3toestimatepercentageofloadcarried

    yen ear ng. ec en ear ngan s e r c onthatdonotexceedtheallowablecapacities.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    24/61

    RockSocketed PileFoundations

    I II

    ChartP3

    ChartP3

    ChartP3

    Influencefactorandendbearingratiosforsocketpilefoundations.

    QbQ (%)Qb

    Q (%)

    b

    Q (%)

    L/B

    L/B

    L/B(Rowe&Armitage 1987)

    FoundationforGravityDams

    DamFoundations

    rock.Thefoundationmustbestrongenoughtocarrytheweightofthedam,andthewaterpressuresactingonthedam.

    Footingbearingisusuallynotacommonproblem.Themostcommondamfoundationfailureistheslidingmovementunderhighwaterpressure.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    25/61

    SlidingResistancealongtheSurface

    DamFoundations

    FS=totalresistance/slidingload

    FS=[cA +( V u)tan ]/ H

    c=cohesion, =frictionangle

    ii Oninclinedsurface

    A, base area

    ,pressure

    , we g

    u, water uplift

    Toresultresistanceandslidingforcesalongtheslidingplane.

    FS=totalresistance/slidingload Inclined base

    RecessedDamFooting

    DamFoundations

    rockmassstrengthattoe)/slidingload

    (i)Slidingresistance=cA +( V u)tan

    c=cohesion, =frictionangle

    cm

    cm ci

    s=exp[(GSI100)/9](forgenerallygoodrockmass)

    ci =uniaxial compressivestrengthofrockmaterial

    (iii)Slidingload(horizontalwater)= H

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    26/61

    DamStabilityandDisplacement

    DamFoundations

    geometry,loadingandrockmass,numericalmodellingareusuallyused. Numericalmodellingcanalsoincludethefoundationreinforcement.

    TensionFoundationswithAnchors

    TensionFoundations

    rockmassandgrouted,toprovidetensileloadsupportstructures.E.g.,anchorroofprotectingrockfallonslope,tiedownstopreventdamoverturning,rockanchorto

    bridge.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    27/61

    LoadBearingCapacityofAnchor

    TensionFoundations

    throughthesteelgroutandgroutrocktothesurroundingrockmass,throughshearresistancebetweenthosematerials. Theoverallloadis

    Rockmass

    ,canbefailedbythepulloutoftheconeblock.

    byanchor

    DesignPrincipleofAnchorFoundation

    TensionFoundations

    sufficientsizetocarrythedesignedload(checkwithsteelproductsspecifications).

    (ii)Bondlengthofanchorsocket:Estimatingtherequiredbondlengthbasedonbondstrengths

    betweensteelgroutrock.(iii)Rockmassstrength:Estimatingsizeofmobilisedrockmassandstrengthoftherockmass,includingtheweight.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    28/61

    AnchorBonding

    TensionFoundations

    ,bonding(bytests).Theanchorbondingisgovernedbygroutrockbonding.Allowableloadcapacityofanchorduetobondingisdefinedas:

    Qa = DLb ult = DLbc/20

    s ee e c v e ame ero e ore o e, b eng o egroutedanchorbond. ult istheultimategroutbondstrength(failuretestsorgroutproductsspecifications),or

    1/10 c(ofrockorgrout,lowerone).

    LocationofRockMassFailure

    TensionFoundations

    Forcompetentrockmass,thepotentialfailureisinitiatedatthebaseoftheanchor.

    Forpoor/weakrockmass,thepotentialfailureisinitiatedatthemidpointofthebondedsection.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    29/61

    UpliftCapacityofRockAnchor

    TensionFoundations

    theweightofthecone(Wc)andtherockstrengthalongtheconesurface(Fr).

    Wc = r L3tan2

    30forpoorrock,

    r

    L tm

    Q

    r = tm cos

    Upliftcapacity

    Q=(fr +Wccos )/FS

    45forgoodrockQ

    LoadBearingCapacityofRockMasses

    TensionFoundations

    Theloadbearingcapacityoftheanchortensionfoundationdependsonrockfracturesystems. Thesizeanddimensionoftheconeisinfluencedbythe

    .strengthoftherockmassgreatlyreducedbytheexistenceofthefractures.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    30/61

    SteeplyInclinedUpliftofAnchor

    TensionFoundations

    ,lowerpartoftheconeisundershearresistance,whileotherpartistensilefailure.

    Fromcompetentrockmassenerall >> .

    tm

    OtherConditionsofAnchor

    TensionFoundations

    tm

    ,directionoftheconeweightneedtobeanalysed,andthelowerhalfoftheconeisundershearresistance.

