46
Technische Universität München Data Innovation Lab DI-LAB Final Presentation Parameter Estimation with Gaussian Processes A. Grundner, K. Wang, K. Harsha Scientific Lead: Prof. Dr. Eric Sonnendr¨ ucker, Dr. Ahmed Ratnani

Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

DI-LAB Final Presentation

Parameter Estimation with Gaussian Processes

A. Grundner, K. Wang, K. Harsha

Scientific Lead: Prof. Dr. Eric Sonnendrucker, Dr. Ahmed Ratnani

Page 2: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

How it started!

so, what’s the problem here?

Life’s so uncertain!I see all this data

around me but I don’t knowwhat my parameters are!! It’s fine. I’ll prescribe you

some priors and you can usethem with your favourite kernels!That should help with estimates.

LxΦ

GP

August 9, 2018 A. Grundner, K. Wang, K. Harsha 2

Page 3: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 3

Page 4: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Gaussian Processes

A stochastic process with a distribution over functionsSpecified by a mean function, m(x), and a covariancefunction, or kernel, k (x , x ′)Application in machine learning: regression, classification...

August 9, 2018 A. Grundner, K. Wang, K. Harsha 4

Page 5: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Different Kernels

August 9, 2018 A. Grundner, K. Wang, K. Harsha 5

Page 6: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Realization of a GP

f ∼ GP(m, k)

m(x) = x2

4k(x , x ′) = exp(− 1

2 (x − x ′)2)y = f + ε

ε ∼ N (0, σ2)

5.0 2.5 0.0 2.5 5.0x

0

2

4

6

y(x)

August 9, 2018 A. Grundner, K. Wang, K. Harsha 6

Page 7: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Varying signal variance σf for SE kernel

k(x , x ′) = σ2f exp

(− (x−x′)2

2`2

)

4 2 0 2 4x

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

f

Varying f

1510100

August 9, 2018 A. Grundner, K. Wang, K. Harsha 7

Page 8: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Varying length scale l for SE kernel

k(x , x ′) = σ2f exp

(− (x−x′)2

2`2

)

4 2 0 2 4x

1

0

1

2

3

4

5

fVarying l

0.050.51.05.0

August 9, 2018 A. Grundner, K. Wang, K. Harsha 8

Page 9: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 9

Page 10: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Framework for parameter estimation

Lφx u = fu ∼ GP(0, kuu(xi , xj , θ))

f ∼ GP(0, kff (xi , xj , θ, φ))

kff (xi , xj ; θ, φ) = LφxiLφxj

kuu(xi , xj ; θ)

kfu(xi , xj ; θ, φ) = Lφxikuu(xi , xj ; θ)

Dataset: x , yu, yf

August 9, 2018 A. Grundner, K. Wang, K. Harsha 10

Page 11: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Framework for parameter estimation

y =

[yuyf

]K =

[kuu(xu, xu; θ) + σ2

u I kuf (xu, xf ; θ, φ)kfu(xf , xu; θ, φ) kff (xf , xf ; θ, φ) + σ2

f I

]NLML =

12

[log|K |+ yT K−1y + Nlog(2π)

]Take maximum likelihood estimates: θest , φest

August 9, 2018 A. Grundner, K. Wang, K. Harsha 11

Page 12: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

1D Linear operator with more than one parameter

Lφx u(x) = f (x)

Lφx := φ1 · + φ2ddx ·

u (x) = sin(x)f (x) = φ1 sin(x) + φ2 cos(x)

kff(xi , xj ; θ, φ1, φ2

)= LφxiL

φxj kuu

(xi , xj ; θ

)= Lφxi

(φ1kuu + φ2

∂∂xj

kuu

)= φ2

1kuu + φ1φ2∂∂xj

kuu

+φ1φ2∂∂xi

kuu + φ22∂∂xi

∂∂xi

kuu

kfu(xi , xj ; θ, φ1, φ2)

= Lφxi kuu(xi , xj ; θ)= φ1kuu + φ2

∂∂xi

kuu

Lφx u(x) = f (x)

