40
Parameter Analysis of a Concurrent Engineering Satellite Study Dominik Quantius German Aerospace Center (DLR) Institute of Space Systems Department of System Analysis Space Segment Bremen, Germany Telephone: +49 421 24420-1109 Telefax: +49 421 24420-1120 E-Mail: [email protected] Bremen, 28. March 2017 > D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study OSE4, Bremen, Germany > 28.03.2017 DLR.de Chart 1

Parameter Analysis of a Concurrent Engineering Satellite Study

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Analysis of a Concurrent Engineering Satellite Study Dominik Quantius German Aerospace Center (DLR) Institute of Space Systems Department of System Analysis Space Segment Bremen, Germany Telephone: +49 421 24420-1109 Telefax: +49 421 24420-1120 E-Mail: [email protected] Bremen, 28. March 2017

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 28.03.2017 DLR.de • Chart 1

Page 2: Parameter Analysis of a Concurrent Engineering Satellite Study

• SolmeX CE Study • What is SolmeX? • Concurrent Engineering at DLR • Integrated design model

• “Main Parameters” • “Implicit Parameters”

• Parameter Graphs

• Design Structure Matrix • Impacts / Relations

• Discussion

• Meaning for MDO

Content

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 2

Page 3: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study What is SolmeX?

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 3

Umbra

Penumbra

• Solar Magnetism Explorer proposal under lead of the Max Planck Institute for Solar System Research, answering 2010 Cosmic Vision call for M-class mission opportunity in ESA’s Science Programme:

• fully equipped science satellite: Coronagraph Spacecraft (CS) • second minimalistic spacecraft flying in formation:

Occulter Spacecraft (OC)

CS OS

Page 4: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study What is SolmeX: Solar Magnetism Explorer

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 4

Page 5: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study What is SolmeX: Solar Magnetism Explorer

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 5

Page 6: Parameter Analysis of a Concurrent Engineering Satellite Study

Sequential Engineering (with iterations):

SolmeX CE Study Concurrent Engineering …is not…

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 6

• Conventional Design / Engineering Processes

Centralized Engineering:

Configuration Thermal Power

iteration

Power

AOCS

Configuration

Thermal

Project Manager/ Systems Engineer

Page 7: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study …but Concurrent Engineering is…

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 7

• Concurrent Design / Engineering Process

• The five key elements:

• Interdisciplinary expert team • Moderated CE - process • Integrated design model • Facility / infrastructure • Tools (e.g. S/W; multi-media)

Project Manager/ Systems Engineer

Configuration Power

AOCS Thermal

Page 8: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study - Schedule

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 8

Page 9: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study - Domains

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 9

Page 10: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study Subsystem Mass Budget of the CS

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 10

Session #1 Session #2 Session #3

Page 11: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study …but Concurrent Engineering is…

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 11

• Concurrent Design / Engineering Process

• The five key elements:

• Interdisciplinary expert team • Moderated CE - process • Integrated design model • Facility / infrastructure • Tools (e.g. S/W; multi-media)

Project Manager/ Systems Engineer

Configuration Power

AOCS Thermal

Page 12: Parameter Analysis of a Concurrent Engineering Satellite Study

• At date of study (2010) we used ESA’s CDF Integrated Design Model (IDM):

Collection of domain specific MS Excel workbooks linked via data exchange and data parking macros

SolmeX CE Study Integrated Design Model

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 12

Output-Sheet

Calculation

(Sheets),

e.g. Power Budget

Input-Sheet

EQ Summary (manual input)

SWITCH (Manual/Linked) D

ATA EXC

HAN

GE.xls

Directly linked

DATA

EXCH

ANG

E.xls

SWITCH (Manual/Linked)

Page 13: Parameter Analysis of a Concurrent Engineering Satellite Study

• Explicitly entered to the data model:

• Mass • Dimension • Temperature • Power

• Summed up to

systems level: • Total Mass • Total Power

demand (dependent on mode/duty cycle)

“Main Parameters”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 13

e.g. Propulsion Subsystem EQ Summary:

Page 14: Parameter Analysis of a Concurrent Engineering Satellite Study

“Implicit Parameters”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 14

Calculation

(Sheets),

e.g. Power Budget

• Domain specific parameters: • Calculated outside the data model • Or via “self-made” calculation sheets

Page 15: Parameter Analysis of a Concurrent Engineering Satellite Study

• e.g. Propulsion Subsystem: • Components:

• Thruster • Tank • Heater • Valve

“Main vs. Implicit Parameters”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 15

Main Parameters: Tank Mass, Dimensions, Temperature

This sheet calculates mass for a spherical COPV (composite over wrapped pressure vessel) tank.

