48
P. Criqui, CNRS, PACTE-EDDEN ENERGY TRANSITION IN FRANCE AND DEEP DECARBONISATION SCENARIOS: EXPERIENCES AND AGENDA

P. Criqui , CNRS, PACTE-EDDEN

  • Upload
    maddy

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

Energy Transition in France and Deep Decarbonisation Scenarios: experiences and agenda. P. Criqui , CNRS, PACTE-EDDEN. A prelude to decarbonisation scenarios. Looking back: King Coal again !. Looking back: CO2 emissions after Kyoto. - PowerPoint PPT Presentation

Citation preview

Page 1: P.  Criqui , CNRS, PACTE-EDDEN

P. Criqui, CNRS, PACTE-EDDEN

ENERGY TRANSITION IN FRANCE AND DEEP

DECARBONISATION SCENARIOS: EXPERIENCES AND AGENDA

Page 2: P.  Criqui , CNRS, PACTE-EDDEN

A prelude to decarbonisation scenarios

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 2

Page 3: P.  Criqui , CNRS, PACTE-EDDEN

Looking back: King Coal again !

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

Production d'énergie primaire (Mtep)

Oil

Gas

Coal

Hydro

Nuclear

Other Ren

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 3

Page 4: P.  Criqui , CNRS, PACTE-EDDEN

Looking back: CO2 emissions after Kyoto

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

10 000

Emissions de CO2 (Mt)

US

France

Germany

United Kingdom

Japan

Brazil

China

India

Former Sov Union

European Union #

Kyoto

0

200

400

600

800

1 000

1 200

1 400

Emissions de CO2 (Mt)

Brazil

France

Germany

United Kingdom

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 4

Page 5: P.  Criqui , CNRS, PACTE-EDDEN

Looking forward: exploratory and normative scenarios

5

Source SHELL: Mountains and Oceans scenarios

Page 6: P.  Criqui , CNRS, PACTE-EDDEN

Looking forward: the plausible and the desirable¨ BaU: from 2000 to 2050,

population is multiplied by 1.5, GWP by 4 , TPES by 2; the O&G levelling-off induces the comeback of coal

0

5

10

15

20

25

2000 2010 2020 2030 2040 2050

Gto

e

Other Renew ablesBiomassNuclearCoal, ligniteNatural gasOil

World Primary consumption - BL

0

5

10

15

20

25

2000 2010 2020 2030 2040 2050

Gto

e

Other Renew ablesBiomassNuclearCoal, ligniteNatural gasOil

World Primary consumption

4°C 2°C

Source: POLES model, EDDEN

21 Février 2013 6P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 6

¨ A responsible climate policy requires: a lower total demand (-20% / BaU), a balanced energy supply mix and a massive CCS development

Page 7: P.  Criqui , CNRS, PACTE-EDDEN

Tools: IAMs in the FP7 AMPERE project

Source: Elmar Kriegler PIK, AMPERE Venice meeting, 23-25 May 2012

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 7

Page 8: P.  Criqui , CNRS, PACTE-EDDEN

FP7 AMPERE: Diagnostics

8

Source: Elmar Kriegler PIK, AMPERE Venice meeting, 23-25 May 2012

240 200

Page 9: P.  Criqui , CNRS, PACTE-EDDEN

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

-100%

-90% -80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

110%

120%

Cat. 2Cat. 3

Cat. 4

Cat. 1

Cat. 5

Cat. 6

Scenarios viewed from SPM T5 of IPCC-AR4

Em. 2050/2000

Global Regime

Europe Alone

Muddling Through

BaselineΔT°C

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 9

400 €/tCO2

40 €/tCO2

0 €/tCO2

Page 10: P.  Criqui , CNRS, PACTE-EDDEN

Philosophical background:the “Science and Policy Nexus”

¨ Extending on the Edenhofer and Kowarsch (2013) contribution on “Science and policy advice”, one can identify 4 types of visions:

1. Positivist-scientist: facts are facts and there is one best solution for any problem; scientists are the best collocated for taking the right decisions (Hans Jonas’ “government by the scientists”; in economics, W. Nordhaus with the Intertemporal Cost-Benefit Analysis of climate policies

2. Positivist-decisionist: there is one best solution, but in everyday’s life policy-makers are “muddling through” while arbitraging between scientific statements, industries’ short-term interests and social acceptability constraints

3. Constructivist-relativist: facts are entwined with value judgements and for many social scientists (“science studies”) every discourse is socially constructed; this applies to the scientific discourse that do not have a natural pre-eminence (B. Latour: we can politically decide that there is a human influence on climate)

4. Pragmatic-enlighted model: different solutions exist to any problem, depending on value judgements; but the role of scientists is to identify the problems and the solutions in a given context, while documenting and assessing their consequences (John Dewey’s process of scientific inquiry)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 10

Page 11: P.  Criqui , CNRS, PACTE-EDDEN

¨ Case 1: the four trajectories in the deliberative framework of the National Debate on Energy Transition (DNTE)

¨ Case 2: transition scenarios and technologies in the National Alliance for Energy Research (ANCRE) exercise

¨ Deep Decarbonisation Pathways: a research agenda

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 11

Page 12: P.  Criqui , CNRS, PACTE-EDDEN

The National Debate on Energy Transition in 2013¨ This new step in French energy policy, with a

new law expected in 2014, has been prepared by a “deliberative process” that took place in the first half of 2013:– A coordination committee

– A National Council (7x16 members from NGOs, Trade-Unions, Business, MPs, Mayors...)