L φx := φ1 · + φ2

ddx · + φ3

d2

dx2

u ( x ) = sin(x)f ( x ) = φ1 sin(x) + φ2 cos(x)− φ3 sin(x)

kff(xi , xj ; θ, φ1, φ2, φ3

)= LφxiL

φxj kuu

(xi , xj ; θ

)= Lφxi

(φ1kuu + φ2

∂∂xj

kuu + φ3∂2

∂x2jkuu

)=(φ1kuu + φ2

∂∂xi

kuu + φ3∂2

∂x2ikuu

)(φ1kuu + φ2

∂∂xj

kuu + φ3∂2

∂x2jkuu

)kfu(xi , xj ; θ, φ1, φ2, φ3

)= Lφxi kuu

(xi , xj ; θ

)= φ1kuu + φ2

∂∂xi

kuu + φ3∂2

∂x2ikuu

August 9, 2018 A. Grundner, K. Wang, K. Harsha 12

Page 13: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

1D Linear operator with more than one parameter

φ1 = 2, φ2 = 5 φ2 = 5

August 9, 2018 A. Grundner, K. Wang, K. Harsha 13

Page 14: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 14

Page 15: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Heat equation

∂u∂t− φ∇2u = f

In one spatial dimension,

Lφx u(x) =∂

∂tu(x)− φ ∂2

∂x2 u(x) = f (x),

where x = (t , x) ∈ R2

August 9, 2018 A. Grundner, K. Wang, K. Harsha 15

Page 16: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler scheme

For the homogeneous case:

ut − αuxx = 0

u(x , t) = e−tsin(x√α

)

u0(x) := u(x ,0) = sin(x√α

)

Discretization in the time domain:

un − un−1

τ− α d2

dx2 un = 0

un − ταd2

dx2 un = un−1

August 9, 2018 A. Grundner, K. Wang, K. Harsha 16

Page 17: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler (contd...)

Gaussian prior:

un ∼ GP(0, kuu(xi , xj , θ))

Linear operator:

Lαx = · − τα d2

dx2 ·

Lαx u = f ; u := un, f := un−1

August 9, 2018 A. Grundner, K. Wang, K. Harsha 17

Page 18: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler scheme: Results

Kernel: kuu(xi , xj ; θ) = e(θ(xi−xj )2)

0 1 2 3 4 5x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Input and output to the operatorun

un 1

7 6 5 4 3 2log( )

0.00

0.02

0.04

0.06

0.08

0.10

|tr

uees

timat

e|

Error in parameter estimate vs time steps

0 10 20 30 40 50 60 70iteration #

220

200

180

160

140

120

100

80

60

nlm

l

Convergence plot for one run with 20 data points

August 9, 2018 A. Grundner, K. Wang, K. Harsha 18

Page 19: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler for the nonhomogeneous case

ut − αuxx = f

u(x , t) = e−tsin(2πx), u0(x) := u(x ,0) = sin(2πx)

f (x , t) = (−1 + 4απ2)e−tsin(2πx)

x , t ∈ [0,1]

with the Backward Euler scheme:

un − un−1

τ− α d2

dx2 un = fn

un − ταd2

dx2 un = un−1 + τ fn

August 9, 2018 A. Grundner, K. Wang, K. Harsha 19

Page 20: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler for the nonhomogeneous case(contd...)

Gaussian prior:

un ∼ GP(0, kuu(xi , xj , θ))

Linear operator:

Lαx = · − τα d2

dx2 ·

Lαx u = f ; u := un, f := un−1 + τ fn

August 9, 2018 A. Grundner, K. Wang, K. Harsha 20

Page 21: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler for the nonhomogeneous case: Data

20 data pointsτ = 0.01

0.0 0.2 0.4 0.6 0.8x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Input and output to the operator ( = 0.01)un

un 1 + fn

August 9, 2018 A. Grundner, K. Wang, K. Harsha 21

Page 22: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Backward Euler for the nonhomogeneous case:Results

Comparison between kernels:For kuu(xi , xj ; θ) = eθ(xi−xj )

2

For kuu(xi , xj ; θ) = θe−12 (xi−xj )

2

August 9, 2018 A. Grundner, K. Wang, K. Harsha 22

Page 23: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case

Lφx u(x) =∂

∂tu(x)− φ ∂2

∂x2 u(x) = f (x),

where x = (t , x) ∈ R2.Gaussian prior:

u ∼ GP(0, kuu(xi , xj , θ))

kuu(xi , xj , ti , tj ; θ) = e[−θ1(xi−xj )2−θ2(ti−tj )2]

