45
Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1 , Andrea Lini 1 , Milt Ostrofsky 2 , Suzanne Levine 3, Neil Kamman 4 1 Department of Geology, University of Vermont 2 Allegheny College, Biology Department 3 Rubenstein School of Environment and Natural Resources, University of Vermont 4 Vermont Department of Environmental Conservation, Water Quality Division

Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Embed Size (px)

Citation preview

Page 1: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Paleolimnology as a Tool for Interpreting Ecosystem Changes

within Freshwater Lakes

Paleolimnology as a Tool for Interpreting Ecosystem Changes

within Freshwater Lakes

Heather Burgess1, Andrea Lini1, Milt Ostrofsky2, Suzanne Levine3, Neil Kamman4

1 Department of Geology, University of Vermont2 Allegheny College, Biology Department 3 Rubenstein School of Environment and Natural Resources, University of Vermont4 Vermont Department of Environmental Conservation, Water Quality Division

Heather Burgess1, Andrea Lini1, Milt Ostrofsky2, Suzanne Levine3, Neil Kamman4

1 Department of Geology, University of Vermont2 Allegheny College, Biology Department 3 Rubenstein School of Environment and Natural Resources, University of Vermont4 Vermont Department of Environmental Conservation, Water Quality Division

Page 2: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

ObjectivesObjectives

• To determine pre-settlement trophic conditions in Lake Champlain

• To document changes in trophic state and algal assemblages since European settlement

• To relate these changes to anthropogenic disturbances within the watershed

• To determine pre-settlement trophic conditions in Lake Champlain

• To document changes in trophic state and algal assemblages since European settlement

• To relate these changes to anthropogenic disturbances within the watershed

Page 3: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Significance of StudySignificance of StudyTo better understand:• Baseline trophic state of Lake

Champlain • Anthropogenic impacts on lake

ecology• Provide information for

restoration and management

To better understand:• Baseline trophic state of Lake

Champlain • Anthropogenic impacts on lake

ecology• Provide information for

restoration and management

Page 4: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Why are Lake Sediments Important?

Why are Lake Sediments Important?

Preserve information about lake history, specifically:

• Land-use changes in watershed

• Ecological changes in lake and watershed

Preserve information about lake history, specifically:

• Land-use changes in watershed

• Ecological changes in lake and watershed

Page 5: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

ProxiesProxies

• Organic Carbon

• Total Nitrogen

• C/N

• Stable Carbon Isotopes

• Paleopigments

• P, Si, metals

• Diatom Assemblages

• Organic Carbon

• Total Nitrogen

• C/N

• Stable Carbon Isotopes

• Paleopigments

• P, Si, metals

• Diatom Assemblages

Page 6: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Total Organic Carbon (%C)Total Organic Carbon (%C)

• Total Organic Carbon (TOC)Proxy for organic matter

• Primary productivity• Dilution• Preservation

• Total Organic Carbon (TOC)Proxy for organic matter

• Primary productivity• Dilution• Preservation

BBBB

BBBBB

BBBBBB

BBBBB

BBBB

BBBB

BB

BBB

BBBBBB

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

De

pth

(cm

)

B %C

Total Organic Carbon (%)

Page 7: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

C/N RatioC/N Ratio

• Indicative of organic

matter source

• C/N algae <10

• C/N terrestrial >20

• Indicative of organic

matter source

• C/N algae <10

• C/N terrestrial >20

FFFFFFFFFFFFFFF

FF

FF

FF

FFF

FFFF

FF

FFFFF

FFF

F45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10

De

pth

(cm

)

F c/n

Page 8: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Stable IsotopesStable Isotopes• Are naturally occurring• Do not radioactively decay• Reported using the ‘ notation’ ‰ = [(R sample/R standard) -1] x 1000

– where ‘R’ is the ratio of heavy to light isotopes (e.g. 13C/12C)

• Are naturally occurring• Do not radioactively decay• Reported using the ‘ notation’ ‰ = [(R sample/R standard) -1] x 1000

– where ‘R’ is the ratio of heavy to light isotopes (e.g. 13C/12C)

Less of the heavier isotopes

More of the heavier isotopes

0- ‰ + ‰

Page 9: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Stable Carbon Isotopes and Fractionation