– A group of 45 experts in charge of producing relevant and validated analytical materials

– A citizen and an industry group...

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 12

Page 13: P.  Criqui , CNRS, PACTE-EDDEN

A great diversity of energy scenarios to 2050 for France¨ Hypotheses and results have been

gathered from 16 pre-existing scenarios to 2050

¨ A very wide range of energy futures: total electricity consumption varies from 450 TWh today to between 280 and 820 TWh in 2050

¨ The main goal of the scenario working group and of its experts has been to:

1. identify a limited number of structural “trajectories”

2. evaluate them in a mulitcriteria approach

0

100

200

300

400

500

600

700

800

900

2009 2014 2019 2024 2029 2034 2039 2044 2049

TWh

Consommation d'électricité total (TWh)Greenpeace

ADEME

DGEC AME

Negawatt

GRDF

Global Chance

Negatep

RTE Median

RTE Nouveau Mix

CIRED Acceptable renforce

CIRED Acceptable nucl haut

CIRED Acceptable nucl bas

CIRED Acceptable reference

ANCRE SOB

ANCRE ELE

ANCRE DIV

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 13

Page 14: P.  Criqui , CNRS, PACTE-EDDEN

Four families of scenarios or “trajectories” have finally been identified

SOBriety EFFiciency DIVersity DECarbonization

BaU

Priority to Nuclear Energy

Diversifi-cation

Diversifi-cation

Priority to Renewable En.

Very low demand (-50% en 2050)

BaUTransition

Low demand (-20% en 2050)

négaWatt ADEME ANCREdiv NégatepGreenpeace GRDF RTEnouvmix RTEmedWWF ANCREsob DGECams-o ANCREeleGlobal Chance ENCILOCARBrenf UFE

Four Trajectories:

Explored by 15 scenarios:

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 14

Page 15: P.  Criqui , CNRS, PACTE-EDDEN

National and international commitments¨ Two commitments or policy targets are structuring the different trajectories:

– the Factor 4 in emissions (-75% in 2050 / 1990)– the reduction in the share of nuclear energy to 50% by 2025, target set by President FH

¨ Only the “Decarbonization by electricity” scenario doesn’t meet the second target of 50% nuclear

¨ All scenarios meet the “Factor 4 in emissions” target, but some choose a teleological approach while others adopt a “realistic” approach to changes in the system

0

50

100

150

200

250

300

350

400

450

2010 2015 2020 2025 2030 2035 2040 2045 2050

MtC

O2e

q

Emissions annuelles de CO2 énergie

Trajectoire référence

Trajectoire DEC

Trajectoire DIV

Trajectoire EFF

Trajectoire SOB

Facteur 4 sur les émissions énergie

544 MtCO2 in 1973 (-30%)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 15

Page 16: P.  Criqui , CNRS, PACTE-EDDEN

What level of reduction in energy demand ?¨ A strong divergence emerged in the Debate, some favouring a strong

reduction in energy demand (-50% to be included in the future law), while other advocated a more moderate reduction, compensated by more low carbon supply

0

100

200

300

400

500

600

700

800

2010 2015 2020 2025 2030 2035 2040 2045 2050

TWh

dont électricité (TWh)

Trajectoire DEC

Trajectoire DIV

Trajectoire EFF

Trajectoire SOB

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 16

Page 17: P.  Criqui , CNRS, PACTE-EDDEN

Structure of the power generation mix

0%

10%

20%

30%

40%

50%

60%

70%

80%

2010 2015 2020 2025 2030 2035 2040 2045 2050

%

% nucléaire dans production électricité

Trajectoire DEC

Trajectoire DIV

Trajectoire EFF

Trajectoire SOB

Objectif 50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2025 2030 2035 2040 2045 2050

%

% ENR dans production d'électricité

Trajectoire DEC

Trajectoire DIV

Trajectoire EFF

Trajectoire SOB

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 17

Page 18: P.  Criqui , CNRS, PACTE-EDDEN

A framework for the assessment of transition trajectories Trajectoire

CritèreElectrification et

décarbonationDemande stable et

diversificationEfficacité et

diversificationSobriété et sortie du

nucléaire

DEC DIV EFF SOB

Exemple Négatep ANCRE div. ADEME négaWatt

1 Coûts et prix de l'énergie

2 Investissement

3 Emploi, filières

4Sécurité d'approvisionnement

5 Ressources / environnement

6 Santé / accidents

7 Changement climatique

8 Engagements

9 Résilience / flexibilité

10 Cohésion /justice sociale

11 Autonomie territoriale

12 Faisabilité macro-économique et technol.

¨ The role of the experts was in no way to express their preference and even less to choose one of the four trajectories

