13
2  Basic  Bioreactor  Concepts 2 1 Information for  Bioreactor  Modelling Both physical and biological information are required in the design and interpretation of biological reactor performance, as indicated in Fig.  2.1. Physical  factors that  affect  the  general hydrodynamic environment  of the bioreactor include such parameters as liquid flow pattern and circulation time, a ir  distribution efficiency  and gas  holdup volume, oxygen mass transfer rates, intensity of  mixing  and the  effects  of  shear. These factors  are  affected  by the bioreactor geometry  a n d  that  of the  agitator (agitator speed,  effect  o f  baffles) and by  physical property effects, such  a s  liquid viscosity  a n d  interfacial tension. Both can have a large  effect  on gas bubble size and a corresponding effect on both liquid and gas phase hydrodynamics. The biokinetic input involves such factors  as cell growth rate, cell productivity and substrate uptake rate. Often this information may  come  from  laboratory data, obtained under conditions which a re  often  fa r  removed  from  those actually existing  in the  large scale bioreactor. Although  shown  a s  separate inputs  in  Fig.  2.1,  there are,  in  fact, considerable interactions between  th e  bioreactor hydrodynamic conditions  and the  cell biokinetics, morphology  a n d  physiology,  and one of the  arts  of  modelling  is to make proper allowance  fo r  such effects. Thus  in the  large scale bioreactor, some  cells  m ay  suffer  local starvation of essential nutrients owing to a combination of  long  liquid circulation time and an inadequate rate of nutrient supply,  caused  by  inadequate mixing  o r  inefficient mass transfer. Agitation  a nd shear  effects  c an  affect  cell morphology  an d hence liquid viscosity, which will also vary with cell density. This means that  th e  processes  of  cell growth  affect the  bioreactor hydrodynamics  in a  very complex  a n d  interactive manner. Changes in the cell physiology, such that the cell processes are switched from production  o f  further biomass  to  that  o f a  secondary metabolite  o r  product,  c a n also  be  affected  b y  selective limitation  on the  quantity  a n d  rate  o f  supply  o f some essential nutrient in the medium. This can in turn be influenced by the bioreactor hydrodynamics and also by the mode of the operation of the bioreactor. T h e  is  but as  in when  all the  information  is  combined successfully  in a  realistic  an d  well founded  Bioreactor Model the results obtained can be quite impressive and Biological Reaction  Engineering Second Edition I. J. Dunn, E. Heinzle, J. Ingham, J. E. Pfenosil Copyright  ©  2003  WILEY-VCH  Verlag GmbH  Co. KGaA,  Weinheim ISBN:  3-527-30759-1

pages55_66

Embed Size (px)

Citation preview

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 1/12

2  Basic Bioreactor Concepts

2 1 Information for Bioreactor Modelling

Both phy sical and biological in form ation are required in the design andinterpretation of biological reactor performance, as indicated in Fig.  2.1.

Physical  factors that  affect  the  general hydrodynamic environment  of thebioreactor include such parameters as liquid flow pattern and circulation time,air  distribution efficiency  and gas  holdup volume, oxygen mass transfer rates,intensity of  mixing  and the  effects  of  shear. These factors  are  affected  by thebioreactor geometry  and  that  of the  agitator (agitator speed,  effect  of  baffles)and by  physical property effects, such  as  liquid viscosity  and  interfacial tension.Both can have a large  effect  o n gas bubb le size and a correspond ing effect on

both liquid an d gas phase hydro dyn am ics. The biokinetic input involves suchfactors  as cell g row th rate, cell produ ctivity and substrate uptake rate. Often thisinformation may  come  from  laboratory data, obtained under conditions whichare  often  far  removed  from  those actually existing  in the  large scale bioreactor.

Although  shown as  separate inputs in Fig.  2.1,  there are,  in  fact, considerableinteractions between  th e  bioreactor hydrodynamic conditions  and the  cellbiokinetics, morphology  and physiology,  and one of the  arts  of  modelling  is tomake proper allowance  for  such effects. Thus  in the  large scale bioreactor,some  cells  may  suffer  local starvation of essential nutrients owing to acombination of  long  liquid circulation time and an inadequate rate of nutrient

supply,  caused  by  inadequate mixing  or  inefficient mass transfer. Agitation  andshear  effects  can  affect  cell morphology  an d  hence liquid viscosity, wh ich willalso vary with cell density. This means that  the  processes  of  cell growth  affectthe  bioreactor hydrodynamics  in a  very complex  and  interactive manner.Changes in the cell physiology, such that the cell processes are switched fromproduction  of fu rther biomass  to  that  of a  secondary metabolite  or  product,  canalso  be  affected  by  selective limitation  on the  quantity  and  rate  of  supply  ofsome essential nutrient in the medium. This can in turn be influenced by thebioreactor hy dro dy na m ics and also by the mode of the operation of thebioreactor.

