46
12/9/2016 1 Preservation and Renewal of Civil Engineering Infrastructure Using FRP Composites City University of London London, UK December 7, 2016 Abdeldjelil Belarbi, PhD, PE, FACI, FASCE, FSEI Distinguished Professor of Civil Engineering 1. Introduction 2. CurrentChallenges and Issues at Hand 3. Fiber Reinforced Polymers (FRP) 4. Shear Strengthening 5. Softened Membrane Model 6. Concluding Remarks 2 12/9/2016 OUTLINE OF THE PRESENTATION

OUTLINE OF THE PRESENTATION - City

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

12/9/2016

1

Preservation and Renewal of Civil Engineering Infrastructure Using FRP Composites

City University of LondonLondon, UK

December 7, 2016

Abdeldjelil Belarbi, PhD, PE, FACI, FASCE, FSEIDistinguished Professor of Civil Engineering

1. Introduction

2. CurrentChallengesandIssuesatHand

3. Fiber‐ReinforcedPolymers (FRP)

4. ShearStrengthening

5. SoftenedMembraneModel

6. ConcludingRemarks

2

12/9/2016

OUTLINE OF THE PRESENTATION

12/9/2016

2

3

WHERE IN THE WORLD ARE HOUSTON AND TEXAS?

• Houston

• Texas is the second largest state in the USA.

• It shares border with Mexico.

• The capital city is Austin

• 26 million people live in Texas.12/9/2016

Texas has a wide variety of landscapes, includingcoastal, mountains, planes, and desert.

TEXAS LANDSCAPE

4

12/9/2016

12/9/2016

3

TEXAS ECONOMY

Texas is an importantpart of the U.S. economy. It is the second wealthieststate in the country.

Important sectors of theTexas economy include oiland gas, agriculture and mining, energy, technology, and commerce.

5

12/9/2016

6

Houston City - The Basics

• America’s 3rd/4th largest city

• Over 4 million residents

• Energy Capital of the World

• No ethnic majority

• 83 languages spoken

• “Houston” – First Word Spoken from the Moon

12/9/2016

12/9/2016

4

7

1873

12/9/2016

8

21st Century

12/9/2016

12/9/2016

5

9

The University of Houston (UH) is a state research university and the flagship institution of 

the University of Houston System

UNIVERSITY OFHOUSTON

12/9/2016

Founded in 1927UH is the third largest university in Texas 

with more than 41,000 students.

UH is the second most ethnically diverse major research university in the United States. 

Students come to UH from more than 137 nations

UH offers more than 120 undergraduate majors,139 master’s, and 54 doctoral degrees. 

UH has 980 ranked faculty, 1340 non‐ranked faculty, and 1450 student teaching assistants 

10

12/9/2016

12/9/2016

6

The University of Houston comprises 12 academic colleges and an interdisciplinary Honors College.

Gerald D. Hines College of ArchitectureC.T. Bauer College of BusinessCollege of EducationCullen College of EngineeringHonors CollegeConrad N. Hilton College of Hotel andUH Law CenterCollege of Liberal Arts & Social SciencesCollege of Natural Sciences & MathematicsCollege of OptometryCollege of PharmacyGraduate College of Social WorkCollege of Technology

11

12/9/2016

UH Cullen College of Engineering

Dept. of Civil and Environmental Engineering Dept. of Electrical and Computer Engineering Dept. of Chemical Engineering Dept. of Petroleum Engineering Dept. of Biomedical Engineering Dept. of Industrial Engineering

Interdisciplinary Graduate Programs in

Materials engineering Subsea Engineering Aerospace Engineering Geosensing Engineering Environmental Engineering

www.uh.edu12

12/9/2016

12/9/2016

7

Milestones of architecture and civil engineering

1‐ Introduction

12/9/2016

13

“If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death.”

Code of Hammurabi – 1772 BC

1‐ Introduction

12/9/2016

14

12/9/2016

8

15

3700 BCEAncient

Mesopotania

3150 BCEAncient Egypt

2900 BCEAncient India

900 BCEAncient Greeks

1850 BCEAncient China

800BCEAncient Rome

650 BCEPersian Empire

150 ADMayan Civilization 1800

RC/PC/FRP….