¨ Even the multi-criteria analysis couldn’t end in a notation of the different categories of impacts the scenario along the 12 criteria, e.g. from (--) to (0) and (++)

¨ The main reason is the lack of quantified indicators for highly complex issues, such as vulnerability to crises or accidents, robustness of the electricity system or environmental and health impacts

¨ Only some criteria, mostly connected to economic sectoral impacts, were quantified and compared

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 18

Page 19: P.  Criqui , CNRS, PACTE-EDDEN

Quantification of the transition investment: 1. retrofitting¨ The energy retrofitting of existing buildings is a key battlefield in the energy

transition¨ Scenarios may differ in the share of the total stock that is retrofitted so as in the

depth (performance) of each operation¨ Many obstacles – financing, transaction costs – will have to be overcome

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

2010 2015 2020 2025 2030 2035 2040 2045 2050

Besoins de financement en M€/an

0

50

100

150

200

250

300

350

2010 2015 2020 2025 2030 2035 2040 2045 2050

Rénovation moyenne (-44% en 2050) LC ap. 75

MI ap. 75

LC av. 75

MI av. 75

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

2010 2015 2020 2025 2030 2035 2040 2045 2050

Besoins de financement en M€/an

0

50

100

150

200

250

300

350

2010 2015 2020 2025 2030 2035 2040 2045 2050

Rénovation renforcée (-69% en 2050)

-69%-44%

Source RENOVsim

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 19

Page 20: P.  Criqui , CNRS, PACTE-EDDEN

Quantification of the transition investment: 2. power sector¨ Investment dynamics are key elements in the assessment of the different

scenarios; in the case of France the phasing in of Variable Renewable Energies and of New Nuclear has major impact

¨ A dedicated tool – ELECsim -- has been deigned for describing these trajectories

Source ELECsim

0

5 000

10 000

15 000

20 000

25 000

30 000 EFF Investissement annuel (M€2010)

0

5 000

10 000

15 000

20 000

25 000

30 000 DIV Investissement annuel (M€2010)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000 SOB Investissement annuel (M€2010)

0

5 000

10 000

15 000

20 000

25 000

30 000 DEC Investissement annuel (M€2010)

Nucl. Nouveau

Hydraulique

Eolien onshore

Eolien offshore

Photovoltaique

Autres Ren.

Gaz & Backup sans CCSTotal 2013-40

Eolien + Solaire

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 20

Page 21: P.  Criqui , CNRS, PACTE-EDDEN

Macro-economic impacts: the problem of employment ¨ Assessing the impact of Transition Trajectories on employment is a key issue; this should

lead to quantify direct and indirect employment, created and destructed...¨ The question of the induced employment after the taking into account of all

macroeconomic, competitiveness and external trade effects is the most tricky one; this all the more that the impact may clearly overcome the direct and indirect effect

¨ Detailed macroeconomic models may provide useful insights on the main mechanisms, however their aggregate results still lack of robustness

¨ The key issue is: what is the level of energy efficiency investment that will best serve households’ budget and industries’ competitiveness ???

Source: CIRED évaluation négaWatt

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 21

Page 22: P.  Criqui , CNRS, PACTE-EDDEN

Impacts on the environment, land use, resources…¨ In spite of many academic or applied research in the field of energy-

related environmental externalities (e.g. EU ExternE projects), the capability to address the environmental impacts of energy scenarios remains limited

¨ This should be a major issue for France. In the French transition process, only a very limited set of impacts have been quantified

0

500

1 000

1 500

2 000

2 500

3 000

Traj

ecto

ire D

EC

Traj

ecto

ire D

IV

Traj

ecto

ire EF

F

Traj

ecto

ire SO

B

Traj

ecto

ire D

EC

Traj

ecto

ire D

IV

Traj

ecto

ire EF

F

Traj

ecto

ire SO

B

Traj

ecto

ire D

EC

Traj

ecto

ire D

IV

Traj

ecto

ire EF

F

Traj

ecto

ire SO

B

Traj

ecto

ire D

EC

Traj

ecto

ire D

IV

Traj

ecto

ire EF

F

Traj

ecto

ire SO

B

Traj

ecto

ire D

EC

Traj

ecto

ire D

IV

Traj

ecto

ire EF

F

Traj

ecto

ire SO

B

2010 2020 2030 2040 2050

km2

Surface nationale impactée par la production d'électricité hors biomasse et hydroélectricité (km2)

Solaire PV

Eolien offshore

Eolien onshore

Nucléaire

Gaz

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 22

Page 23: P.  Criqui , CNRS, PACTE-EDDEN

Lessons from the scenario comparison exercise

¨ Each submitted scenario reflects a “worldview”, loaded with value judgements, but the common reporting templates allowed to identify the four trajectories and provided a consistent basis for the comparison

¨ Although incomplete, the multi-criteria assessment approach enabled discussion among the different stakeholder categories on clearly identified hypotheses and outcomes

¨ By lack of sufficient analytical background – but also due to the nature of the problem – the debate on the realism, feasibility, desirability of the trajectories remained open...