The  overall problem  is  therefore very complex,  but as  seen  in  Figure 2.1,when  all the  information  is  combined successfully  in a  realistic  and  wellfounded  Bioreactor Model the results obtained can be quite impressive and

Biological Reaction   Engineering Second Edition I. J. Du nn, E. Heinzle, J. Ing ham , J. E. Pfenosil

Copyright  © 2003 W I L E Y - V C H  Verlag GmbH  Co. KGaA, W einhe im

ISBN: 3-527-30759-1

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 2/12

56 2 Basic Bioreactor Concepts

may  enable such factors as cell and product production rates, productselectivities, optimum process control  and  process optimization  to bedetermined with some considerable degree of confidence.

Physical As pects

 flow  patterns, residence

time, m ass transfer)

Biokinetics

 order, inhibition,pH,

temperature)

Production rate

Selectivity

Control

Figure  2 1 Information  fo r  bioreactor modelling.

  Bioreactor Operation

The rates  of  cell growth  and  product formation  are, in the  main, dependent  onthe  conc entration levels  of  nutrients  and  products within  the  bioreactor.  Theconce ntration dependen cies of the reaction or prod uction rate are  often  quitesimple,  but may  also  be  very complex.  The  magnitude  of the  rates, however,depend upo n the level of conc entrations, and it will be seen that con cen trationlevels within the bioreactor depend very muc h on its type and mode of

operation.  Differing  modes of operation for the bioreactor can therefore leadto differing rates of cell growth, to   differing  rates of product formation andhence to substantially  differing  productivities.

Generally, the various types of bioreactor can be classified as either stirredtank or tubular and column devices and according to the mode of operation asbatch, semi-continuous  or  continuous operation.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 3/12

2.2  Bioreactor Operation 57

2 2 1  Batch Op eration

Most industrial bioreactors are operated under batch conditions. In this, thebioreactor is first  charged with med ium, inoculated  with  cells, and the cells areallowed to grow for a  sufficient  time, such that the cells achieve the requiredcell density  or  optimum product concentrations.  The  bioreactor contents  aredischarged, and the bioreactor is prepared for a  fresh  charge of medium.Operation is thus characterized by three periods of time: the filling period, thecell growth  and  cell production period  and the  final  emptying period  asdepicted in Fig. 2.2. It is only during the reacting period, that the bioreactor isproductive. During the period of  cell  growth, strictly speaking, no additionalmaterial is either added to or removed   from  the bioreactor, apart  from  minoradjustments  needed  for  control  of pH or  foam, small additions  of  essentialprecursors, the removal of samples and, of course, a continuous supply of airneeded for aerobic fermentation. Concentrations of biomass, cell nutrients andcell products thus change continuously  with  respect to time, as the variousconstituents are either produced or consumed during the time course of thefermentation,  as seen in Fig. 2.3.

F i l l ing   Reacting  Emptying   Cleaning

Figure  2.2.  Periods  of  operation  for  batch reactors.

concentration

 ubstrate

biomass

product

time

Figure  2.3.  Concentration-t ime profi les during batchwise operation.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 4/12

  2  Basic Bioreactor Concepts

During  the reaction period, there are changes in substrate and productconce ntration with time, and the other time periods are  effectively  lost as

regards production.Since  there is no flow in or out of the bioreactor, du ring norm al operation,

the biomass and substrate balances both take the  form,

(Rate of accumulation within the reactor) = (Rate of production)

This will be expressed in more quantitative terms in Ch. 4.

Batch  reactors thus have the following characteristics:

1) Tim e-variant reaction conditions2)  Disco ntinuous production3)  Downtime  fo r  cleaning  and  filling

2 .2 .2  Semicontinuous or Fed  Batch   Operation

In   sem i-con tinuou s or fed batch operation, add itional substrate is fed into the

bioreactor, thus prolonging operation by providing an additional continuoussupply  of nutrients to the cells.  No material is removed  from  the reactor, apartfrom  normal sampling, and therefore the total quantity of material within thereactor will increase  as a  function  of  time. However  if the  feed  is  highlyconcentrated, then the reactor volume will not change much and can beregarded as essentially constant.