Present

Conventional construction materials of today started to appear.‐ Portland cement concrete‐ Reinforced concrete ‐ Prestressed concrete‐ Advanced composites and plastics‐ What is next???

1‐ Introduction

12/9/2016

Reinforced Concrete details ‐Monier System 1867

The birth of reinforced Concrete

1‐ Introduction

12/9/2016

16

12/9/2016

9

Reinforced Concrete

The Burj Khalifa (United ArabEmirates) is the tallest man-made structure ever built (as oftoday). It is supported by areinforced concrete core usinga special concrete mix.

istockphoto.com

1‐ Introduction

12/9/2016

17

1925 1950 1975 20001825 1850 1875 1900 2025

1867J. Monier

1957Montaso

1933E. Freyssinet

Reinforced Concrete

RC vs PC vs FRP

FRPPrestressed Concrete

Portland Cement

1824 J. Aspdin

Two centuries full of technological breakthrough

18

ACI Building Code

EuroCode

CEB/FIB AASHTO

PCIACI 440

1‐ Introduction

12/9/2016

12/9/2016

10

Man constructs,Man destructs,Man constructs… 

Source: http://whateverhappensny.bandcamp.com/releases

2‐CurrentChallengesandIssuesatHand

19

12/9/2016

WW II – Mass destruction of built environment and infrastructure of cities all around the world.

Hiroshima – Japan, 1945

Warsaw, Poland

1935 1945 2009

2‐CurrentChallengesandIssuesatHand

20

12/9/2016

12/9/2016

11

Reconstruction of the cities and boost of infrastructure started after 

WWII era in 1950s.

Majority of structures today are reaching to their design life time.

2‐CurrentChallengesandIssuesatHand

21

12/9/2016

22

• Boost in urbanization and accompanied infrastructure development. (Roads, bridges, sewers, buildings etc.)

• High demands, poor maintenance and aging bring accelerated deterioration.

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA10mz8

12/9/2016

12

23

2000’s

1950’s

A great number of US bridges have become structurally deficient or functionally obsolete due to:

Changing traffic demands

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA11mz9

24

Change of use: Higher loads than originally designed

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA17mz13

12/9/2016

13

25

A great number of US bridges have become structurally deficient or functionally obsolete due to:

• Changing traffic demands• Improvements in design standards

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA12mz10

26

A great number of US bridges have become structurally deficient or functionally obsolete due to:

• Changing traffic demands• Improvements in design standards• Long-term deterioration

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA13mz11

12/9/2016

14

Bridge at US‐385 and the Canadian River12/9/2016

27

A great number of US bridges have become structurally deficient or functionally obsolete due to:

• Changing traffic demands• Improvements in design standards• Long-term deterioration

2‐CurrentChallengesandIssuesatHand

28

A great number of US bridges have become structurally deficient or functionally obsolete due to:

• Changing traffic demands• Improvements in design standards• Long-term deterioration• Man-made structural damage

2‐CurrentChallengesandIssuesatHand

12/9/2016

BA14mz12

12/9/2016

15

Bridge construction in the USA

2‐CurrentChallengesandIssuesatHand

29

About 1,000,000 bridges

12/9/2016

• ASCE 2013 Report Card for Bridges:

C+• Need to invest $20.5 billion annually till 2028

75%

Source: www.FHWA.DOT.GOV

2‐CurrentChallengesandIssuesatHand

30

12/9/2016

12/9/2016

16

75%

Structurally 

Deficient

11%

Functionally 

Obsolete

14%75%

2‐CurrentChallengesandIssuesatHand

ASCE 2013 Report Card for Bridges:

C+Need to invest $20.5 billion annually till 2028

31

12/9/2016

Problem should be addressed and solutions should be proposed in the light of former experience and foresight :

- Traditional vs. new materials - Economical solutions- Immediate actions

ADVANCE COMPOSITE MATERIALS

2‐CurrentChallengesandIssuesatHand

32

12/9/2016

12/9/2016

17

Nationally recognized need

2‐CurrentChallengesandIssuesatHand

34

FRPs are advanced composite materials consisting of high strength fibers such as aramid, carbon or glass embedded in a polymer resin.

Commercially available forms

Reinforcing Bar and Prestressing Tendons

Pre-cured laminate shells

Grids

Fiber sheets

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

BA22mz14

12/9/2016

18

35

Flexural Strengthening Confinement Shear Strengthening

Since 1970s FRP has been used in civil engineering application

Among all the research about FRP, the study of the shearbehavior still remains as a challenging debate.

