35
Transparencies available at: http://www-math.mit.edu/~rstan/trans.html M.I.T. 2-375 Department of Mathematics [email protected] Cambridge, MA 02139 Richard P. Stanley http://www-math.mit.edu/~rstan PARKING FUNCTIONS

parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

M.I.T. 2-375Department of Mathematics

[email protected], MA 02139

Richard P. Stanley

http://www-math.mit.edu/~rstan

PARKINGFUNCTIONS

1

Page 2: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

ENUMERATION OFPARKING FUNCTIONS...

...

n 2 1a a a1 2 n

Car Ci prefers space ai. If ai is oc-cupied, then Ci takes the next availablespace. We call (a1; : : : ; an) a parkingfunction (of length n) if all cars canpark.n = 2 : 11 12 21n = 3 : 111 112 121 211 113 131 311 122212 221 123 132 213 231 312 321

2

Page 3: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Easy: Let � = (a1; : : : ; an) 2 Pn.Let b1 � b2 � � � � � bn be the increas-ing rearrangement of �. Then � is aparking function if and only bi � i.Corollary. Every permutation ofthe entries of a parking function isalso a parking function.

3

Page 4: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Theorem (Pyke, 1959; Konheim andWeiss, 1966). Let f (n) be the num-ber of parking functions of length n.Then f (n) = (n + 1)n�1.Proof (Pollak, c. 1974). Add an ad-ditional space n + 1, and arrange thespaces in a circle. Allow n+ 1 also as apreferred space.a a a1 2

...n

1

n2

3

n+1

4

Page 5: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Now all cars can park, and there willbe one empty space. � is a parkingfunction if and only if the empty spaceis n + 1. If � = (a1; : : : ; an) leads tocar Ci parking at space pi, then (a1 +j; : : : ; an + j) (modulo n+ 1) will leadto car Ci parking at space pi+j. Henceexactly one of the vectors(a1+i; a2+i; : : : an+i) (modulo n + 1)is a parking function, sof (n) = (n + 1)nn + 1 = (n + 1)n�1:

5

Page 6: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

FOREST INVERSIONSLet F be a rooted forest on the vertexset f1; : : : ; ng.

1

6

9

10

37

112

84

5

12

THEOREM (Sylvester-Borchardt-Cayley). The number of such forestsis (n + 1)n�1.

6

Page 7: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

132

1

3

1

3

2

3

1

2

2

3

1

3

2

1

21

1 2 3 1

2

3 1

32

2

31

2

13

3

12

3

32

2

11

2

3

1

2

3

An inversion in F is a pair (i; j) sothat i > j and i lies on the path fromj to the root.

7

Page 8: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

inv(F ) = #(inversions of F )

1

6

9

10

37

112

84

5

12

Inversions: (5; 4); (5; 2); (12; 4); (12; 8)(3; 1); (10; 1); (10; 6); (10; 9)inv(F ) = 88

Page 9: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Let In(q) =XF qinv(F );summed over all forests F with vertexset f1; : : : ; ng. E.g.,I1(q) = 1I2(q) = 2 + qI3(q) = 6 + 6q + 3q2 + q3Theorem (Mallows-Riordan 1968, Gessel-Wang 1979) We haveIn(1 + q) =XG qe(G)�n;where G ranges over all connected graphs(without loops or multiple edges) onn+1 labelled vertices, and where e(G)denotes the number of edges of G.9

Page 10: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Corollary.Xn�0 In(q)(q�1)nxnn! = Pn�0 q(n+12 )xnn!Pn�0 q(n2)xnn!Xn�1 In(q)(q�1)n�1xnn! = logXn�0 q(n2)xnn!Theorem (Kreweras, 1980)We haveq(n2)In(1=q) = X(a1;:::;an) qa1+���+an;where (a1; : : : ; an) ranges over all park-ing functions of length n.10

Page 11: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

NONCROSSINGPARTITIONSA noncrossing partition of f1; 2; : : : ; ngis a partition fB1; : : : ; Bkg of f1; : : : ; ngsuch thata < b < c < d; a; c 2 Bi; b; d 2 Bj ) i = j:

12

11

10

9

87 6

5

4

3

2

1

11

Page 12: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Theorem (H. W. Becker, 1948{49)The number of noncrossing partitionsof f1; : : : ; ng is the Catalan num-ber Cn = 1n + 1�2nn �:

12

Page 13: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Amaximal chain m of noncrossingpartitions of f1; : : : ; n+1g is a sequence�0; �1; �2; : : : ; �nof noncrossing partitions of f1; : : : ; n+1g such that �i is obtained from �i�1by merging two blocks into one. (Hence�i has exactly n + 1� i blocks.)1�2�3�4�5 1�25�3�4 1�25�34125�34 12345

13

Page 14: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

De�ne:minB = least element of Bj < B : j < k 8k 2 B:Suppose �i is obtained from �i�1 bymerging together blocksB andB0, withminB < minB0. De�ne�i(m) = maxfj 2 B : j < B0g�(m) = (�1(m); : : : ;�n(m)):For above example:1�2�3�4�5 1�25�3�4 1�25�34125�34 12345we have �(m) = (2; 3; 1; 2):14

Page 15: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Theorem. � is a bijection betweenthe maximal chains of noncrossing par-titions of f1; : : : ; n + 1g and parkingfunctions of length n.Corollary (Kreweras, 1972)The num-ber of maximal chains of noncrossingpartitions of f1; : : : ; n + 1g is(n + 1)n�1:Is there a connection with Voiculescu'stheory of free probability?

15

Page 16: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

THE SHI ARRANGEMENTBraid arrangement Bn: the set ofhyperplanesxi � xj = 0; 1 � i < j � n;in R n. R = set of regions of Bn#R = n!Let R0 be the \base region"R0 : x1 > x2 > � � � > xn:Let d(R) be the number of hyperplanesin Bn separating R0 from R.

16

Page 17: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

01

231

2

1

x =xx =x 3

x =x

1

2

2

B3

3

17

Page 18: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Proposition.#fR : d(R) = jg =#fw 2 Sn : `(w) = �n2�� jg;where`(w) = #f(r; s) : r < s; w(r) > w(s)g;the number of inversions of w.XR2R qd(R) =(1+q)(1+q+q2) � � � (1+q+� � �+qn�1):

18

Page 19: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Label R0 with�(R0) = (1; 1; : : : ; 1) 2 Zn:If R is labelled, R0 is separated fromR only by xi � xj = 0 (i < j), and R0is unlabelled, then set�(R0) = �(R) + ei;where ei = ith unit coordinate vector.λ( )=λ( )+eR iR’

λ( )R

x = xi < j

ji

RR’

19

Page 20: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

111

321

121

311

211

221

2x =x31 B

3

x =x3

21x =x

Theorem (easy). The labels of Bnare the sequences (a1; : : : ; an) 2 Znsuch that 1 � ai � n� i + 1.20

Page 21: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Shi arrangement Sn: the set ofhyperplanesxi � xj = 0; 1; 1 � i < j � n; in R n:2

1

1

1 1

x -x =1 x -x =0

x -x =0

x -x =1

x -x =1 x -x =03

2

3 3

3

2

2

21

Page 22: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

base regionR0 : xn + 1 > x1 > � � � > xn� �(R0) = (1; 1; : : : ; 1) 2 Zn� If R is labelled, R0 is separated fromR only by xi � xj = 0 (i < j), andR0 is unlabelled, then set�(R0) = �(R) + ei:� If R is labelled, R0 is separated fromR only by xi � xj = 1 (i < j), andR0 is unlabelled, then set�(R0) = �(R) + ej:

22

Page 23: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

λ( )=λ( )+eR iR’λ( )R

x = xi < j

ji

RR’

λ( )R

+1x = xi < j

ji

RR’