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 23

Page 24: P.  Criqui , CNRS, PACTE-EDDEN

¨ Case 1: the four trajectories in the deliberative framework of the National Debate on Energy Transition (DNTE)

¨ Case 2: transition scenarios and technologies in the National Alliance for Energy Research (ANCRE) exercise

¨ Deep Decarbonisation Pathways: a research agenda

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 24

Page 25: P.  Criqui , CNRS, PACTE-EDDEN

ANCRE: National Alliance for Energy Research¨ Created in 2009, the National Alliance for Energy Research allows

researchers from CNRS, CEA, IFPEN, Universities and other research organisms to exchange information and participate in common activities on new energy technologies and solutions

¨ Its first goal was to increase the coordination of activities... and turn pre-existing competition into cooperation

¨ In 2012-2013 it developed a new activity on foresight and scenarios with the aim of providing feasible and cost-effective scenarios, based on the contributions of high-level expert Working Groups

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 25

Page 26: P.  Criqui , CNRS, PACTE-EDDEN

ANCRE: The Working Groups¨ ANCRE has 10 working groups organized by type of

energy source or consumption sector:• WG1 – Biomass energy• WG2 – Fossil sources and geothermal energy• WG3 – Nuclear technologies• WG4 – Solar technologies, PV and CSP• WG5 – Wind and marine energies• WG6 – Transport• WG7 – Building• WG8 – Industry and agriculture• WG9 – Socio-economics and scenarios• WG10 – Networks and storage

SUPPLY

DEMAND

SYSTEMS

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 26

Page 27: P.  Criqui , CNRS, PACTE-EDDEN

ANCRE: The 2012-2013 scenarios

2. Décarbonisationpar l’électricité

3. Vecteurs diversifiés

1. Sobriété renforcée

Référence DGEC

WG9 on scenarios:Nathalie Alazard-Toux*, Patrick Criqui, Jean-Guy Devezeauxǂ

Alain Le Duigouǂ, Elisabeth Le Netǂ, Alban Liegeard*,Daphné Lorne*, Sandrine Mathy, Philippe Menanteau,Henri Safaǂ, Olivier Teissier¨, Benjamin Topperǂ

* IFPEN, CNRS, ǂ CEA, ¨ CSTB

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 27

¨ By fall 2012, prior to the DNTE process, ANCRE WG9 had defined three scenarios : SOBriety, ELEctrification, DIVersity

¨ The DIV scenario has been chosen as representative for the Diversity trajectory in the National Debate

¨ Structuring targets are Factor 4 in emissions in 2050 and 50% nuclear production in 2025

¨ A fourth scenario then relaxed the 50% constraint

Page 28: P.  Criqui , CNRS, PACTE-EDDEN

A methodology for across sectors technico-economic assessment

¨ The balance between changes in behaviours and in technologies has been set on a sector by sector basis while trying to avoid extreme changes in behavioural patterns

¨ After identification of key activity/energy intensity parameters and of the possibilities of the supply-transformation system, simulations showed that the Factor 4 is an attainable but extremely ambitious target

¨ Going beyond the Factor 4 for energy, in order to compensate for lesser reduction in other GHGs (agriculture) would involve “game changers” i.e. breakthrough technologies

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 28

Page 29: P.  Criqui , CNRS, PACTE-EDDEN

-65%

-30%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1990 2000 2010 2020 2030 2040 2050

Indi

ce (T

ep/p

km)

Efficacité énergétique des transports de passagers

Prolongement tendance SOB ELE DIV

Sobriété Renforcée

Développement de véhicules serviciels adaptés aux parcours et à l’autopartage

Décarbonisation par l’électricité

Forte pénétration des solutions électriques –2030 véhicules électrifiés représentent 65% des ventes (1er véhicule = PHEV, 2ème véhicule = EV)–A partir de 2030 les livraisons intra-urbaine sont électriques (via politique publique)

Développement de l’Hydrogène– Couloir H2 pour les camions dès 2030– Développement Bus H2, VP à partir de 2040

Vecteurs diversifiés

Amélioration de l’efficacité énergétique accélérée

-véhicules 2l/100km se généralisent dès 2030Pénétration du gaz

-2030 : Couloir GNL pour les camions et flotte captive -2050 : 50% des Bus GNV, 25% des VP

Développement massif des bio-carburants (maintien 1G et développement 2G)