Figure  2.4.  Fed  batch bioreactor  configuration.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 5/12

2.2 Bioreactor Operation  59

Semi-continuous operation shares the same characteristics as pure batchoperation,  in  that concentration levels generally change with time  and  that somedowntime occurs during the initial charging and  final  discharge period at the

end of the process.The ability to m anipu late conc entration levels within the bioreactor by an

appropriate controlled feeding strategy confers  a  high degree  of  flexibility  tofed  batch  or  semi-continuous operation, since  differing  concentration levels  canbe utilized to manipulate the rates of reaction. In Fig. 2.4, both the volumetricfeeding  rate,  F, and the  feed substrate concentration  S Q may be constant  or may

vary  with time, giving the p ossibility  of such feeding strategies  as:

1.  Slow constant feeding, wh ich  can be  shown to  result  in  linear growthof  the total cell biomass.

2. Exponen tial feeding to maintain constant substrate concentration and,resulting in unlimited, exponential  cell growth.

3.  Feedback control of the feed rate, based on m on itorin g some keycomponent concentration.

The  important characteristics  of fed  batch operation  are therefore  as  follows:

1.  Extension  of  batch growth  or  product production  by  additionalsubstrate feeding.

2.  Possibility  of  operating with separate conditions  fo r  growth  andproduction phases.

3.  Con trol possibilities on feeding policies.

4. Developm ent of high biomass and product concentration.

For  fed-batch operation,  th e  cell  balance  follows  th e  same  form  as for  batchoperation, but since additional substrate feeding to the reactor now occurs, thesubstrate balance takes the form:

 Rate

<*  |  Substrate \  Substrate   > |accumulat ion  =  f d̂  [n)  _  consumption

V  of substrate  rate  )

Under  controlled conditions,  in  which th e  substrate concentration  is  maintainedconstant  or kept small, the accumulation term in the above equation will also be

small, with th e result that the  feed rate  of  substrate into  the  reactor will balanceth e  rate  of  consumption by  reaction.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 6/12

60 2 Basic B ioreactor Concepts

One other balance equation, however, is also necessary, i.e. the total massbalance,

f  Rate of accum ulation of   ̂ Mass flow rate of feed ^V   mass in the reactor 

= V to the reactor  )

which  for  constant density conditions reduces  to

(Rate  of  change  of  volume) =  (Volumetric rate  of  feeding)

Further extensions of fed batch operation are possible, such as the cyclic orrepeated  fe d  batch, which involves changing volume  with  a  filling  andemptying  period.  The  changing reactor concentrations  repeat  themselves with

each cycle. This operation has similarities w ith con tinuo us operation andapproaches most closely to continuous operation, when the amount withdrawnis  small and the cycle time is short. The simulation examples FEDBAT, Sec.8.1.3 and in Sec. 8.3 (VARVOL, PENFERM, PENOXY, ETHFERM , REPFED)allow   detailed investigations of fed batch performance to be made on thecomputer .

2 2 3  Continuous  Operation

In   continuous operation  fresh  medium is added continuously to the bioreactor,while at the  same time depleted  medium  is  continuously removed.  The  rates  ofaddition  and  removal  are  such that  the  volume  of the  reactor contents  ismaintained  constant. The depleted material, of course, contains any productsthat  have been excreted by the cells and, in the case of suspended-cell culture,also contains  effluent  cells  from  the bioreactor.

Continuous reactors  are of two main types, as indicated  in  Fig. 2.5,  and  thesemay   be considered either as discrete stages, as in the co ntinuous,  stirred-tank

bioreactor,  or as  differential devices,  as  represented  by the  continuous tubularor column reactor.

Continuous tank bioreactor  Continuous tubular bioreactor

Figure  2.5. The two  main types  of co ntinu ous reactors.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 7/12

2.2 Bioreactor Operation 61

A s show n later, these two  differing  forms  of  continuous reactor operation havequite  different  operational characteristics. Bo th how ever  are  characterized  byth e  fact  that after a short transient period, during which conditions within the

bioreactor change with time,  the bioreactor w ill then achieve  a  steady state. Thism eans that operating conditions, both with in the bioreactor and at thebioreactor outlet, then remain constant, as shown in Fig. 2.6.

ConcentrationStartupperiod

Steady state

time

Figure 2.6.  Startup  of a  continuous reactor.

Continuous  reactors, however, have found little use as biological reactors on aproduction scale, although there  are a few  im portant exam ples (Id's single-cellprotein  air  lift  process, w astew ater treatment  and the isomerization  of  corn sugarto fructose syrup). Frequent use is made of continuous reactors   in  thelaboratory  fo r  studying  the  kinetics  of  organism growth  and for  enzymereaction kinetics. This is because the resulting  form  of the balance equation,

leads  to an  easy method  for the  determination  of  reaction rate,  as  discussed  inCh. 4.The behavior of the two differing forms of continuous reactor, are best

characterized  by  their typical concentration profiles,  as  shown  in  Fig. 2.7.  Inthis  case, S is the concentration of any given reactant consumed, and P is theconcentration  of any  given product.