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

53rd Ave. Bridge, IA Mills Rd. Bridge, OH

Franklin Co. Bridge, VA Trout River Bridge, Alcan Hwy.12/9/2016

36

2‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

19

• What is FRP?

Fibers

Provide strength and stiffness

Carbon, glass, aramid

Matrix

Protects and transfers load between fibres

Epoxy, polyester, vinylester

Composite

Creates a material with attributes superior to either component alone!37

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

Light weight

High Strength

Corrosion Resistant

High Versatility

Advanced Composite Materials – FRP

38

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

12/9/2016

20

FRP properties (compared to steel reinforcement):• Linear elastic

• No yielding

• Higher ultimate strength

• Lower strain at failure1 ksi = 6.89 MPa

39

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

Limitations :Higher CostAnisotropyBrittle BehaviorComplex CharacterizationLack of Comprehensive

Standard Design Codes (emerging)

40

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

12/9/2016

21

Global demand for CFRP in tonnes (2008 – 2020)

Civil Engineering = 6%

Estimated

Global Carbon Fiber consumption per application

(2012)

Source: “Composite Market Report, Market developments, trends, challenges and opportunities”, 2013, AVK, Federation of Reinforced Plastics 41

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

General use of FRP in Transportation

Aircrafts Race Cars Trucks Cars

Concept CarsBusesSport CarsHelicopters

A380Fiber Metal Laminate

McLaren – Formula 1CFRP ThermosetCar Body Structure

SMC Thermoset Parts for Driver Cabin

GMT-Thermoplastic

Rotor BladeErosion Protection

CFRP Thermoset Car Body Structure

SMC ThermosetPanels

Injection MouldedThermoplastic Car Body

Automotive/Railway and Aerospace42

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

12/9/2016

22

Airbus 380

CFRP

AFRP

CFRP

CFRP

GFRP

AEROSPACE INDUSTRY

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

43

Proposal for a carbon fiber-reinforced composite bridge across the Straight of Gibraltar at its narrowest site according to Meier (1987) as a cable net structure.

Spans: 3,100 – 8,400 m.The heights of the towers are approximately 850 and 1,250 m. above sea level

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

44

12/9/2016

23

A suspension bridge across the Strait of 

Taiwan with a main span of 3,500m.

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

45

• Bridge deck• Abutment panel• Rebar or prestressing

reinforcement• Dowel bar• Pole and post• Signboard and signpost• Guardrail system

FRP composites have various applications in bridge construction:

46

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

12/9/2016

24

Cases of structural strengthening 

47

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

Fiber Orientation

Location

Type

FRP Strengthening

Flexural

On surface(Tension side)

Parallel to long. axis

Axial

On periphery

Circumferential

Shear

On surface (Web side)

Perpendicular to long. axis

48

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

12/9/2016

25

Available Design

Guidelines Worldwide

ACI 440.2R-08

ISIS Canada Design Manual

European fib TG9.3 (2001)

CSA S806-12

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

49

Emerging Technologies Accepted Technologies12/9/2016

50

3‐Fiber‐ReinforcedPolymers (FRP)

12/9/2016

26

4‐ShearStrengthening

51

12/9/2016

4‐ShearStrengthening

• Analysis procedures are more empirical as compared to flexural and axial strengthening

• Limited experimental knowledge base

• Not all parameters affecting the shear behavior have been investigated

52

12/9/2016

12/9/2016

27

Internal reinforcement

FRP laminates

Complete Wrapping

U- Wrap

Side Bonding

(Contact critical)

(Bond critical)

Schemes

53

4‐ShearStrengthening

12/9/2016

54

Parameters Influencing the Behavior

Wrapping Schemes

0

20

40

60

80

100

120

140

160

180

200

Side Bonding U-Wrap Completewrapping

Nu

mb

er o

f T

est

Sp

ecim

ens

FRP Wrapping Schemes

Other

FRP Rupture

FRP Debonding81%

65%

55%

4‐ShearStrengthening

12/9/2016

12/9/2016

28

55

Truss Model Approach

Non‐Uniform Strain Distribution

Mechanics‐Based Model

Triantafillou (1998)

Khalifa et al. (1998, 1999)

Triantafillou et al. (2000)

Chaallal et al. (2002)

Pellegrino et al. (2002)

Hsu et al. (2003); Zhang and Hsu (2005)

Cao et al. (2005)

Caroline and Talsten (2005)

Monti and Liotta (2005)

Khalifa et al. (1999)

Chen and Teng (2003)

Main Approaches

4‐ShearStrengthening

12/9/2016

56

Shear Mechanism Based on Truss Model

The shear contribution of each component is derived separately.