-2030 : Production x 2,5 (6Mtep) -2050 : Production x 6 (13Mtep)

TransportHypothèses technologiques

Développements technologiques transport

Ruptures d’efficacité énergétique

VP 2L/100km : 2025 véhicules disponibles

2040 généralisationPoids Lourds / Bus : 2030 -30% consommation (malgré

norme de dépollution)

Transport: challenges in the different scenarios

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 29

Energy intensityin passenger transport

Page 30: P.  Criqui , CNRS, PACTE-EDDEN

Sobriété Renforcée

Parc « neuf » très performant dès 2015, respect immédiat de la RT2012 qui s’améliore à nouveau en 2025 (nouvelle RT)Parc rénové très performant dès 2015 (-70% sur la consommation de chauffage / existant), pas d’effet rebond

Décarbonisation par l’électricité

Parc « neuf » performant en 2015 (dérive +10% sur le niveau RT2012), qui s’améliore en 2025 (nouvelle RT)Parc rénové performant dès 2015 (-60% sur la consommation de chauffage), pénalisé par un effet rebond de l’ordre de 10%

Vecteurs diversifiés Idem ELE, la différenciation porte uniquement sur les vecteurs énergétiques.

Actual energy performance

Innovations technologiques1. Matériaux (super isolants minces, vitrages performants, VMC, …)2. Systèmes de chauffage performants (PAC réversibles, mini cogen,

stockages thermiques, chauffe-eau thermodynamiques)3. Monitoring / suivi / optimisation des consommations 4. Approches systémiques intégrées, réseaux intelligents (elec –

chaleur)

Besoin de formation et qualification des acteurs 0%

20%

40%

60%

80%

100%

120%

neuf rénové neuf rénové

Existant SOB ELE / DIV

Consommations unitaires - Résidentiel

2010

2015-25

2030-50

Buildings: challenges in the different scenarios

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 30

Page 31: P.  Criqui , CNRS, PACTE-EDDEN

IndustrieHypothèses d’efficacité énergétique

Energy intensive industries (from SOB case) Other industries

L’amélioration potentielle de l’efficacité énergétique est de 10 à 40 % selon les secteurs (enquête CEREN auprès des industriels)L’amélioration est plus rapide pour les IGCE qui ont un intérêt économique immédiat

SOB : 95% du « gisement » atteint en 2050ELE et DIV : 90% des gains atteints pour le scénario SOB en 2050

0

5

10

15

20

25

30

35

40

2010 2020 2030 2040 2050 2060

%

Gains en éfficacités énergatiques des IGCE (%)

sidérurgie

aluminium

ammoniac

pétrochimie base

chlore

ciment

verre

sucre

papier-pâtes

TOTAL0

5

10

15

20

25

30

35

40

45

2010 2020 2030 2040 2050 2060

%

Gains en efficacités énergétiques des AI (%)

Métaux primaires

Chimie

Non-métalliques

IAA

Equipements

Autres

BTP

TOTAL

Industry: efficiency gains in energy intensive industries and other industries

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 31

Page 32: P.  Criqui , CNRS, PACTE-EDDEN

Electricity production: meeting the 50% target

In spite of the diversification of the electricity system, nuclear remains a major source

La gestion de l’intermittence est assurée par:

•des solutions d’effacement (SOB)•du stockage électrique (ELE)•de la cogénération (DIV)

2050

0

100

200

300

400

500

600

700

800

2010 Tendanciel Sobriété Electrification Diversification

Elec

tric

ité (

TWh)