S o

Cone.

TankS o

Cone.

Tube

distance distance

Figure  2.7.  Profiles of substrate and product in steady state continuo us tank and tubu lar

reactors.

As seen,  th e  concentrations  in a  perfectly mixed tank  are  uniform, th roug hou t

the whole of the reaction vessel contents and are therefore identical to theconcentration  of the  effluent  stream.  In a  tubular reactor  the  reactantconcentration varies continuously, falling  from  a  high value  at the  inlet  to the

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 8/12

62 2  Basic Bioreactor Concepts

lowest concentration  at the  reactor outlet.  The  product concentration  rises  frominlet  to  outlet. These differences arise because  in the  tank reactor  the  enteringfeed  is continuo usly being mixed with the reactor bulk contents and therefore

being diluted by the tank conten ts. The feed to the tubula r reactor, however, isnot subject to m ixing and is transfo rm ed only by reaction, as material mov esdown  th e  reactor.

No real situation will exactly correspo nd  to the  above  idealized  cases  ofperfect  mixing or zero mixing (plug flow), although the actual behavior oftanks  an d  tubes tends  in the  limit towards  the  corresponding  idealized  model.The characteristics of continuous operation are as  follows:

1.  Steady state  after  an initial start-up period  (usually)2.  N o variation of concen trations with time

3.  Co nstan t reaction rate4.  Ease  of balancing  to  determine kinetics5.  N o dow n-time for cleaning,  filling,  etc.

The balance equations at steady state for a well-mixed tank reactor have theform

0 = (Input) -  (Output) + (Production)

since at steady-state  the rate of accumulation and therefore the rate of change iszero.

This equation predicts that  the  reaction rate causes  a  depletion  of  substratefrom  the feed condition to the outlet, (the product will increase) and that therate  of  production  can be  obtained  from  this simple balance:

(Rate of production) =  (Rate of output) -  (Rate of input)

For a non well-mixed reactor such as a tubular or column reactor, steady-stateimplies the same non-transient conditions, but now concentrations also   varywith  position. The same situation also applies to the case of a series of well-mixed tanks.

The balance  form  is then:0 = (Rate of input) -  (Rate of output) +  (Overall Rate of Production)

Here  the  overall rate  of  reaction  is  obtained  by  summing  or  integrating overevery part of the reactor volume.

The concentration characteristics of a tubular reactor, as shown in Fig. 2.7,are well app roxim ated by a series of tank reactors. Referrin g to Fig. 2.8, andmoving  downstream along the reactor cascade, the substrate concentrationdecreases stepwise from  tank to tank, while the product concentration increases

in  a  similar stepwise manner.  As the  number  of  tanks  in the  cascade increases,so the performance becomes more and more similar to that of a tubular reactor.In the case of a reaction, whose rate of reaction increases  with  increasing

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 9/12

2.2 Bioreactor Operation 63

substrate conc entration S, the mu ltiple tank config uration or a tubu lar reactorwould  thus have a kinetic advantage over that of a single tank. The same is true,in  the case of product inhibition kinetics, in  which  the rate would be lowered by

high product concentration, P. Substrate inhibition systems would be runpreferably in  single tanks, however, since then  the  substrate concentration  isalways at its lowest value.

Cone

distance

Figure 2.8.  Stirred tanks in series and their concentration  profiles.

A   calculation of the tank volume or  residence  time requirement involves theformulation  of the tank balance equations, as before and then the application ofthe equations, successively  from  tank to tank such that the effluent  from  thepreceding tank is the feed of the next and so on. Tank s-in-series bioreactoroperations are illustrated by the sim ulation ex amples TW OSTAG E, S TA GEDand  DEACTENZ  in  Sec. 8.4.

2 .2 .4  Summary  and  Comparison

The operating characteristics of the various reactor modes are sum m arized inTable  2.1.

The  important bioreactor operating parameters  will  depend  on the  mode  ofoperation. In batch operation, concentration levels can be varied by  adjustmentof  the  initial values, whereas  in  continuous  an d  semi-continuous operation,  the

concen tration levels depend on the feed rate and feed co ncentration. A sindicated p reviously , the m anne r in w hich the bioreactor is operated cantherefore give rise to  different  concentration levels and therefore differingproductivities.  The  consequent concentration profiles depend,  of  course,  on thereaction kinetics, which express the rate of reaction as a  function  of theconcentrations  of  reactants  and  products.