    Withgroundwater,thebuoyant

    Q

    Q

    effectsneedtobeconsidered.Theconeshouldtaketheeffectiveweight.

    r

    GW

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    31/61

    Rock MechanicsMcanique des roches

    Course Lectures

    Part 5 Rock Foundations and Rock Slopes (b)

    Professor ZHAO Jian

    EPFLENACLMR

    RockMechanicsandTunnelEngineering

    Introduction

    Slopeengineeringinvolvesthedesignandanalysis

    ofslopeexcavation,supportandconstruction.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    32/61

    Slopescanbedividedintonaturalslopesandexcavatedslopes.

    Introduction

    FailureofRockSlopes

    Introduction

    (a)CircularFailure

    Usuallyoccursinwasterock,heavilyfracturedrockandweakrockwithnoidentifiablestructuralpattern.

    (b)PlaneFailure

    Occursinrockswithplanediscontinuities,e.g.,beddingplanes.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    33/61

    FailureofRockSlopes

    Introduction

    (c)WedgeFailure

    Occursinrockswithintersectingdiscontinuitiesformingwedges.

    Occursinrockswithcolumnar

    orblockstructuresseparatedbysteeplydippingjoints.

    CircularFailure

    AnalysisofCircularFailure

    fracturedorcrushedthatnostructuralpatternexists. Thefailuresurfaceisfreetofindalineofleastresistancethroughtheslope. Theslideiscontrolledby

    , . .,andfriction( ).

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    34/61

    Useclassicalsoilmechanicanalysismethods,e.g.,limitequilibriummethods(e.g.,Jambus andBisho s slice methods .

    AnalysisofCircularFailure

    Note:Theequilibriumcannotbesatisfiedwithoutanyassumptions. Pleaserefertothesoilmechanicstextbookforfurtherinformation.

    Itisaniterativemethodwhichmeansthatanumberoffailureplanehavetobechosenandthe

    AnalysisofCircularFailure

    equilibriumcalculated.Thelowestfactorofsafety(FOS)istheonefortheslope.

    cand arecohesionandfrictionangleoftherockmass.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    35/61

    Nowadays,analysisaregenerallydonebynumericalmodellingwithcommercialsoftware.Chartsexist

    AnalysisofCircularFailure

    butrelyonmanyassumptions:

    a) Rockmassishomogenous;

    b) Rockmassshearstrengthischaracterizedbycohesionandfrictionangle;

    c) Failureoccursoncircularslidesurface;

    d) Averticaltensioncrackoccursintheuppersurfaceorinthefaceoftheslope;

    e) Fullysaturatedordryrockmass.

    Circularfailure,fully

    drained,rockmass

    unitweight18.9

    kN/m3.

    Chartsexistfor

    othergroundwater

    conditions.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    36/61

    PlaneFailureTherockmassiscutby

    AnalysisofPlaneFailure

    a) Theslidingplaneareparallelornearparallel(within20 )totheslopeplane.

    " "

    Day l ighting

    discontinuitiesthatparalleltotheslope.Rockblocksslidealongtheplanes.

    es ngp ane ay g n es ope ace, .e., pangleofslidingplanefrictionangleofslidingplane.

    d) Lateralresistancetoslidingisnegligible.

    HemisphericalProjectionMethod

    AnalysisofPlaneFailure

    slidingplanemusthavethesamegeneraldirection( 20 ). Theslidingplanehasasmallerdipangle(red)thanslopedip(blue),butgreaterthanfrictionangle

    .

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    37/61

    AnalysisofPlaneFailure

    Whenjointdipangleisgreaterthanslope,joint

    N

    Slope ,nopotentialslidingplaneexist.

    Joint

    AnalysisofPlaneFailure

    Whenjointdip

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    38/61

    AnalyticalMethod

    AnalysisofPlaneFailure

    resolvingallforcesactingontheslopeintocomponentsparallelandnormaltotheslidingplane.

    AnalysisofPlaneFailure

    Tensioncrackfilledwithwater,rockmassimpermeable

    H =slopeheight; z =tensioncrackdepth;b=distancebetweencrackandslopecrest; U=waterforcesactingontheslidingplane; W=slidingblockweight; V=waterforcesintensioncrack.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    39/61

    Criticaltensioncrackdepthandlocation

    AnalysisofPlaneFailure

    Groundwaterplaysanimportantroleforslopestability. Pleaserefertotheliteratureformoredetail.