Stable Carbon Isotopes and Fractionation

• Natural abundance of stable carbon isotopes– 12C 98.9%– 13C 1.1%

• Organisms preferentially take up 12C– Organic matter depleted in 13C

• Amount of fractionation based on:– Photosynthetic Pathway– Carbon Availability

• Natural abundance of stable carbon isotopes– 12C 98.9%– 13C 1.1%

• Organisms preferentially take up 12C– Organic matter depleted in 13C

• Amount of fractionation based on:– Photosynthetic Pathway– Carbon Availability

Page 10: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Oligotrophic System

Eutrophic System

13Carbon

-27‰-30‰ -24‰

ALGAE

ALGAE

Incr

easi

ng p

rodu

ctiv

ity

Incr

easi

ng p

rodu

ctiv

ity

Ter

rest

rial P

lant

s

Stable Carbon Isotopes and Productivity Change

Stable Carbon Isotopes and Productivity Change

• High productivity– Less available DIC– Less fractionation– Algae/OM less negative

• Low productivity– More available DIC– More fractionation– Algae/OM more negative

• High productivity– Less available DIC– Less fractionation– Algae/OM less negative

• Low productivity– More available DIC– More fractionation– Algae/OM more negative

Page 11: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Sediment ChronologySediment Chronology

•Fundamental to Paleolimnology–Determine rates of processes/fluxes–Link disturbance to sediment archive–Determine synchronicity of events

•210Pb

•14C–Extrapolate 210Pb dates, use 14C to constrain oldest core dates

•Fundamental to Paleolimnology–Determine rates of processes/fluxes–Link disturbance to sediment archive–Determine synchronicity of events

•210Pb

•14C–Extrapolate 210Pb dates, use 14C to constrain oldest core dates

Page 12: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

PaleopigmentsPaleopigments

Indicative of :–Total algal abundance

–Specific algal types

–Paleoproductivity

Indicative of :–Total algal abundance

–Specific algal types

–Paleoproductivity

Beta Carotene

EE

EE

EE

EE

EE

EEEEEE

EEEEEEEEEEEEEEEEEE

EEEEE

EEEEEEEE

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 20 40 60 80 100 120 140D

ep

th (

cm)

Page 13: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

PhosphorusPhosphorus

• Increases due to

–Cultural inputs

–Upward migration

–Biological uptake

• Increases due to

–Cultural inputs

–Upward migration

–Biological uptake

33

33

333

33

33

33

33

33

33

33333333333333333333333333333333333333333333

70

60

50

40

30

20

10

0

0 0.5 1 1.5 2 2.5 3

Page 14: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Biogenic SilicaBiogenic Silica

• Diatoms, chrysophytes

• Indicator of diatom biomass

• Diatoms, chrysophytes

• Indicator of diatom biomass

666666 66666 6666

6

6

6

6

6

6

6

6

6

70

60

50

40

30

20

10

0

0 5 10 15 20 25 30 35 40 45 50

From: Academy of Natural Sciences

Page 15: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Field Methods-SummerField Methods-Summer

Page 16: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Field Methods- WinterField Methods- Winter

Page 17: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Glew gravity corePreserved sediment-water interface

Glew gravity corePreserved sediment-water interface

Piston corePiston core

Page 18: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Lab MethodsLab Methods

C/N ratios

%C and %N

Elemental Analysis

Freeze dried samples

13C

Isotopic

Analysis

Paleo-pigments and

Soft Algae

Nutrients (P, Silica)

Sediment Chronology (210Pb & 14C)

Other

AnalysesOther

Analyses

Historical Record Search

Page 19: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Case Study: Case Study: Lake ChamplainLake Champlain

Case Study: Case Study: Lake ChamplainLake Champlain

Page 20: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Results and Preliminary Interpretations

Results and Preliminary Interpretations

Savage IslandB

BB

BB

BBBBBBBBBBB

BB

BBBBB

BBB

BB

BB

BBBBB

BBBB

BBBB

BB

BBBBB

BB

BB

BBB

BB

BBBB

BBB

BB

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJ

JJ

JJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJ

JJJ

JJJ

JJJ

JJJJJJJJJJJJJ

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FF

FF

FF

FF

FFFFFFFF

FFFFFF

FFFF

FFFF

FFFFFFFFFFFFF

FF

FFFFF

FFFFF

FFFFF

FF

FF

-28

-27.