STA 6Al-4V Ti

Input ValuesVolume [m 3̂] 0,09326235Pressure [bar] 16,2Safety factor for pressure [-] 2Tensile strenght of composite [N/mm 2̂] 923,897477Safety factor for tensile stress [-] 2Wall thickness of liner [m] 0Density of composite material [kg/m 3̂] 4428,784Density of liner material [kg/m 3̂] 0Factor "spars & bolts" [-] 1,2Margin [%] 20

Output valuesR [m] 0,28132343Max. permitted tensile stress [N/mm 2̂] 461,948739Layout pressure [bar] 32,4Composite thickness [m] 0,00098657Composite material mass [kg] 4,34543567 NOTES:Liner material mass [kg] 0 It is assumed that the pressure loads will be carried by the composite material alone;Pure tank mass [kg] 4,34543567 the liner serves only for sealing purposes.(without margin and spars & bolts factor) The margin will be applied, when the spars and bolts factor has already been added.

Total tank mass [kg] 6,25742736(including margin and spars & bolts factor)

R

343πVr =

101

2⋅

⋅⋅

=σrpt

compcompcomp trm ρπ ⋅⋅⋅⋅= 24

linlinlin trm ρπ ⋅⋅⋅⋅= 24

Page 16: Parameter Analysis of a Concurrent Engineering Satellite Study

“Main vs. Implicit Parameters”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 16

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4 𝜋𝜋 𝑟𝑟2 𝑡𝑡 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡 =1

10∙𝑝𝑝 𝑟𝑟2 𝜎𝜎

𝑟𝑟 =3 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

4 𝜋𝜋

13�

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 =𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑝𝑝𝑡𝑡𝑙𝑙𝑡𝑡𝑙𝑙𝑙 1 −1

𝑒𝑒 ∆𝑣𝑣 𝑙𝑙�

=3

20∙

𝑝𝑝𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 𝜎𝜎

∙ 𝑚𝑚𝑝𝑝𝑡𝑡𝑙𝑙𝑡𝑡𝑙𝑙𝑙 1 −1

𝑒𝑒 ∆𝑣𝑣 𝑙𝑙�

Page 17: Parameter Analysis of a Concurrent Engineering Satellite Study

“Main vs. Implicit Parameters”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 17

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4 𝜋𝜋 𝑟𝑟2 𝑡𝑡 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =3

20∙

𝑝𝑝𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 𝜎𝜎

∙ 𝑚𝑚𝑝𝑝𝑡𝑡𝑙𝑙𝑡𝑡𝑙𝑙𝑙 1 −1

𝑒𝑒 ∆𝑣𝑣 𝑙𝑙�

Main Parameter Input

Main Parameter Output

Implicit Parameters

Systems Launch Mass: 𝑚𝑚𝑝𝑝𝑡𝑡𝑙𝑙𝑡𝑡𝑙𝑙𝑙

Mission Analysis ∆𝑣𝑣

Propulsion Tank Mass: 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

tank pressure 𝑝𝑝

density of tank material 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

tensile strength of tank material 𝜎𝜎

thruster exhaust velocity 𝑐𝑐

density of propellant 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

10 parameters for tank design + temperature parameters

Propulsion Tank Radius: 𝑟𝑟

Propulsion Thickness of Tank Wall: 𝑡𝑡

Page 18: Parameter Analysis of a Concurrent Engineering Satellite Study

* Untersuchung des Parameterraums

einer Concurrent-Engineering-Studie FH Aachen, DLR-Bremen, 2011

Parameter Graphs - Collection of Study Parameters

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 18

Page 19: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs - Formulary

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 19

Page 20: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Relations per Parameter per Component