August 9, 2018 A. Grundner, K. Wang, K. Harsha 23

Page 24: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case: Benchmark

10 data pointsNoise variance: 10−7

August 9, 2018 A. Grundner, K. Wang, K. Harsha 24

Page 25: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case: Results

1.0 1.2 1.4 1.6 1.8ln( 1)

2.001.751.501.251.000.750.500.25

ln(

2)

-0.152

0.192

0.655

1.277 2.113

3.238

3.238

4.750

4.750

6.782

6.782

9.514

13.186

18.12324.759

33.681

-0.152

0.192

0.192

0.655

1.277

2.113

2.113

3.238

3.238

3.238

3.238

4.750

4.750

4.750

4.750

6.782

6.782

6.782

9.514

9.514

13.186

13.186

18.123

3 4 5 6 71

0.2

0.4

0.6

0.8

2

NLML contour lines

1.0 1.2 1.4 1.6 1.8 2.0ln( 1)

0

2

4

6

nlm

l

2.0 1.5 1.0 0.5 0.0ln( 2)

nlm

l

Profile likelihood

August 9, 2018 A. Grundner, K. Wang, K. Harsha 25

Page 26: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case: Simulation results

10 12 14 16 18 20 22 24Number of data points

0.000

0.002

0.004

0.006

0.008

0.010

Abso

lute

erro

r

(A) Error in estimate of the parameter

10 12 14 16 18 20 22 24Number of data points

5

10

15

20

25

30

Exec

utio

n tim

e

(B) Execution time benchmark

August 9, 2018 A. Grundner, K. Wang, K. Harsha 26

Page 27: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case: Comparison with the full kernel

Full kernel: θexp(− 12l1

(xi − xj )2 − 1

2l2(ti − tj )2)

August 9, 2018 A. Grundner, K. Wang, K. Harsha 27

Page 28: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

General case: Comparison with the full kernel

10 12 14 16 18 20 22 24Number of data points

0.000

0.002

0.004

0.006

0.008

0.010

Abso

lute

erro

r

Error in estimate of the parameter

10 12 14 16 18 20 22 24Number of data points

10

20

30

40

50

60

Exec

utio

n tim

e

Execution time benchmark

August 9, 2018 A. Grundner, K. Wang, K. Harsha 28

Page 29: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 29

Page 30: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

The Wave Equation

∂2

∂t2 u = c∇2u

Can rewrite it (in one spatial dimension) as Lcxu = f , where f = 0 and

Lcx =

∂2

∂t2 · − c∂2

∂x2 ·

August 9, 2018 A. Grundner, K. Wang, K. Harsha 30

Page 31: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

A solution for c = 1:

u(x , t) = (x − t)2 + sin(x + t).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0x-values

0

50

100

150

200

250

300

350u t

(x)

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

t = 0

t = 9

Function values for ut(x) with t {0, , 9}

Sample 20 random points X in [0,1]2 along with u(X ) and f (X ).

Problem at hand : Estimate c from these samples.

August 9, 2018 A. Grundner, K. Wang, K. Harsha 31

Page 32: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Applying our algorithm

Assumption:u ∼ GP(0, kuu(xi , xj ; θ)i,j ),

where kuu is an RBF Kernel and θ = {σu, lx , lt}.f is GP-distributed as a linear transformation of u.Minimize the nlml, that corresponds to u, f and our data samples.

Our result: c = 1.0003

August 9, 2018 A. Grundner, K. Wang, K. Harsha 32

Page 33: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

The absolute error in our estimate

We plot the error |c − 1| using five differently colored runs of ouralgorithm (c is our estimate for c).

Here, the error is bounded by 0.041 for 10 ≤ n ≤ 24 (blue-dashedline).