5 -27

-26.

5 -26

-25.

5-2

5-2

4.5 -24

FFFF

FF

FFF

FFFF

FFF

FF

FFFFF

FFF

FF

FF

FF

FF

FFF

FF

FFFF

FF

FF

FF

FFF

FF

FF

FF

FF

FF

FFF

FF

F70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

1 2 3 4 5 6 7 8 910 11 12 13 14 15

Savage IslandB

BB

BB

BBBBBBBBBBB

BB

BBBBB

BBB

BB

BB

BBBBB

BBBB

BBBB

BB

BBBBB

BB

BB

BBB

BB

BBBB

BBB

BB

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJ

JJ

JJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJ

JJJ

JJJ

JJJ

JJJJJJJJJJJJJ

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FF

FF

FF

FF

FFFFFFFF

FFFFFF

FFFF

FFFF

FFFFFFFFFFFFF

FF

FFFFF

FFFFF

FFFFF

FF

FF

-28

-27.

5 -27

-26.

5 -26

-25.

5-2

5-2

4.5 -24

FFFF

FF

FFF

FFFF

FFF

FF

FFFFF

FFF

FF

FF

FF

FF

FFF

FF

FFFF

FF

FF

FF

FFF

FF

FF

FF

FF

FF

FFF

FF

F70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

1 2 3 4 5 6 7 8 910 11 12 13 14 15

Crown Point

BBB

BB

BB

BBBBBBBBBBB

BBB

BBBBBBBBBBBBBBBBBBB

BBBBBBB

BB

BBBBBBBB

BB

BBB

B

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJJ

JJ

JJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJ

JJJJJ

J

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

HHHHHHHHH

HHHHHHHHH

HH

HHHHH

HHH

HHHHHHHHHHHH

HHHHHHHH

HHHHHHHHH

HH

HH

HH

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

FF

FF

FF

FF

FFFFFFFFFFFF

FFFF

FF

FF

FFF

FF

FFF

FFFFFF

FF

FFFF

FFFFFF

FFF

FFF

FF

-29

-28.

5 -28

-27.

5 -27

-26.

5 -26

-25.

5 -25

Crown Point

BBB

BB

BB

BBBBBBBBBBB

BBB

BBBBBBBBBBBBBBBBBBB

BBBBBBB

BB

BBBBBBBB

BB

BBB

B

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJJ

JJ

JJ

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJ

JJJJJ

J

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

HHHHHHHHH

HHHHHHHHH

HH

HHHHH

HHH

HHHHHHHHHHHH

HHHHHHHH

HHHHHHHHH

HH

HH

HH

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

FF

FF

FF

FF

FFFFFFFFFFFF

FFFF

FF

FF

FFF

FF

FFF

FFFFFF

FF

FFFF

FFFFFF

FFF

FFF

FF

-29

-28.

5 -28

-27.

5 -27

-26.

5 -26

-25.

5 -25

Cole Bay

BBBB

BBBBB

BBBBBB

BBBBB

BBBB

BBBB

BB

BBBBB

B

B

B

B

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

als

(cm

)

JJJJ

JJJJJ

JJJ

JJJJJJJJJJJJ

JJJJJJJJJJJ

J

J

J

J

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FFF

FFFF

FFFFF

FFFFF

FFF

FF

FF

FFFF

FF

FFF

FF

F

F

F

F

-29

-28.

5-2

8-2

7.5

-27

-26.

5-2

6-2

5.5

-25

FFFFFFFFFFFFFFF

FFFFF

FFFF

FFFF

FFFFFFF

F

F

F

F

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

11

111

1111

11

11

1111

11

11

1

45

40

35

30

25

20

15

10

5

0

00.

010.

020.

030.

040.

050.

060.

070.

080.