Scénarios ANCRE -Production électrique en 2030

RenouvelablesNucléaireCharbonGazFioul

2030

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 32

Page 33: P.  Criqui , CNRS, PACTE-EDDEN

Evaluation multicritèresTableau synthétique

Critère SOB ELE DIV ELEC-V TEND SOB ELE DIV ELEC-V TENDCoût et prix de l'énergie (augmentation comptée négatif) Coût de l'énergie TTC* − − − − − 0 − − − − − − − − 0 Coût de production de l'électricité (En cours) (En cours) (En cours) (En cours) 0 (En cours) (En cours) (En cours) (En cours) 0 Facture énergétique du pays (imports) ₊ 0 ₊ ₊ 0 ₊₊₊ ₊₊₊ ₊₊₊ ₊₊₊ 0 Dépenses énergétique des ménages ₊ 0 ₊ ₊ 0 ₊₊ ₊₊ ₊₊ ₊₊ 0Investissements nécessaires (augmentation comptée négatif) Investissements énergie − − − − − − − − − − 0 ₊ − ₊ ₊₊ 0 Investissements résidentiel tertiaire** − − − − − − − − − − − − − − − − − 0 − − − − − − − − − − − − − − − − 0 Investissements transport*** ₊₊ − 0 − 0 ₊₊₊ − − 0 − − 0 Investissements industrie na na na na 0 na na na na 0Emploi Emploi énergie na na na na 0 0 0 0 0 0 Emploi résidentiel tertiaire ₊₊₊₊₊ ₊₊₊₊ ₊₊₊₊ ₊₊₊₊ 0 ₊₊₊₊₊ ₊₊₊₊ ₊₊₊₊ ₊₊₊₊ 0 Emploi transport (En cours) (En cours) (En cours) (En cours) 0 − − − − − − − − 0 Emploi industrie na na na na 0 na na na na 0 Impact total (yc induit) sur l'emploi (En cours) (En cours) (En cours) (En cours) 0 (En cours) (En cours) (En cours) (En cours) 0Finances publiques Effort en matière de financement public Fort Moyen Moyen Moyen 0 Moyen Moyen Moyen Moyen 0Environnement et société Emission de GES ₊ ₊ ₊ ₊ 0 ₊₊₊ ₊₊₊ ₊₊₊ ₊₊₊ 0 Mobilisation de la biomasse Faible Faible Moyen Faible 0 Faible Faible Fort Faible 0 Usage des sols**** Faible Faible Faible Faible 0 Faible Faible (1) Moyen Moyen 0 Environnement local et santé (En projet) (En projet) (En projet) (En projet) 0 (En projet) (En projet) (En projet) (En projet) 0 Evaluation qualitative de l'impact sûreté-sécurité (En projet) (En projet) (En projet) (En projet) 0 (En projet) (En projet) (En projet) (En projet) 0Robustesse et résilience du système Taux d'indépendance énergétique 0 0 0 ₊ 0 0 ₊₊ ₊₊ ₊₊₊ 0 Sécurité de l'approvisionnement***** Faible Forte Moyenne Fort 0 Faible Moyenne Forte Forte 0 Diversification des ressources énergétiques Faible Moyenne Forte Faible 0 Faible Moyenne Forte Faible 0 Dépendances ressources et matériaux stratégiques (En projet) (En projet) (En projet) (En projet) 0 (En projet) (En projet) (En projet) (En projet) 0Technologies développées Effort accru nécessaire de R&D (France/Europe) Fort Fort Fort Moyen 0 Moyen Moyen Moyen Moyen 0 Technologies en rupture nécessaires Faible Moyen Moyen Faible 0 Moyen Fort Fort Moyen 0 Création de filières nationales de high tech Faible Moyen Moyen Moyen 0 Moyen Fort Fort Fort 0

Période 2010-2030 Période 2030-2050

An extended multi-criteria assessment framework

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 33

ECONOMY-EMPLOYMENT

RISK-ENVIRONMENT

RESILIENCE-ROBUSTNESS

R&D TECHNOLOGY POLICY

4 SCENARIOS + BaU2010-2030 2030-2050

Page 34: P.  Criqui , CNRS, PACTE-EDDEN

¨ Case 1: the four trajectories in the deliberative framework of the National Debate on Energy Transition (DNTE)

¨ Case 2: transition scenarios and technologies in the National Alliance for Energy Research (ANCRE) exercise

¨ Deep Decarbonisation Pathways: a research agenda

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 34

Page 35: P.  Criqui , CNRS, PACTE-EDDEN

The DDPP - Deep Decarbonisation Pathway Project UN-SDSN (Jeff. Sachs)¨ 31 leading research institutions from 12 countries (Australia, Brazil,

China, European Union, India, Indonesia, Japan, Mexico, Russia, South Africa, South Korea, the United States of America), covering more than 70% of global C02 emissions. The project aims to:1. Prepare transparent national deep decarbonization pathways to 2050 to

help countries adopt and implement policies to achieve deep decarbonization.

2. Support a positive outcome of the UNFCCC international climate negotiations by 2015 by helping national decision makers and the international community to understand what deep decarbonization implies for individual countries and regions.

3. Review aggregate global emission reduction pathways prepared for AR5 by the WG III in light of the national decarbonization pathways.

4. Build an on-going global network to facilitate learning and promote problem solving in the implementation phase of national of deep decarbonization strategies after 2015

P. Criqui – LEPII-EDDEN – Economie de l’Energie et de l’Environnement – 2010-2011 35

Page 36: P.  Criqui , CNRS, PACTE-EDDEN

1. The wedges (Jim Williams, Science 2012 and DDPP)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 36

Page 37: P.  Criqui , CNRS, PACTE-EDDEN

2. Robustness (Jim Williams, Science 2012 and DDPP)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 37

Page 38: P.  Criqui , CNRS, PACTE-EDDEN

3. Static economic effciency: equalising the Marginal Abatement Costs

Quantity (tCO2)