August 9, 2018 A. Grundner, K. Wang, K. Harsha 33

Page 34: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Calculating the L2-error

Given c, we can solve d2

dt2 u(x , t)− c d2

dx2 u(x , t) = 0 and get asolution based on our estimate:

u(x , t) = u(x ,√

ct) = (x −√

ct)2 + sin(x +√

ct)

Can plot ‖u − u‖L2 now:

The L2-error is in our case bounded by 0.015 for 10 ≤ n ≤ 24.August 9, 2018 A. Grundner, K. Wang, K. Harsha 34

Page 35: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 35

Page 36: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Burgers’ Equation

∂u∂t

+ u∂u∂x

= ν∂2u∂x2

We look at the inviscid Burgers’ Equation, that is when the diffusioncoefficient is zero: ν = 0. Then a solution is:

u(x , t) =x

1 + t

We implemented two similar setups:1) Infer c in:

ut + cuux = 0 (1)

2) Infer ν in:ut + uux = νux (2)

August 9, 2018 A. Grundner, K. Wang, K. Harsha 36

Page 37: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Applying our algorithm

Used discretization methods (with step size τ = 0.001)Replaced the non-linear term with the mean µn−1 of un−1

- Used the backward Euler scheme for (1):

un(x)− un−1(x)

τ+ cun(x)

ddx

un(x) = 0,

where Lcxun = un−1 and Lc

x = · + τcµn−1ddx · .

- Used the forward Euler scheme for (2):

un(x)− un−1(x)

τ+ un−1(x)

ddx

un−1(x) = νddx

un−1(x),

where Lνx un−1 = un and Lνx = · + τ(ν − µn−1) ddx · .

August 9, 2018 A. Grundner, K. Wang, K. Harsha 37

Page 38: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Results

The blue-dashed line is given byf (x) = 0.01x2.2:

Here, we replaced the non-lineari-ty by u(x ,0) = x for a comparison:

August 9, 2018 A. Grundner, K. Wang, K. Harsha 38

Page 39: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Contents

1 Intro to Gaussian Processes

2 Parameter Estimation with Gaussian ProcessesFrameworkExamples

3 Heat equationBackward Euler for the homogeneous caseBackward Euler for the nonhomogeneous caseNo discretization

4 Wave equation

5 Burgers’ equation

6 Conclusions

August 9, 2018 A. Grundner, K. Wang, K. Harsha 39

Page 40: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Problem solved!

LxΦ

GP

Thanks for your help! No problem.Any day!

August 9, 2018 A. Grundner, K. Wang, K. Harsha 40

Page 41: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Conclusions

Efficient and quite accurate framework for estimating parametersin differential equationsNo discretization methods neededDesigned for linear transformations onlyCovariance matrix often ill-conditioned for more than 30 datapointsAutomatic calculation of all kernels possibleInitial attempt with pyGPs was unsuccessful

August 9, 2018 A. Grundner, K. Wang, K. Harsha 41

Page 42: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

What’s next?

GP

Okay!WHO’S NEXT ?

It’s theNon-Linear Operator!!

August 9, 2018 A. Grundner, K. Wang, K. Harsha 42

Page 43: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Oh yes!

GP

oh f#$%

August 9, 2018 A. Grundner, K. Wang, K. Harsha 43

Page 44: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Thank you!

August 9, 2018 A. Grundner, K. Wang, K. Harsha 44

Page 45: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Trying to use the Python-package pyGPs

Our pyGPs approach:1. Assume Gaussian Priors with RBF Kernels:

u(x) ∼ GP(0, kuu(x , x ′;σu, lu))

f (x) ∼ GP(0, kff (x , x ′;σf , lf ))

2. Can optimize hyperparameters with pyGPs (given the data{Xu,Yu} and {Xf ,Yf})3. Know that the covariance matrix for f is kf = Lφx′Lφx kuu, sincef (x) = Lφx u(x). Set kf ' kff . Then:

kf (xi , xi ) ' kff (xi , xi )

Rearranging:φ ' g(σu, σf , lu),

This we can evaluate.August 9, 2018 A. Grundner, K. Wang, K. Harsha 45

Page 46: Parameter Estimation with Gaussian Processes - Diplomarbeit … · 2018-09-06 · Data Innovation Lab Technische Universit t M nchen Contents 1 Intro to Gaussian Processes 2 Parameter

Technische Universität MünchenData Innovation Lab

Using it for a simple example

We used this approach for u(x) =√

x and f (x) = Lφx u(x) with φ = 12.By the previous slide it follows

φ ' σf

σu.

Using 15 evenly spaced data samples in [0,2π], our result wasφ = 12.05.

August 9, 2018 A. Grundner, K. Wang, K. Harsha 46