    WedgeFailure

    AnalysisofWedgeFailure

    wedgethatare"daylighting"intheslopeface,i.e.,plungeofthelineofintersectionofthejoint(sliding)planesfrictionangleoftheslidingplanes.

    Daylighting

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    40/61

    WedgeFailureAnalysisbyProjectionMethod

    AnalysisofWedgeFailure

    ,analysiscanbecarriedoutusingprojectionmethod. Thefailureofwedge/blockisalongtheexistingjointsandiscontrolledbytheorientationofthosejointsandfrictionangle. Orientationsand

    byprojectionandanalysiscanbeperformed.

    AnalysisofWedgeFailure

    NWedgefailureby

    slidin alon both

    Friction

    plane(lineof

    intersection

    Lineofintersection

    Directionofsliding

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    41/61

    AnalysisofWedgeFailure

    NWedgehaspotentialtoslidealon theline

    Friction

    ofintersection,but

    heldbyfriction.

    Lineofintersection

    Directionofpossiblesliding

    AnalysisofWedgeFailure

    NWedgefailureby

    slidin alon lane1.

    Friction

    Lineofintersection

    isnotdaylighted.

    Joint1isdaylighting.

    Directionofsliding

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    42/61

    AnalysisofWedgeFailure

    NLineofintersectionandboth lanesare

    Friction

    notdaylighted,no

    failurebysliding. Lineofintersection

    WedgeFailureAnalysisbyAnalyticalMethod

    AnalysisofWedgeFailure

    ,analysiscanbecarriedoutusinganalyticalmethodsimilartotheplanefailure,butwithmorecomplicatedforceequations. Suchanalysisisonlycarriedoutwhenaspecificwedgeisidentified.

    Numericalmethodsareoftenemployedtoanalysewedgestability.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    43/61

    Assumptions:(i)slidingisresistedonlybyfriction;(ii)frictionanglesforbothplanesarethesame

    AnalysisofWedgeFailure

    WedgefactorKmaybeestimatedwiththechartbelow.

    AnalysisofWedgeFailure

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    44/61

    Twodifferentfrictionanglesshouldbeusedforeachslidingplane.

    AnalysisofWedgeFailure

    ThedimensionlessfactorsAandBarefoundtodependuponthedipsanddipdirectionsofthetwoplanes.Theymaybefoundinaseriesofcharts.

    Thefollowingchartisforadifferenceindipsof10.

    AnalysisofWedgeFailure

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    45/61

    ThisFOSformulationisoversimplistic,includingthefrictiononly.Cohesionsand shouldbeincorporated

    AnalysisofWedgeFailure

    intheFOSformulationandthuswillbemorecomplex.

    Theformulationissocomplexthatitwillnotbepresentedhereinthislecture.

    TopplingFailure

    AnalysisofTopplingFailure

    dippingdiscontinuities.Rockblockwidth/height

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    46/61

    Determiningrockslopetopplingorsliding

    4

    AnalysisofTopplingFailure

    a ure

    W sin1

    2

    3

    idth/HeightRatio,

    b/h

    =

    Toppling only

    b / h > t an

    WW cos

    0

    0 10 20 30 40 50 60 70 80

    Base plane angl e , degree

    W

    Sliding & Toppling>

    b / h < t a n

    slideplaneangle,noslide;b/h>tan ,gravitycentrallineinside,notoppling;

    AnalysisofTopplingFailure

    > ,slideplaneangle>frictionangle,slide;b/h>tan ,gravitycentrallineinside,notoppling;SlidingOnly

    slideplaneangle,noslide;

    b/h ,slideplaneangle>frictionangle,slide;b/h

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    47/61

    ConditionstoToppling

    AnalysisofTopplingFailure

    (b)Aprimarysetofjointsdipsteeplyintothefacecreatingcolumns.

    (c)Asecondarysetofjointswidelyspreadandorthogonaltotheprimaryset.

    e oc may opp e ecauseo a ossoequilibriumofarockblockorbyflexuralfailureofa

    column.

    Theprimejointsetdipssteeplyandinoppositedirectiontotheslope

    AnalysisofTopplingFailure

    Joint

    poles

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    48/61

    TopplingFailureAnalysisbyAnalyticalMethod

    AnalysisofTopplingFailure

    Theblockcannotslideif

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    49/61

    LimitEquilibriumAnalysis

    AnalysisofTopplingFailure

    Forcesonbase:normalandshear(Rn ,Sn)Interfaceforces:(Pn ,Qn,Pn1,Qn1)

    LimitEquilibriumAnalysis

    AnalysisofTopplingFailure

    Pointsofapplication:(Mn ,Ln)

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    50/61

    LimitEquilibriumAnalysis

    AnalysisofTopplingFailure

    .