Cost

€/tCO2

Option, Sector ou Country 1 TOTAL OSC 2 OSC 3

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 38

Page 39: P.  Criqui , CNRS, PACTE-EDDEN

4. Dynamic efficiency: accounting for learning effects

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000 100000000

Titr

e de

l'ax

e

Titre de l'axe

Wind on shore learning curve

Floor Cost

LR = 6 %

LR = 11 %

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Titr

e de

l'ax

e

Titre de l'axe

Wind off shore learning curve

LR = 3 %

LR = 20 %

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000 10000000 100000000

Titr

e de

l'ax

e

Titre de l'axe

PVlearning curve

LR = 19 %

LR = 28 %

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

Titr

e de

l'ax

e

Titre de l'axe

CSP learning curve

LR = 0%

LR = 7 %

Wind - ON

Solar - CPSolar - PV

Wind - OFF

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 39

Page 40: P.  Criqui , CNRS, PACTE-EDDEN

5. An integrated energy, macroeconomic and industrial strategy (Pantelis Capros, AMPERE 2014)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 40

Page 41: P.  Criqui , CNRS, PACTE-EDDEN

6. Assessing the environmental impacts: the EU ExternE-NEEDS approach

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 41

?1.

2. 4.

3.

Page 42: P.  Criqui , CNRS, PACTE-EDDEN

Deep Decarbonisation: a research agenda¨ Identify the wedges for cost-effective decarbonisation of

energy systems (with consideration of the robustness of the system):1. Energy sobriety/efficiency

2. Decarbonisation of electric and non-electric energy carriers

3. Development of low carbon carriers (electricity) for transport uses

¨ Identify the pillars of a consistent macro-economic strategy:1. A macro-economic framework: investment substituting to recurrent

fossil consumption generates new activities and employment, under the constraint of economic competitiveness

2. An industrial strategy combining: innovation, demand-pull, market consolidation (EU scale) and “first-mover advantage”

¨ Develop the methodologies for the assessment of the environmental impacts of the different scenarios (accidents and health hazards, air quality, land, water, biodiversity...)

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 42

Page 43: P.  Criqui , CNRS, PACTE-EDDEN

Annex on DDPP dashboard and

technology dynamics

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 43

Page 44: P.  Criqui , CNRS, PACTE-EDDEN

A dashboard for national studies1. The minimum

requirements are to have a compact energy balance (IEA-type)…

2. plus a mini-dashboard on energy demand drivers…

3. plus a dedicated dashboard on low-carb technology deployment (wedges)

Sectoral Kaya Activity Energy Emissions

CO2 Emissions = AI x EI x CI

9 Sectors:

Housing m2/hab kWh/m2 CO2/kWh

Tertiary SVA/GDPm2/SVA

kWh/m2 CO2/kWh

Personal Transp. pkm/habpkm/vkm

l/vkmkWh/evkm

CO2/lCO2/kWh

Good Transp. tkm/GDPl/tkm

kWh/etkmCO2/l

CO2/kWh

Steel Industry tos/GDP toe/tos CO2/toe

Cement Industry toc/GDP toe/toc CO2/toe

Other Industry OIVA/GDP toe/OIVA CO2/toe

Electricity Sector TWh/GDP CO2/kWh

Other Transf. toe/GDP CO2/toe

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 44

Page 45: P.  Criqui , CNRS, PACTE-EDDEN

Source: P. Menanteau, P. Criqui laboratoire EDDEN (CNRS-UPMF)

BdD TECHPOL laboratoire EDDEN 2010 2025 2050 2010 2025 2050 2010 2025 2050 2010 2025 2050 Discount rate 6,0%

Uranium $/MWhe Charbon $/t Gaz $/Mbtu Biomass (€/MWh) Interest rate 6,0%

Fuel price 7,0 8,0 10,0 110,0 115,0 120,0 10,0 14,0 18,0 20,0 25,0 30,0

Carbon price €/tCO2 10 50 200 10 50 200

TECHPOL dbNuclear* 1650 MWe Supercritical Pulverized Coal 900

MWePulverized Coal + CCS* *

900 MWe Gas Turbine in CC 600 MWe Gas Turbine CC + CCS** 600 MWePower Technologies

Euros 2010 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050

Overn. Inv. Cost €/kW 2000 4000 3500 1600 1500 1500 2600 2210 750 650 650 1200 1020

Technical lifetime Years 40 40 40 40 40 40 40 40 25 25 25 25 25

Construction time Years 8 8 8 3 3 3 4 4 2,5 2,5 2,5 3 3

Fixed O&M cost €/kWy 70 70 70 30 30 30 60 60 20 20 20 40 40

Variable O&M cost €/MWh 5,0 5,0 5,0 2,0 2,0 2,0 4,0 4,0 2,0 2,0 2,0 4,0 4,0

Load Factor % 75% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80%

Electrical efficiency % 33% 33% 33% 45% 46% 46% 33% 35% 58% 59% 60% 48% 52%

Global efficiency

Decommission share**** % 0% 25% 25% 10% 10% 10% 10% 10% 5% 5% 5% 5% 5%

Discount rate (%) % 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%

Interest rate % 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%

Total investment Cost €/kW 2577 5270 4611 1812 1699 1699 3029 2574 839 727 727 1362 1158