09 0.1

0.11

0.12

Cole Bay

BBBB

BBBBB

BBBBBB

BBBBB

BBBB

BBBB

BB

BBBBB

B

B

B

B

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

als

(cm

)

JJJJ

JJJJJ

JJJ

JJJJJJJJJJJJ

JJJJJJJJJJJ

J

J

J

J

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FFF

FFFF

FFFFF

FFFFF

FFF

FF

FF

FFFF

FF

FFF

FF

F

F

F

F

-29

-28.

5-2

8-2

7.5

-27

-26.

5-2

6-2

5.5

-25

FFFFFFFFFFFFFFF

FFFFF

FFFF

FFFF

FFFFFFF

F

F

F

F

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

11

111

1111

11

11

1111

11

11

1

45

40

35

30

25

20

15

10

5

0

00.

010.

020.

030.

040.

050.

060.

070.

080.

09 0.1

0.11

0.12

Point Au RocheBBB

BBB

BBB

BB

BB

BB

BBB

BBBBBBBBBBBBBBBBBB

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJ

JJ

JJ

JJJ

JJJ

JJJ

JJJJJJJJJJJJJJJJJJJJJ

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FFF

FF

FF

FF

FF

FFFFFFFF

FF

FFFFFF

FFFF

FFFFF

-28

-27.

5-2

7-2

6.5

-26

-25.

5-2

5-2

4.5

-24

HHHHHHHHHHHHHHHH

HHHHH

HHHHHHHHHHHHHHH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11

11111111

11

1111111

11

1

40

35

30

25

20

15

10

5

0

0

0.02

0.04

0.06

0.08 0.1

0.12

Point Au RocheBBB

BBB

BBB

BB

BB

BB

BBB

BBBBBBBBBBBBBBBBBB

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

Dep

th In

terv

al (c

m)

JJ

JJ

JJ

JJJ

JJJ

JJJ

JJJJJJJJJJJJJJJJJJJJJ

00.

10.

20.

30.

40.

50.

60.

70.

80.

9 1

FFF

FF

FF

FF

FF

FFFFFFFF

FF

FFFFFF

FFFF

FFFFF

-28

-27.

5-2

7-2

6.5

-26

-25.

5-2

5-2

4.5

-24

HHHHHHHHHHHHHHHH

HHHHH

HHHHHHHHHHHHHHH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11

11111111

11

1111111

11

1

40

35

30

25

20

15

10

5

0

0

0.02

0.04

0.06

0.08 0.1

0.12

BBB

BBBB

BBB

BB

BBB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

De

pth

Inte

rva

l (cm

)

JJ

JJJJJJJ

JJJJJJJ

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

00

.10

.20

.30

.40

.50

.60

.70

.80

.9 1

FF

FFF

FF

FF

FF

FFF

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

-28

-27

.5-2

7-2

6.5

-26

-25

.5 -25

-24

.5-2

4

HHHHHHHHHHHHHHHHHHHHHHHHHH

HHH

HHHHH

0 1 2 3 4 5 6 7 8 91

011 1

21

31

41

5

11111

111111

11111

111

11

11

11

111111111

55

50

45

40

35

30

25

20

15

10

5

0

00

.01

0.0

20

.03

0.0

40

.05

0.0

60

.07

0.0

80

.09

0.1

0.1

10

.12

Mallett's Bay

BBB

BBBB

BBB

BB

BBB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

De

pth

Inte

rva

l (cm

)

JJ

JJJJJJJ

JJJJJJJ

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

00

.10

.20

.30

.40

.50

.60

.70

.80

.9 1

FF

FFF

FF

FF

FF

FFF

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

-28

-27

.5-2

7-2

6.5

-26

-25

.5 -25

-24

.5-2

4

HHHHHHHHHHHHHHHHHHHHHHHHHH

HHH

HHHHH

0 1 2 3 4 5 6 7 8 91

011 1

21

31

41

5

11111

111111

11111

111

11

11

11

111111111

55

50

45

40

35

30

25

20

15

10

5

0

00

.01

0.0

20

.03

0.0

40

.05

0.0

60

.07

0.0

80

.09

0.1

0.1

10

.12

Mallett's Bay

Page 21: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Point Au Roche

Savage Island

Cole BayCrown Point

Mallett’s Bay

Study Sites

MissisquoiBay

St. AlbansBay

(VT DEC)