    (ii) Checktopplingbyblockshapetest.

    (iii) Forthefirsttopplingblock,lateralforcestopreventtopplingPn1,tandslidingPn1,sarecalculatedas:

    LimitEquilibriumAnalysis

    AnalysisofTopplingFailure

    Slidingwilloccurif

    (v)Checkthatslidingdoesnotoccur

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    51/61

    EstimatingSlopeFailurebyRockMassRating

    AnalysisbyRockMassRating

    quality. RMRsystemprovidesqualityratingfortherockmassoftheslope.

    However,adjustmentforjointorientationmustbeappliedwithrespecttotheorientationofslope.

    AnalysisbyRockMassRating

    Adjustment ofRMRwithConstruction

    ,mayrepresentdifferentquality(ordegreeofdifficultforconstruction)inrelationtoaproject.

    StableslopeUnstableslope

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    52/61

    AnalysisbyRockMassRating

    (a)BasicRMRrating

    RockMassRating(RMR)rockmassclassificationsystem

    Basic RMRratingisthesumofratingsoffiverockparameters:(i)rockmaterialstrength,(ii)RQD,

    (iii)jointspacing,(iv)jointconditionand,(v)groundwatercondition.

    RMRratings >81 61 80 41 60 21 40

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    53/61

    RMR(slope) adjustments for sliding failure

    AnalysisbyRockMassRating

    AdjustmentVery

    favourableFavourable Fair Unfavourable

    Veryunfavourable

    Jointdipdirection slopedipdirection

    < 30or>30

    30~ 2030~20

    20~ 1020~10

    10~ 510~5

    5~5

    A 0.15 0.40 0.70 0.85 1.00

    Joint dipangle 45

    B 0.15 0.40 0.70 0.85 1.00

    Jointdipangleslopedipangle

    >10 10~0 0 0~ 10 < 10

    C 0 6 25 50 60

    Slopeformation Naturalslope PresplittingSmoothblasting

    Blasting/ripping

    Deficientblasting

    D +15 +10 +8 0 8

    Jointdipdirection Slopedipdirection

    Jointplaneparalleltotheslopeface(0)leadsto

    AnalysisbyRockMassRating

    highpotentialofplaneandblocksliding.

    Jointdip

    Slidingfailureoccurswhenjointhassteepdipangle(>frictionangle).

    Joint di Slo e diJointdip

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    54/61

    Slope rock mass quality based on RMR(slope)

    AnalysisbyRockMassRating

    RMR(Slope) SlopeRock Slope SlopeFailure SupportRating MassQuality Stability Mode Requirements

    >81 VerygoodCompletely

    stableNone None

    61~80 Good Stable Someblocks Spot

    41~60 Fair PartiallystableSomejointsor

    Systematic

    21~40 Poor UnstablePlanarorlarge

    wedgesImportant/Corrective

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    55/61

    SmoothBlasting

    RockSlopeExcavationandSupport

    drilledalongthefinalslopeface,withholespacing60~100cm.

    Chargesarelight.

    mainblast.

    PreSplittingBlasting

    RockSlopeExcavationandSupport

    face,withholespacing50~80cm.

    Chargesareverylight.

    Chargesaredecoupledfromholewalls,leaving

    Rowisfiredbeforethemainblast.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    56/61

    SlopeSupportandProtection

    RockSlopeExcavationandSupport

    Nonesupport/reinforcementScaling

    Protection:ToeditchingFences(attoeoronslope)Nets(overtheslopeface)

    Reinforcement:Bolts

    Anchors

    SlopeSupportandProtection

    RockSlopeExcavationandSupport

    ShotcreteDentalconcreteRibsand/orbeamsToewalls

    Drainage:SurfaceDeep

    Reexcavation:MethodOrientation

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    57/61

    Rockboltsarethemostcommonrockslope

    RockSlopeExcavationandSupport

    suppor me o .

    Boltlength:Normally3~4m;1~2minsolidrockafterunstablejoint(>slopeheight/10)

    Bolt diameter:normally20~25mm

    Boltstrength:120~150kN

    Resin ExpansionshellSteelbolt

    Blockyhardrock(averagejointspacing>1m):Systematicbolting3~4mspacing.

    ~

    RockSlopeExcavationandSupport

    . Systematicbolting1~3mspacing(3xthetypicaljointspacing).