λ( )=λ( )+eRR’ j

23

Page 24: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

113 221

213 321

312

311212

211

112111

121

231131132

122123

x -x =1 x -x =0

x -x =0

x -x =1

x -x =1 x -x =03 3

2

2

33 2

11

1

1

2

Theorem (Pak, S.). The labels ofSn are the parking functions of lengthn (each occurring once).24

Page 25: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Corollary (Shi, 1986)r(Sn) = (n + 1)n�1As for Bn, let d(R) be the numberof hyperplanes in Sn separating R0 andR.Note: If �(R) = (a1; : : : ; an), thend(R) = a1 + � � � + an � n:Let R = set of regions of Sn.Corollary.XR2R qd(R) = q(n2)In(1=q):

25

Page 26: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

THE PARKING FUNCTIONSn-MODULEThe symmetric group acts on the setPn of all parking functions of length nby permuting coordinates.Sample properties:�Multiplicity of trivial representation(number of orbits) = Cn = 1n+1�2nn �n = 3 : 111 211 221 311 321� Number of elements of Pn �xed byw 2 Sn (character value at w):#Fix(w) = (n + 1)(# cycles of w)�1

26

Page 27: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

For symmetric function a�ciona-dos: Let PFn = ch(Pn).PFn = X�`n(n + 1)`(�)�1z�1� p�= X�`n 1n + 1s�(1n+1)s�= X�`n 1n + 1

24Yi��i + nn �35m�

= X�`n n(n� 1) � � � (n� `(�) + 2)m1(�)! � � �mn(�)! h�:!PFn = X�`n 1n + 1

24Yi�n + 1�i �

35m�:

27

Page 28: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

MoreoverXn�0PFn tn+1 = (tE(�t))h�1i ;where E(t) =Pn�0 entn, and h�1i de-notes compositional inverse.

28

Page 29: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

THE HAIMAN MODULEThe groupSn acts onR = C [x1; : : : ; xn]by permuting variables, i.e., w � xi =xw(i). LetRSn = ff 2 R : w�f = f for allw 2 Sng:Well-known:RSn = C [e1; : : : ; en];whereek = X1�i1<i2<���<ik�nxi1xi2 � � � xik:LetD = R=�RSn+ � = R=(e1; : : : ; en):Then dimD = n!, and Sn acts on Daccording to the regular represen-tation. 29

Page 30: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Now let Sn act diagonally onR = C [x1; : : : ; xn; y1; : : : ; yn];i.e, w � xi = xw(i); w � yi = yw(i):As before, letRSn = ff 2 R : w � f = f for all w 2 SngD = R=�RSn+ � :Conjecture (Haiman, 1994). dimD =(n + 1)n�1, and the action of Sn onD is isomorphic to the action on Pn,tensored with the sign representation.(Connections with Macdonald polyno-mials, Hilbert scheme of points in theplane, etc.)

30

Page 31: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

A GENERALIZATIONLet� = (�1; : : : ; �n); �1 � � � � � �n > 0:A �-parking function is a sequence(a1; : : : ; an) 2 Pn whose increasing re-arrangement b1 � � � � � bn satis�esbi � �n�i+1.Ordinary parking functions:� = (n; n� 1; : : : ; 1)Number (Steck 1968, Gessel 1996):N(�) = n! det24 �j�i+1n�i+1(j � i + 1)!

35ni;j=131

Page 32: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

The Parking Function Polytope(with J. Pitman)Given x1; : : : ; xn 2 R�0, de�ne P =P(x1; : : : ;xn) � R n by: (y1; : : : ; yn) 2Pn if0 � yi; y1 + � � � + yi � x1 + � � � + xifor 1 � i � n.Theorem. (a) Let x1; : : : ; xn 2 N .Then n!V (Pn) = N (�);where �n�i+1 = x1 + � � � + xi.(b) n!V (Pn) = Xparking functions(i1;:::;in) xi1 � � � xin.Note. If each xi > 0, then Pn hasthe combinatorial type of an n-cube.32