(VT DEC)

(VT DEC)

Page 22: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Crown Point

Point Au Roche

Savage Island

Cole Bay

Mallett’s Bay

Crown Point

Page 23: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

BB

BB

BB

BB

BBB

BBB

BBBB

BB

BBBBBBBB

BBBBBBBBBBBB

BBB

BBBB

BB

BBB

BBBB

BB

BB

BB

B

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

JJJ

JJ

JJ

JJ

JJJJJ

JJJJJJJ

JJ

JJJJJJJJJJJJJJJJJ

JJJJJJJ

JJJJJ

JJJ

JJ

JJ

JJ

JJ

0 0.1 0.2 0.3 0.4 0.5 0.6

HH

HHHHHH

HHH

HHH

HHHH

HH

HH

HHH

HH

HH

HH

HHHHHHHHH

HHHH

HHH

HH

HHHH

HHHH

HH

HHHH

0 1 2 3 4 5 6 7 8 9 10

FF

FF

FF

FF

FFFFFF

FFF

FFF

FFFF

FFF

FFF

FFFF

FFF

FFFFFF

FF

FFFF

FFFFFF

FF

FFF

FF

F-3

0

-29

.5

-29

-28

.5

-28

-27

.5

-27

-26

.5

-26

-25

.5

-25

Total Organic Carbon Total Nitrogen C/N Ratio

Stable Carbon Isotope

Crown PointCrown Point

1982

1849

1958

2002

1781

Page 24: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Point Au Roche

Savage Island

Cole BayCrown Point

Mallett’s Bay

Cole Bay

Page 25: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

BBBB

BBBBB

BB

BBB

BBBBB

BB

BBB

BB

BB

BB

BB

BBB

B

B

B

B

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B Carbon

JJJJ

JJJJJ

JJJ

JJJ

JJJ

JJ

JJJJ

JJJJ

JJ

JJ

JJJ

J

J

J

J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

J Nitrogen

HH

HHHHHHHH

HHHH

HHH

HH

HH

HHH

HH

HH

HH

HHHHH

H

H

H

H

0 2 4 6 8 10 12

H C/N

Cole BayCole BayTotal Organic

Carbon Total Nitrogen C/N RatioStable Carbon

Isotope

FFF

FFFF

FFFFF

FFFFF

FFF

FF

FF

FF

FF

FF

FFF

FF

F

F

F

F-3

0

-29

.5

-29

-28

.5

-28

-27

.5

-27

-26

.5

-26

-25

.5

-25

F d13C

2000

1959

1980

1917

1811

1760

1711

Page 26: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Point Au Roche

Savage Island

Cole BayCrown Point

Mallett’s Bay

Mallett’s Bay

Page 27: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Mallett’s BayMallett’s Bay