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 20

mass

housekeeping data width

density

shape

height

length

surface max

tank

Component Subsystem Parameter Relations

propulsion

Page 21: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Design Structure Matrix(Adjacency Matrix)

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 21

Subs

yste

mM

A

INT

Com

pone

nt

CUSP

Para

met

er

mis

sion

dur

atio

n

orbi

t per

iod

sem

i-maj

or a

xis

ecce

ntric

ity

incl

inat

ion

rigth

asc

ensi

on

argu

men

t of p

erig

ee

mea

n an

omal

y

ecce

ntric

ano

mal

y

angu

lar v

eloc

ity

sola

r con

stan

t

true

ano

mal

y

posi

tion

vect

or

orbi

tal p

ertu

batio

n

mas

s

hous

ekee

ping

dat

a

wid

th

shap

e

heig

th

leng

th

surf

ace

max

Subsystem Component ParameterMA 14

mission duration 6;7 6;8 6;9 6;13 6;14 6;17 6;19

orbit period 7;6 7;8 7;9 7;13 7;14 7;17

semi-major axiseccentricityinclinationrigth ascensionargument of perigeemean anomaly 13;7 13;8 13;9 13;14 13;15 13;17

eccentric anomaly 14;8 14;9 14;13 14;17

angular velocity 15;8

solar constant 16;8 16;9 16;10 16;11 16;12 16;13 16;14 16;17

true anomalyposition vector 18;8 18;9 18;10 18;11 18;12 18;13 18;14 18;17

orbital pertubation 19;7 19;8 19;9 19;10 19;11 19;12 19;13 19;14 19;16 19;17 19;21 19;23 19;24 19;25 19;26 19;27

“depends on”

“has

an

impa

ct o

n”

Page 22: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Design Structure Matrix (Adjacency Matrix)

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 22

Mission Analysis

Configuration

Domain- specific

parameters

Data Handling &

Communication

406 x 406 parameters 9513 dependencies

Page 23: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – DSM: Impacts

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 23

0 50

10

0 15

0 20

0 25

0 no

. of i

nflu

ence

d pa

ram

eter

s

parameters 435 1

Page 24: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – DSM: Dependencies

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 24

para

met

ers

0 40 80 120 200 160 no. of influencing parameters

20 60 100 140 180

435

1

Page 25: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 25

“has an impact on” “has

an

impa

ct o

n”

Depth-First Search Breadth-First Search

Graph Data Structure 1 2 3 4 Depth: 1 2 Depth:

Page 26: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Impacts on Parameters

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 26

(Breadth-First Search)

Dep

th

Hits

Tota

l

Max

Min

Ratio

to 1

. dep

th

occu

rren

ce

Occ

urre

nce

1 6 2 1 1.2 5

2 6 2 1 1.2 4

3 2 2 2 0.4 2

4 0 0 0 0 0

Ø2 Ø3.5 5 2 one parameter; all depths

1

2 Depth:

3 Depth:

Depth:

E1 E2 E4 E3

Page 27: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Impacts on Parameters

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 27

Depth Hits Total Max Min Ratio to 1. depth occurrence Occurrence

1 9513 249 1 25.23 377 2 29583 246 1 78.47 377 3 30691 204 2 81.41 367 4 6699 162 1 17.77 360 5 7689 137 1 20.40 349 6 9778 137 1 25.94 211 7 8334 137 9 22.11 131 8 5045 137 9 13.38 113 9 1149 137 9 3.05 73

10 292 13 7 0.77 32 11 27 9 9 0.07 3 12 0 0 0 0.00 0

Ø6.35 Ø288.59 299 2 (one parameter; all depths)

Page 28: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Parameter Impacts/Dependencies for “Launch Mass”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 28

Depth Impact on Dependent on

1 28 112 2 59 111 3 183 26 4 15 40 5 11 41 6 31 7 3 8

Page 29: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Impacts on Directed Edges