However, a high level of interaction exists between them.

General Form of Design Equations :

Vs

Vf

Vc

n c s f fV V V V

Adopted from RC design

Considered similar as

steel

Vn = Vu/

4‐ShearStrengthening

12/9/2016

12/9/2016

29

57

Analytical Models for Shear Resistance of FRP-StrengthenedSpecimens

General formulation:

n c s f fV V V V Strengthening with FRP can affect the shear

contribution of concrete and transverse reinforcement

The primary difference between existing relationships for Vf is in the calculation of the effective strain and the effective depth of the

FRP reinforcement

4‐ShearStrengthening

12/9/2016

Analytical Models – Use of Fixed Value of Effective Strain εfe

Chajes et al. (1995)

Hutchinson and Rizkalla (1999)

CSA S806‐07 (2007)

(failure mode was not

0

d

.0

ef n )

05

i ed

fe

For other fail

0.004 for

ure mode,

peeling off of FRP o

Triantafillou (1998)

bserved especia

and Khalifa (2

ll

00

y in I girder

0) were referred

fe

FRP debondingdue to shear peeling

Outward force resuthe tensile forces invertical and diagonshear reinforcemen

0.004 for for U-wrap

0.002 for Side-bonding

fe

ACI 440.2R‐08 (2008)

for full wrapped FRP

For two-side bonding and U wraped FRP, differened equati

0.004

ons a

0.75

re provided

fe fu

58

4‐ShearStrengthening

12/9/2016

12/9/2016

30

59

Review Of Shear Strengthening With FRP

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02 0.025

Strain (in/in)

Str

ess

(ksi

)

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02 0.025

Strain (in/in)

Str

ess

(ksi

)

Carbon

Aramid

E‐Glass

Most of strain limits fall into this range Most of strain limits fall into this range 

4‐ShearStrengthening

12/9/2016

Relation of active bond length Le to effective depth dfe

2 sides only

U‐wrapped

effe L2dd

effe Ldd

4‐ShearStrengthening

60

12/9/2016

12/9/2016

31

Determination of active bond length Le:

Loc

al b

ond

str

esse

s 0.9999 Pu

0.999 Pu

0.96 Pu

0.8 Pu

0.5 Pu

0.2 Pu

Effective Bond Length

Str

ain

in F

RP

0.9999 Pu

0.999 Pu

0.96 Pu

0.8 Pu

0.5 Pu

0.2 Pu

P

Le

4‐ShearStrengthening

12/9/2016

61

Code Year  Expression

ACI 440.2R‐08 (USA)  2008

ISIS, CSA S806‐02 (Canada) 2002

FIB B14‐Appendix A1 (Europe) 2001

FIB B14‐Appendix A2 (Europe) 2001

CS TR55 (UK) 2004

CNR‐DT 200/04 (Italy) 2005

Eurocode 8‐3 (Europe) 2004

CIDAR (Australia) 2006

Effective bond length as specified by various Codes:

Mostly based on stiffness of FRP

4‐ShearStrengthening

62

12/9/2016

12/9/2016

32

Influence of FRP Properties on Effective FRP Strain

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Debonding failureOther modes of failure

E f f /f c2/3

f, e

FRP stiffness increase Effective FRP strain decrease

4‐ShearStrengthening

12/9/2016

63

Influence of FRP Properties on Shear Force Gain

Slender beam without transverse steel reinforcement‐debonding failure

0

40

80

120

160

200

240

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Sides

U-Wrap

Total-Wrap

Eff/fc2/3

Sh

ear

forc

e g

ain

(%

)