Total Organic Carbon

Total Nitrogen C/N Ratio Stable Carbon Isotope

JJ

JJJJ

JJ

JJ

JJ

JJJ

JJJ

JJ

JJJ

JJJJ

JJJJ

JJ

J

0 0.1 0.2 0.3 0.4 0.5 0.6

BBB

BBB

BB

BB

BB

BBB

BB

BB

BB

BB

BBBB

BBBB

BBB

60

50

40

30

20

10

0

0 1 2 3 4 5 6

HH

HHHHHH

HH

HH

HHH

HH

HHH

HH

HH

HH

HHH

HHH

HH

0 2 4 6 8 10 12

FF

FFF

FF

FF

FF

FF

FF

FFF

FF

FF

FF

FFFF

FF

FFF

F

-27.5 -27 -26.5 -26 -25.5 -25 -24.5 -24

2001

1996

1979

1964

1926

1859

1819

Page 28: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Point Au Roche

Savage Island

Cole BayCrown Point

Mallett’s Bay

Savage Island

Page 29: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

FF

FF

FF

FF

FF

FFFFFFF

FFFFFF

FFFF

FFFF

FFF

FFFFFFFFFFFFF

FFFF

FF

FFFFFFFFFF

-30 -29 -28 -27 -26 -25 -24

Savage IslandSavage Island

BB

BBB

BBBB

BBB

BBBB

BB

BBBBB

BBB

BB

BB

BBB

BB

BB

BB

BBBB

BB

BB

BB

BBB

BB

BBB

BB

BBB

B65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

JJ

JJ

JJJ

JJJJJ

JJ

JJ

JJ

JJJ

JJ

JJJ

JJ

JJJJJ

JJ

JJJ

JJJ

JJJ

JJ

JJ

JJ

JJ

JJ

JJ

JJJ

JJJ

J

0 0.050.10.150.20.250.30.350.4 0.450.5

HHHH

HH

HHH

HHHH

HHH

HH

HHHHH

HHH

HH

HH

HH

HH

HH

HH

HHHHH

HH

HH

HH

HHH

HH

HH

HH

HH

HH

H

0 2 4 6 8 10 12 14

Total Organic Carbon Total Nitrogen C/N Ratio

Stable Carbon Isotope

1991

1840

1668

Page 30: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Modified from LCBP Atlas

Point Au Roche

Savage Island

Cole BayCrown Point

Mallett’s Bay

Point Au Roche

Page 31: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

BBB

BB

BB

BB

BB

BB

BB

BBB

BBBBBBBBBBBBBBBBBB35

30

25

20

15

10

5

0

0 1 2 3 4 5 6

JJ

JJ

JJ

JJJ

JJ

JJ

JJ

JJJ

JJJJJJJJJJJJJJJJJJ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

HH

HHHHH

HH

HHHH

HHH

HHHH

HHH

HHHHHHHHH

HHHH

0 1 2 3 4 5 6 7 8 9 10

FF

FF

FFF

FF

FF

FFFFFFFF

FF

FFFFFF

FFFF

FFFFF

-30 -29 -28 -27 -26 -25 -24

2002

1984

1957

1917

1845

1764

Point Au RochePoint Au RocheTotal Organic

Carbon Total Nitrogen C/N RatioStable Carbon

Isotope

Page 32: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Nutrient and Pigment Datafor

Crown Point

Nutrient and Pigment Datafor

Crown Point

BB

BB

BB

BB

BBB

BBB

BBBB

BB

BBBBBBBB

BBBBBBBBBBBB

BBB

BBBB

BB

BBB

BBBB

BB

BB

BB

B

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

Total OrganicCarbon

HH

HHHHHH

HHH

HHH

HHHH

HH

HH

HHH

HH

HH

HH

HHHHHHHHH

HHHH

HHH

HH

HHHH

HHHH

HH

HHHH

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10

C/N

F FFF

F FF

FFFFFFF

FFFF

FF

FFFF

F FF

FF

FF

FFFFFF

FFFFFF

FF

FFFF

F FFFFF

FF

FFF

FF F

-29 -28.5 -28 -27.5 -27 -26.5 -26 -25.5 -25

d13C Biogenic Silica

66

66

66

66

66

66

666

6

6

6

6

6

6

6

6

6

0 5 10 15 20 25 30 35 40 45 50

Total Phosphorus

33

33

333

33

33

33

33

33

33

33333333333333333333333333333333333333333333

0 0.5 1 1.5 2 2.5 3

DiatoxanthinMyxoxanthin2002

1958

1804

PP

PP

PP

PPPP

PPPP

PPP

PP

PP

PP

PPP

PP

PP

PP

PPP

PP

PP

PPPPPPPP

0 20 40 60 80 100 120

PP

PP

PP

PP

PP

PPPP

PP

PP

PPPPP

PPPPPPP

PPPPP

PP

PP

PPP

PP

PPP

0 20 40 60 80 100 120

Page 33: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Watershed DevelopmentWatershed DevelopmentDate Disturbance Geochemical

Trend

Prior to 1780 Pre-settlement Stable

1780- early 1900

Settlement, Deforestation,

Agriculture

Trend toward Eutrophication

1950 Chemical Fertilizer,

Development

More rapid trend toward

eutrophication

Page 34: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Summary Summary

• Very little change prior to 20th century– Post-1950s

• Overall increase in organic matter deposition in upper portion of cores

• Possibly indicative of increased productivity

• Very little change prior to 20th century– Post-1950s

• Overall increase in organic matter deposition in upper portion of cores

• Possibly indicative of increased productivity

Page 35: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Possible Implications for Lake Management