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 29

height

length area volume

area volume volume length length area

P3 P2

P1

E9 E8 E7 E6 E5 E4

E3 E2

E1

Page 30: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Impacts on Directed Edges

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 30

Depth Hits Total Max Min Ratio to 1. depth occurrence Occurrence

1 9513 249 1 25.23 377 2 188047 6088 1 498.80 377 3 634509 5831 1 1683.05 376 4 684090 5213 36 1814.56 369 5 182442 3567 24 483.93 362 6 238397 3135 24 632.35 351 7 254914 3127 24 676.16 211 8 207088 3127 228 549.31 131 9 134584 3127 450 356.99 112

10 44021 3123 445 116.77 73 11 16445 528 445 43.62 32 12 1584 528 528 4.20 3

Ø7.36 Ø6884.97 7273 3 (one parameter)

Page 31: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Edges Impacts/Dependencies for “Launch Mass”

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 31

Depth Impact on Dependent on

1 28 115 2 553 2752 3 1115 2975 4 4248 112 5 516 518 6 564 1089 7 959 8 49

Page 32: Parameter Analysis of a Concurrent Engineering Satellite Study

• Assumption regarding the Data Model:

• So far: only fixed values for input/output parameters • What if it would be possible to e.g. declare all dependent

parameters as variables within a specific interval ?! (generic / each study started from scratch)

Discussion – Meaning for MDO

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 32

Multidisciplinary Design Optimization task • 377 variables out of 406 parameters • 9513 dependencies in the first depth • 108,800 parameter relations • 2,595,634 edges

Min. Launch Mass / Cost Max. Mission Lifetime

Max. downloaded Science Data

Page 33: Parameter Analysis of a Concurrent Engineering Satellite Study

• Which kind of functions?

• Linear, exponential, logarithmic, trigonometric

• Non-convex design space, discontinuous (e.g. different

thruster types of fixed thrust: 3 x 10N vs. 1 x 30N)

• Not always differentiable (no Jacobi/Hesse)

• Loops between parameters

Discussion – Meaning for MDO

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 33

Page 34: Parameter Analysis of a Concurrent Engineering Satellite Study

• Domain specific blocks could be used as a problem

decomposition and be simplified via curve fitting techniques

• Exclude Configuration parameters since they are more dependent than having impacts on others

• Sensitivity analysis upstream the optimization in order to neglect variables which have low influence on the total system or objective function

• Interval arithmetic for knowing the feasible solution interval

Discussion – Meaning for MDO

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 34

Page 35: Parameter Analysis of a Concurrent Engineering Satellite Study

Thank you and enjoy the coffee break!

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 35

Page 36: Parameter Analysis of a Concurrent Engineering Satellite Study

Backup Slides

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 36

Page 37: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 37

CE Process at DLR Bremen Star

t

End Initiation & Preparation Phase Study Phase Post Processing Phase

Scientific background

Trade-off

Studies Requirements

Mission Objectives

Requirement Changes

Domain Reports Different Budgets

MoM

Presentations

CEF Core Team Customer Domain

Experts CEF Core

Team

Customer

Session 1 Session 2 Session 3 Session n

Final Report

Simulations (S/W)

Lessons learned

Page 38: Parameter Analysis of a Concurrent Engineering Satellite Study

• What is the magnetic structure of the outer solar atmosphere?

• What is the nature of the changes of the magnetic field over the solar cycle?

• What drives large-scale coronal disruptions such as flares and coronal mass

ejections?

• How do magnetic processes drive the dynamics and heating of the outer solar atmosphere?

• How does the magnetic field couple the solar atmosphere from the photosphere to the corona?

SolmeX CE Study What is SolmeX? - Science Background -

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 38

Page 39: Parameter Analysis of a Concurrent Engineering Satellite Study

SolmeX CE Study What is SolmeX: Solar Magnetism Explorer

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 39

Page 40: Parameter Analysis of a Concurrent Engineering Satellite Study

Parameter Graphs – Launch Mass

> D. Quantius > Parameter Analysis of a Concurrent Engineering Satellite Study • OSE4, Bremen, Germany > 2017 DLR.de • Chart 40