    Veryfracturedhardrock(averagejointspacing

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    58/61

    1. Preliminarycollectionofgeologicaldatafromairphotos,surfacemappingandboreholecores.

    2. Preliminaryanalysisofgeologicaldatatoestablishmajorgeologicalpatterns. Examinationofthesepatternsinrelationtoproposedslopestoassessprobabilityof

    slidesdeveloping.

    3. Slopesinwhichnounfavourablediscontinuitiesexistorslopesinwhichfailurewouldnotmatteridentified. Nofurtherstabilityanalysisofthoseslopesrequired. Slope

    anglesdetermined

    from

    operational

    considerations.

    4. Slopesinwhichunfavourablediscontinuitiesexistidentifiedandthoseslopesinwhich failure would be critical at any stage of the excavation operation marked for

    anal

    ysis

    detailedstudy.

    5. Detailedgeologicalinvestigationofcriticalslopeareasonbasisofsurfacemappinganddrillcorelogging. Specialdrillinginthevicinitymayberequired.

    6. Sheartestingofdiscontinuitysurfaces,particularlyifclaycoveredorslickensided.

    7. Installationofpiezometers indrillholestoestablishgroundwaterflowpattersandpressuresandtomonitorchangesingroundwaterlevelsduringexcavation.

    8. Reanalysecriticalslopeareasonbasisofdetailedinformationfromsteps5,6and7,usinglimitedequilibriumtechniquesfircircular,planeorwedgeslides. Examinepossibilityofothertypesoffailureinducedbyweathering,toppingordamageduetoblasting.

    k

    slope

    stability

    9. Examineslopesinwhichriskoffailureishighintermsofslopedesign. Optionsare:a) Flattenslopes;b) Stabiliseslopesbydrainage,and/orrockbolts;c) Acceptriskoffailureandimplementmonitoringprogrammeforfailureprediction.

    10. Stabilisationofslopesbydrainageorreinforcementfeasibleifcostsavingresultingfromsteepeningofslopesexceedscostofdesigningandconstructionstabilisationsystem. Additionalfieldmeasurementsrequiredtoestablishdrainagecharacteristicsofrockmass.

    11. Acceptingriskoffailureonbasisofabilitytopredictandtoaccommodateslopewithoutendangeringmanandequipment. Mostreliablepredictionmethodbaseduponmeasurementofslopedisplacement.

    Roc

    Largescalerocksliding

    RockSlopeExcavationandSupport

    downofthewedgeformedbytwointersectingdiscontinuities.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    59/61

    ExampleAroadrunningeastwestistocutthrougharockhillof

    RockSlopeAnalysisExample

    blockyrock.Theestimatedrockmassqualityisgoodwith

    RMRat65. Therockmasshas3jointsets(025/10,165/46,

    220/75). Estimatedaveragejointfrictionangleis40.Slopes

    aretobecutatanangleof60onbothsidesoftheroad.

    J1

    AnalysisPlotjoints(J1,J2,J3),

    slopes(Ssfacing

    south,Sn facing

    north).

    Sn

    Ss

    Note ntersect onso

    J1,J2andJ3.I(23)

    daylightsonSs,I(12)

    andI(13)daylighton

    Sn,butaresub

    horizontal,Sn stable.

    DrawfrictioncircleF.

    J3NoteI(23)andJ2in

    theareaofSsandF,

    i.e.,daylightand

    steeper,plane/wedge

    sliding,Ssnotstable.

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    60/61

    J1

    RedesignPossibleredesign:

    70

    angle.Sn notsuffer

    fromsliding.Steep

    an lesavesexcavation

    RedesignSs

    RedesignSs

    J3volume.

    AnalysisbyRMR(Slope)

    RockSlopeAnalysisExample

    D(smoothbasting)=+8

    Adjustment=9 +8= 1

    RMR(s)=65 1=64(good)

    Sn slopegenerallystable.

    J1 J2 J3

    25 165 80

    A 0.4 0.15 0.15

    10 46 75

    B 0.15 1.0 1.0

    50 14 15

    C 60 60 0

    A*B*C 4 9 0

  • 7/31/2019 PART 05 - Rock Foundations and Slopes

    61/61

    AnalysisbyRMR(Slope)

    RockSlopeAnalysisExample

    D(smoothbasting)=+8

    Adjustment=42 +8= 34

    RMR(s)=65 34=31(poor)

    Ssslopeunstableandtobe

    J1 J2 J3

    155 15 40

    A 0.15 0.7 0.15

    10 46 75

    B 0.15 1.0 1.0

    50 14 15

    redesignedorheavily

    supported.

    C 60 60 0

    A*B*C 1 42 0