Page 33: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

REFERENCES1. H. W. Becker, Planar rhyme schemes, Bull. Amer. Math.Soc. 58 (1952), 39. Math. Mag. 22 (1948{49), 23{262. P. H. Edelman, Chain enumeration and non-crossing parti-tions, Discrete Math. 31 (1980), 171{180.3. P. H. Edelman and R. Simion, Chains in the lattice of non-crossing partitions, Discrete Math. 126 (1994), 107{119.4. D. Foata and J. Riordan, Mappings of acyclic and parkingfunctions, aequationes math. 10 (1974), 10{22.5. J. Fran�con, Acyclic and parking functions, J. Combinato-rial Theory (A) 18 (1975), 27{35.6. I. Gessel and D.-L. Wang, Depth-�rst search as a combi-natorial correspondence, J. Combinatorial Theory (A) 26(1979), 308{313.7. M. Haiman, Conjectures on the quotient ring by diagonalinvariants, J. Algebraic Combinatorics 3 (1994), 17{76.8. P. Headley, Reduced expressions in in�nite Coxeter groups,Ph.D. thesis, University of Michigan, Ann Arbor, 1994.9. P. Headley, On reduced expressions in a�ne Weyl groups,in Formal Power Series and Algebraic Combinatorics, FP-SAC '94, May 23{27, 1994, DIMACS preprint, pp. 225{232.10. A. G. Konheim and B. Weiss, An occupancy discipline andapplications, SIAM J. Applied Math. 14 (1966), 1266{1274.11. G. Kreweras, Sur les partitions non crois�ees d'un cycle, Dis-crete Math. 1 (1972), 333{350.12. G. Kreweras, Une famille de polynomes ayant plusieurspropri�et�es �enumeratives, Periodica Math. Hung. 11 (1980),309{320. 33

Page 34: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

13. J. Lewis, Parking functions and regions of the Shi arrange-ment, preprint dated 1 August 1996.14. C. L. Mallows and J. Riordan, The inversion enumeratorfor labeled trees, Bull Amer. Math. Soc. 74 (1968), 92{94.15. Y. Poupard, �Etude et denombrement paralleles des parti-tions non crois�ees d'un cycle et des decoupage d'un poly-gone convexe, Discrete Math. 2 (1972), 279{288.16. R. Pyke, The supremum and in�mum of the Poisson pro-cess, Ann. Math. Statist. 30 (1959), 568{576.17. V. Reiner, Non-crossing partitions for classical re ectiongroups, Discrete Math. 177 (1997), 195{222.18. J.-Y. Shi, The Kazhdan-Lusztig cells in certain a�ne Weylgroups, Lecture Note in Mathematics, no. 1179, Springer,Berlin/Heidelberg/New York, 1986.19. J.-Y. Shi, Sign types corresponding to an a�ne Weyl group,J. London Math. Soc. 35 (1987), 56{74.20. R. Simion, Combinatorial statistics on non-crossing parti-tions, J. Combinatorial Theory (A) 66 (1994), 270{301.21. R. Simion and D. Ullman, On the structure of the lattice ofnoncrossing partitions, Discrete Math. 98 (1991), 193{206.22. R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298(1994), 611{624.23. R. Stanley, Hyperplane arrangements, interval orders, andtrees, Proc. Nat. Acad. Sci. 93 (1996), 2620{2625.24. R. Stanley, Parking functions and noncrossing partitions,Electronic J. Combinatorics 4, R20 (1997), 14 pp.25. R. Stanley, Hyperplane arrangements, parking functions,and tree inversions, in Mathematical Essays in Honor of34

Page 35: parking - Massachusetts Institute of Technologyrstan/transparencies/parking.pdf · 2011. 8. 22. · parking function (of length n) if all cars can park. n = 2: 11 12 21 n = 3: 111

Gian-Carlo Rota (B. Sagan and R. Stanley, eds.), Birkh�auser,Boston/Basel/Berlin, 1998, pp. 359{375.26. G. P. Steck, The Smirnov two-sample tests as rank tests,Ann. Math. Statist. 40 (1968), 1449-1466.27. C. H. Yan, Generalized tree inversions and k-parking func-tions, J. Combinatorial Theory (A) 79 (1997), 268{280.

35