24
ADVANCED CONCEPTS TEAM 1 ADVANCED CONCEPTS TEAM P. Ben-Abdallah 1 , J.M. Llorens 2 , L. Bergamin 2 , and T. Vinko 2 Esa 6 th Round Table on MNTs e x 1 CNRS, Ecole Polytechnique, Laboratorie de Thermocinétique, Nantes, France 2 Advanced Concepts Team, ESA (ESTEC), Noordwijk, The Netherlands

P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

  • Upload
    leanh

  • View
    213

  • Download
    1

Embed Size (px)

Citation preview

Page 1: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 1

ADVANCED CONCEPTS TEAM

P. Ben-Abdallah1, J.M. Llorens2, L. Bergamin2, and T. Vinko2

Esa 6th Round Table on MNTs

e

x

1 CNRS, Ecole Polytechnique, Laboratorie de Thermocinétique, Nantes, France2 Advanced Concepts Team, ESA (ESTEC), Noordwijk, The Netherlands

Page 2: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 2

ACT AssessmentUniversities

• Informatics• Mission Analysis• Nanotechnologies• Propulsion

What is the ACT?

Who constitute the ACT?

How the ACT works?

• Loose ideas linked to space• First basic filtering of loose ideas linked to space• Preliminary ACT assessments - second filter• Academic assessment ARIADNA• Eventual transfer to ESA R&D programmes

Loose ideas linked to space

D/TEC - Programmes - GSP

filte

red,

ab

ando

ned

idea

s

filtered,

abandoned

ideas

Ariadna

Multidisciplinary research group:•Artificial Intelligence•Biomimetics•Energy Systems•Fundamental Physics

• 2 Staff • 6 Research Fellows• 5 Young Graduate Trainee

Page 3: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 3

1.Introduction to directional

microstructured radiators

2.Reverse engineering strategy

3.Case studies:

•Quasi-isotropic radiator at room

temperature

•Directional radiator in the near

infrared

4.Conclusions and Outlook

Page 4: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 4

1. Introduction to directionalmicrostructured radiators

1.Introduction to directional

microstructured radiators

2.Reverse engineering strategy

3.Case studies:

•Quasi-isotropic radiator at room

temperature

•Directional radiator in the near

infrared

4.Conclusions and Outlook

Page 5: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 5

1. Introduction to directionalmicrostructured radiators

General Problem: Thermal control of Spacecraft

Solarradiation

Conduction

Convection

Radiation

XX

Proposal: Design surface finishes withspatially coherent thermal radiation

1.Polar materials + surface grating

2.Photonic band gap materials

3.Polar materials / metallic layer + photonic structures

4.Left-Handed material

Page 6: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 6

1. Introduction to directionalmicrostructured radiators

General Problem: Thermal control of Spacecraft

Solarradiation

Conduction

Convection

Radiation

XX

Proposal: Design surface finishes withspatially coherent thermal radiation

1.Polar materials + surface grating

2.Photonic band gap materials

3.Polar materials / metallic layer + photonic structures

4.Left-Handed material

Page 7: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 7

1. Introduction to directionalmicrostructured radiators

Polar material (SiC, GaN,…)

High and Low refractive indexPhotonicstructure

Schematic description of the concept:

Metalic layer (Ag, Al,…)ε(ω)

nH,L

Directionalradiation

Stop-band

λ

r

ReflectivityTransmitivityAbsorptivityEmissivity

t

r

e

x

s, por

TE, TM

Page 8: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 8

2. Reverse engineering strategy

1.Introduction to directional

microstructured radiators

2.Reverse engineering strategy

3.Case studies:

•Quasi-isotropic radiator at room

temperature

•Directional radiator in the near

infrared

4.Conclusions and Outlook

Page 9: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 9

Objective of the study: For a given radiation distribution find the suitablemultilayer structure.

InputOptimization

process

Outputn(λ, z)

Optimization solver: Genetic Algorithm

Multilayer codification

Array element

Material layer

Initial random population

Evolution with genetic operators

Best solution

e(λ, θ) r(λ, θ)

Page 10: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 10

Fitness function:

Physical model: Transfer matrix formalism

E+

E− E0−

E0+E0−

E0+E+

E−Transfermatrix

Reflection + Transmission

Energy conservation + Kirchhoff’s law

Emission

J =

Z λmax

λmin

Z θmax

θmin

(es − eTarget)2 + (ep − eTarget)2

+(rs − rTarget)2 + (rp − rTarget)2 dλ dθ

Page 11: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 11

Implementation of the GA algorithm

Single CPU Distributed Computation (DC)

Single CPU evolves all the population

Each CPU evolves apart of the population

Physical DC platform:

Server

Client

Client

ClientClient

Population Initialization

+Sub-population

distribution

Population evolution

Page 12: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 12

3. Case studies

1.Introduction to directional

microstructured radiators

2.Reverse engineering strategy

3.Case studies:

•Quasi-isotropic radiator at room

temperature

•Directional radiator in the near

infrared

4.Conclusions and Outlook

Page 13: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 13

3. Case studies

Quasi-isotropic radiator at room temperature

λmax ≈ 10 μm

Radiation distribution T=300 K

Acording to Wien´s law:

•Polar Material: 3C-SiC (emission at 12.6 μm)•Low index material: CdTe nL=1.6•High index material: Ge nH=4.0

θ

Combination of materials

Parameters of the structure•50 layers => 350 (~7x1025) possible combinations•100 nm thickness

Page 14: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 14

3. Case studies

Quasi-isotropic radiator at room temperature

Target Function

λ(μm

)

0 2 4 6 8 10

4

5

6

7

8

9

J (x

10-2

)Function Evaluantion (x104)

N. Generations ≡ 100 Function Eval.

Ge 3C-SiC CdTe

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 12.2

12.3

12.4

12.5

12.6

12.7

12.8

θJ

(x 1

0-3 )

Page 15: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 15

3. Case studies

Quasi-isotropic radiator at room temperatureE

mis

sion

0 10 20 30 40 50 60 70 80 12.2

12.3

12.4

12.5

12.6

12.7

12.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 12.2

12.3

12.4

12.5

12.6

12.7

12.8

Ref

lect

ion

0 10 20 30 40 50 60 70 80 12.2

12.3

12.4

12.5

12.6

12.7

12.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 12.2

12.3

12.4

12.5

12.6

12.7

12.8

s

s

p

p

λ

λ

λ

λ

θ

θ

θ

θ

Page 16: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 16

3. Case studies

Quasi-isotropic radiator at room temperatureE

mis

sion

Ref

lect

ion

s

s

p

p

λ

λ

λ

λ

θ

θ

θ

θ

0 10 20 30 40 50 60 70 80 90 8

9

10

11

12

13

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 8

9

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90 8

9

10

11

12

13

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 8

9

10

11

12

13

14

Page 17: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 17

3. Case studies

Quasi-isotropic radiator at room temperature

Run Details:1. Single CPU

• ESAGRID (Pentium Xeon2.40 GHz)

• Average functionevaluation time: ~ 2 s

2. DC• 12 Dell Desktops• Average function

evaluation time: ~ 5 s0 2 4 6 8 10 12

4

5

6

7

8

9

J (x

10-2

)

Function Evaluantion (x104)

SingleDC

Implementation into the DCJ

(x 1

0-3 )

6,700121,500

Outperformance ~ factor 18

Page 18: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 18

3

4

5

6

7

8

9

100 1000 10000 100000

3. Case studies

Quasi-isotropic radiator at room temperature

SingleDC

Time reduction

J (x

10-

3 )

Time (s)

T=235,000 (2 d 17 h)

T=33,500 (9 h)

Outperformance ~ factor 7

Page 19: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 19

3. Case studies

Directional radiator in the near infrared

Radiation distribution Working spectral range

[1.8 μm – 2.8 μm]

•Metal Layer: Ag (broad emission)•Low index material: SiO2 nL=1.45•High index material: Si nH=3.3

Combination of materials

Parameters of the structure•50 layers => 350 (~7·1025) possible combinations•50 nm thickness

e

x

Page 20: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3. Case studies

Quasi-isotropic radiator at room temperature

Target Function

θ

λ(μm

)

N. Generations ≡ 100 Function Eval.

0 2 4 6 8 103.75

4.00

4.25

4.50

4.75

5.00

J (x

10-2

)Function Evaluantion (x104)

Si Ag SiO2

J (x

10-

3 )

Page 21: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 21

3. Case studies

Quasi-isotropic radiator at room temperatureE

mis

sion

Ref

lect

ion

s

s

p

p

λ

λ

λ

λ

θ

θ

θ

θ

0 10 20 30 40 50 60 70 80 90 1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0 10 20 30 40 50 60 70 80 90 1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Page 22: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 22

4. Conclusions and Outlook

1.Introduction to directional

microstructured radiators

2.Reverse engineering strategy

3.Case studies:

•Quasi-isotropic radiator at room

temperature

•Directional radiator in the near

infrared

4.Conclusions and Outlook

Page 23: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 23

4. Conclusions and Outlook

Conclusions

•Development of a Reversal Engineering Tool for designing directional microstructured radiators •Proof their suitability for different types of radiators•Implementation of a distributed version of the GA solver•Distributed strategy shows an outperformance of factor 7

Outlook

• Asses the feasibility of the optimized structure (explore materials for the active layer)• Study the “control” over the reflectivity and emissivity features• Implement other GO solvers into the tool (DIGMO) • Combine this proposal with surface gratings to improve the directivity

Page 24: P. Ben-Abdallah , J.M. Llorens , L. Bergamin , and T. · PDF fileADVANCED CONCEPTS TEAM 23 4. Conclusions and Outlook Conclusions •Development of a Reversal Engineering Tool for

ADVANCED CONCEPTS TEAM 24

Thank you for your attention !

More Information:• About the ACT: https://www.esa.int/act• About ARIADNA: http://www.esa.int/gsp/ACT/ariadna/index.htm• About Microstructured Radiators: Ariadna Final Report

http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-NAN-ARI-069501-Micro_Radiators-Nantes.pdf

• About DIGMO: http://www.esa.int/gsp/ACT/inf/op/act-dc_digmo.htm