Possible Implications for Lake Management

•Historical variability

•Rates of change

•Lag time

•Effects of remediation

•Historical variability

•Rates of change

•Lag time

•Effects of remediation

Page 36: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

ThanksThanks• USGS• Neil Kamman and the VT DEC• Vermont Geological Society• Andrea Lini, Milt Ostrofsky and Suzanne

Levine• University of Vermont Geology Department

• USGS• Neil Kamman and the VT DEC• Vermont Geological Society• Andrea Lini, Milt Ostrofsky and Suzanne

Levine• University of Vermont Geology Department

Page 37: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine
Page 38: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine
Page 39: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Stable Carbon Isotopes and Bioavailable Phosphorus

Stable Carbon Isotopes and Bioavailable Phosphorus

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

From Schleske and Hodell, 1995

Page 40: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Savage Island Total Phosphorus

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Total Phosphorus mg/gdry sediment

Page 41: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Diatom AssemblagesDiatom Assemblages

• Algae with siliceous cell walls• Different assemblages based on:

– Location in lake, i.e. planktonic vs. benthic– Productivity, pH, DOC within lake

• Therefore useful indicators of environmental conditions

through time

• Algae with siliceous cell walls• Different assemblages based on:

– Location in lake, i.e. planktonic vs. benthic– Productivity, pH, DOC within lake

• Therefore useful indicators of environmental conditions

through time

From: Academy of Natural Sciences

Page 42: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Trophic Status and

Phosphorus

Trophic state often based on phosphorus concentration (mg/l)

•Oligotrophic 0-10

•Mesotrophic 10-20

•Eutrophic >20

Trophic state often based on phosphorus concentration (mg/l)

•Oligotrophic 0-10

•Mesotrophic 10-20

•Eutrophic >20

Page 43: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

BB

BB

BB

BB

BBB

BBB

BBBB

BB

BBBBBBBB

BBBBBBBBBBBB

BBB

BBBB

BB

BBB

BBBB

BB

BB

BB

B

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

Total OrganicCarbon

HH

HHHHHH

HHH

HHH

HHHH

HH

HH

HHH

HH

HH

HH

HHHHHHHHH

HHHH

HHH

HH

HHHH

HHHH

HH

HHHH

65

60

55

50

45

40

35

30

25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10

C/N

F FFF

F FF

FFFFFFF

FFFF

FF

FFFF

F FF

FF

FF

FFFFFF

FFFFFF

FF

FFFF

F FFFFF

FF

FFF

FF F

-29 -28.5 -28 -27.5 -27 -26.5 -26 -25.5 -25

d13C Biogenic Silica

66

66

66

66

66

66

666

6

6

6

6

6

6

6

6

6

0 5 10 15 20 25 30 35 40 45 50

Total Phosphorus

33

33

333

33

33

33

33

33

33

33333333333333333333333333333333333333333333

0 0.5 1 1.5 2 2.5 3

PP

PPP

PP

PP

PP

PPPP

PP

PP

PPPPP

PPPPPPP

PPPPP

PP

PP

PPP

PP

PPP

0 20 40 60 80 100 120

Diatoxanthin

PP

PP

PP

PPPPP

PPPP

PPP

PP

PP

PP

PPP

PP

PP

PP

PPP

PP

PP

PPPPPPPP

0 20 40 60 80 100 120

Myxoxanthin

Page 44: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

Stable Carbon IsotopesStable Carbon Isotopes

• Indicative of:–Changes in productivity

–Source of terrestrial or

aquatic OM

• Indicative of:–Changes in productivity

–Source of terrestrial or

aquatic OM

FFFF

FFFFFFFFFFFFF

FF

FF

FFFFFF

FFFFF

FFFFFF

45

40

35

30

25

20

15

10

5

0

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

De

pth

(cm

)d 13 Carbon

Page 45: Paleolimnology as a Tool for Interpreting Ecosystem Changes within Freshwater Lakes Heather Burgess 1, Andrea Lini 1, Milt Ostrofsky 2, Suzanne Levine

C/N

C/N ratio vs. 13CC/N ratio vs. 13C1

3C

C/N