Fixed cost €/MWh 37 60 54 21 20 20 37 33 12 11 11 21 19

Fixed cost €/kWy 171 350 306 120 113 113 201 171 66 57 57 107 91

Fuel price €/toe 19,2 22,3 27,9 112,2 117,3 122,4 117,3 122,4 285,7 400,0 514,3 400,0 514,3

Carbon content tCO2/toe 4,0 4,0 4,0 4,0 4,0 2,2 2,2 2,2 2,2 2,2

Carbon price €/tCO2 10 50 200 50 200 10 50 200 50 200

CO² emissions tCO2/MWh 0,76 0,74 0,74 0,10 0,10 0,33 0,33 0,32 0,04 0,04

Fuel cost incl. Carbon €/MWh 5,0 5,8 7,3 29,0 59,0 171,0 35,7 49,5 45,7 74,6 137,8 73,7 92,5

Variable cost €/MWh 10,0 10,8 12,3 31,0 61,0 173,0 39,7 53,5 47,7 76,6 139,9 77,7 96,5

Production cost €/MWh 47 71 66 52 81 193 77 87 60 88 151 99 115

TECHPOL: Nuclear, Coal and Gas

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 45

Page 46: P.  Criqui , CNRS, PACTE-EDDEN

TECHPOL: Wind, Solar and BiomassSource: P. Menanteau, P. Criqui laboratoire EDDEN (CNRS-UPMF)

BdD TECHPOL laboratoire EDDEN 2010 2025 2050 2010 2025 2050 2010 2025 2050 2010 2025 2050 Discount rate 6,0%

Uranium $/MWhe Charbon $/t Gaz $/Mbtu Biomass (€/MWh) Interest rate 6,0%

Fuel price 7,0 8,0 10,0 110,0 115,0 120,0 10,0 14,0 18,0 20,0 25,0 30,0

Carbon price €/tCO2 10 50 200 10 50 200

TECHPOL dbWind Onshore 50 Mwe Wind Offshore 250 Mwe Solar PV*** (large systems) Marine turbines Biomass

Steam turbinePower Technologies

Euros 2010 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050

Overn. Inv. Cost €/kW 1300 1100 1000 3500 3000 2500 2100 1400 800 5000 3000 2500 2500 2500

Technical lifetime Years 20 20 20 15 20 20 25 30 30 20 20 20 20 20

Construction time Years 1 1 1 2 2 2 1 1 1 1 1 2,5 2,5 2,5

Fixed O&M cost €/kWy 40 35 32 100 90 90 25 20 20 100 100 100 100 100

Variable O&M cost €/MWh 4,0 4,0 4,0

Load Factor % 24% 26% 26% 38% 40% 40% 13% 14% 14% 40% 40% 80% 80% 80%

Electrical efficiency % 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 30% 32% 35%

Global efficiency

Decommission share**** % 5% 5% 5% 10% 10% 10% 10% 10% 10%

Discount rate (%) % 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%

Interest rate % 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%

Total investment Cost €/kW 1399 1184 1076 3973 3371 2809 2276 1509 862 5300 3180 2766 2766 2766

Fixed cost €/MWh 77 61 55 153 110 96 178 106 67 160 108 49 49 49

Fixed cost €/kWy 122 103 94 409 294 245 178 110 63 462 277 241 241 241

Fuel price €/toe 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 232,6 290,7 348,8

Carbon content tCO2/toe 0,0 0,0 0,0

Carbon price €/tCO2 0 0 0

CO² emissions tCO2/MWh 0,00 0,00 0,00

Fuel cost incl. Carbon €/MWh 66,7 78,1 85,7

Variable cost €/MWh 70,7 82,1 89,7

Production cost €/MWh 77 61 55 153 110 96 178 106 67 160 108 119 131 138

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 46

Page 47: P.  Criqui , CNRS, PACTE-EDDEN

LCoE comparisons with TECHPOL

0

50

100

150

200

250

2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050

Nuclear Coal Coal + CCS Gas Gas + CCS Wind on shore Wind off shore PV Marine turbines Biomass Biomass (CHP)

Production Costs TECHPOLdb(€/MWh, CO2 50 €/t in 2025, 200 €/t in 2050)

Carbon tax

Energy

O&M

Capital

NUC COAL +CCS GAS +CCS WON WOFF SPV MAR BIOM +COGEN

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 47

Page 48: P.  Criqui , CNRS, PACTE-EDDEN

Beyond LCoE: system costs¨ The development of electricity systems based on

Variable Renewable Electricity imposes the taking into account of new cost categories, beyond the LCOE

¨ The system costs with VRE include (B3S):1. Adequacy costs for changes in the production

capacities, Backup & Storage2. Balancing costs for load following (ramping,

Demand Response and Smartgrids)

3. Network costs for VRE connection, two-way transport, interconnections and Supergrids

P. Criqui – CNRS PACTE-EDDEN Les Houches, 3rd of February 2014 48