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 10/12

64 2 Basic  Bioreactor  Concepts

Table  2.1.  Summary of reactor modes.Mode of operation A dvantag es Disadvantages

Batch  Equipm ent simple. Suitable Do w ntime fo r  loading  andfor  small produc tion. cleaning. Reaction

conditions change  withtime.

Co ntinuo us Provides high production. Requires flow control.Better product quality  due  Culture may be unstableto   constant conditions. over long  periods.

Good  fo r  kinetic studies.

Fed batch Control of enviro nm ental Requires feeding strategy toconditions, e.g. substrate obtain  desired

concentration. concentrations.

Table 2.2 lists the main operating parameters for the three  differing  modes ofbioreactor operation.

Table  2.2. Operating variables for batch and continuous bioreactors.

Batch Con tinuous Sem icontinuous

Initial m edium composition Inlet m edium  Feed  and initial substrateand  inoculum com position comp osition

Tem perature, pressure Tem perature, pressure Tem perature, pressure

pH if  controlled  pH if  controlled  pH if  controlled

Reaction time Liquid flow rate Liquid  flow  rate

(residence time) (residence tim e)Aeration  rate

A eration rate Feeding rate and controlStirring rate pro gra m

Stirring  rateAeration rate

Stirring rate

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 11/12

2.2  Bioreactor Operation 65

The  foregoing discussion  of the  varying characteristics  of the  different  reactortypes and their concentration profiles allows a qualitative comparison of thevolume requirements for the  different  typ es of reaction, according to the

particular kinetics. For this it is first  necessary to consider the qualitative natureof  the basic forms of kinetic relationship: zero order,  first  order, product andsubstrate inhibition. The detailed  quantitative treatment of these kinetic  forms  isdealt with in Ch. 3.

The rate of a zero order reaction is independent of concentration. M an ybioreactions at high substrate concentrations  follow  zero order kinetics and aretherefore insensitive  to  concentration  and to the  effects  of  concentrationgradients. From   th e  kinetic viewpoint, therefore,  any  reactor type would  beequally suitable.

First order reaction  rates are  directly proportional  to concentration.

Bioreactions at low concentration are generally  first  order, and this would  favoroperation  in either  a batch  or a  tubular/column type reactor. This  is  becausereactant concentrations in such reactors are generally high overall and henc ethe overall rates of reaction are also consequently high. Hence the reactorvolume required  for a  given  duty  would generally  be  small.  (In the  case  of abatch reactor, this of course neglects the time lost for filling, em ptyin g andcleaning.)

A   reaction with substrate inhibition wo uld  be  best  run in a  tank  at lowsubstrate concentration, since the concentration wo uld be low throu gho ut thewhole  of the tank contents. Conversely, produ ct inh ibition wo uld be m orepronounced in tank reactors, since product concentration would be at itshighest. In this case, a tubular type reactor or batch reactor would be preferred.

Table 2.3.  Kinetic considerations  fo r  reactor choice.

ReactionKinetics

Zero order

First order

Substrateinhibition

Productinhibition

Production

triggered  byshift  inenvironment

Batch Tank

OK

Best

L ow initialconcentration

Best

OK for  temp-

erature-shift

ContinuousTanks-in-Series  orTubularOK

Best

L ow  tankconcentrations

Best

Possible

ContinuousSingle Tank

OK

Low  con-version onlyBest

Low  con-version only

Not suitable

Fed   Batch

L ow  con-

versionOK

Best

Low  con-version  only

Best  fo r  con-

centration-shift

8/12/2019 pages55_66

http://slidepdf.com/reader/full/pages5566 12/12

66  2 Basic  Bioreactor  Concepts

Table 2.3 compares the performance of batch tanks, continuous tubular ortanks-in-series  reactors  and  single continuous tank reactors.  A s  discussed  in

Sec. 4.2.1,  batch tank concentration-time profiles  are  exactly analogous  to thesteady state concentration-distance profiles obtained in continuo us tub ula rreactors.  In  terms  of  performance, therefore,  the  batch reactor would  be thesame  as a tube, wh en compared  on the  basis  of  equal batch time  in the  tank  andtime  of  passage through  the  tube. Tanks-in-series reactors,  as shown  in  Fig. 2.8,involve  step wise gradients, wh ich  in the  limit  are  very similar  to  those  ofcontinuous tubular  reactors,  hence, making their performance similar  to  that  ofa tubular reactor.  Owing to the high degree of mixing which leads to a uniformconcentration,  the  performance  of the  single continuous stirred tank reactor  isvery  different  to that of the other reactor types. An exact quantitative

comparison  can be  made using  th e  mass balance equations developed  in Ch. 4fo r  each reactor type.