Beyond this point, additional FRP does not translate into

additional shear gain

4‐ShearStrengthening

12/9/2016

64

12/9/2016

33

Effect of Transverse Steel Reinforcement on Shear Force Gain

0

30

60

90

120

150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Sides

U-Wrap

Total-Wrap

fs,ts,t/ff,ef

Sh

ear

forc

e g

ain

(%

)

v y f fef f

Slender beams – debonding failure

Increases  Shear force gain decreases  v y f fef f

4‐ShearStrengthening

12/9/2016

65

Effect of Shear Span to Depth Ratio (Slender vs. Deep Beam)Beams without transverse steel reinforcement – debonding failure

Increases in shear force gain seem in general to be greater in slender beams (a/d>2.5) than in deep beams  arch action

0

40

80

120

160

200

240

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

Sides

U-Wrap

Total-Wrap

a/d

Sh

ear

fo

rce

gai

n (

%)

Slender beams

4‐ShearStrengthening

12/9/2016

66

12/9/2016

34

Beams without transverse steel reinforcement – debonding failure

Scale Effect

0

40

80

120

160

200

240

0 100 200 300 400 500 600 700

Sides

U-Wrap

Total-Wrap

d (mm)

Sh

ear

fo

rce g

ain

(%

)

Practical values for AASHTO type girders

4‐ShearStrengthening

12/9/2016

67

•Debonding of FRP sheet from substrate

Possible Shear Failure Modes

Debonding/Delamination

68

4‐ShearStrengthening

12/9/2016

12/9/2016

35

•Debonding of FRP sheet from substrate

•Loss of aggregate interlock (i.e., loss of Vc)

* Photo taken from the work of George C. Manos and Kostas V. Katakalos 2013 ” The Use of Fiber Reinforced Plastic for The Repair and Strengthening of Existing Reinforced ConcreteStructural Elements Damaged by Earthquakes”

69

Possible Shear Failure Modes

4‐ShearStrengthening

12/9/2016

•Debonding of FRP sheet from substrate

•Loss of aggregate interlock (i.e., loss of Vc)

•Loss of web width/area

70

Possible Shear Failure Modes

4‐ShearStrengthening

12/9/2016

12/9/2016

36

•Debonding of FRP sheet from substrate

•Loss of aggregate interlock (i.e., loss of Vc)

•Loss of web width/area

•FRP rupture due to stress concentration

71

Possible Shear Failure Modes

4‐ShearStrengthening

12/9/2016

72

4‐ShearStrengthening

12/9/2016

12/9/2016

37

73

Analytical Models for Shear Resistance of FRP-StrengthenedSpecimens

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 25 50 75 100 125 150 175 200 225 250 275

Vf / (

b w d

f)(k

si)

ρf Ef (ksi)

U-Wrapping

Chaallal et al., 2002

Hutchinson and Rizkalla, 1999

Carolin and Taljsten, 2005b

Chajes et al., 1995

Khalifa et al., 1998

ACI 440, 2008

Pellegrino and Modena, 2002

Cao et al., 2005

Triantafillou and Antonopoulos, 2000 Chen & Teng, 2003a,b

fib-TG9.3, 2001

CSA S806, 2002

Zhang and Hsu, 2005

vfnr

vf r

JSCE, 2001

Monti and Liotta, 2005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 25 50 75 100 125 150 175 200 225 250 275

Vf / (

b w d

f)(k

si)

ρf Ef (ksi)

U-Wrapping

Chaallal et al., 2002

Hutchinson and Rizkalla, 1999

Carolin and Taljsten, 2005b

Chajes et al., 1995

Khalifa et al., 1998

ACI 440, 2008

Pellegrino and Modena, 2002

Cao et al., 2005

Triantafillou and Antonopoulos, 2000 Chen & Teng, 2003a,b

fib-TG9.3, 2001

CSA S806, 2002

Zhang and Hsu, 2005

vfnr

vf r

JSCE, 2001

Monti and Liotta, 2005

17 in.

7 in.

20 in.

SIGNIFICANT DIFFERENCES IN

PREDICTIONS

NCHRP Report 678 (2011)

1in. = 25.4 mm1 ksi = 6.89 MPa

4‐ShearStrengthening

12/9/2016

“All models are wrong; some models are useful.”

George Box (Statistician)

74

12/9/2016

12/9/2016

38

75

Element Behavior as Part of a Complete Structure

5‐SoftenedMembraneModel

12/9/2016

High-Rise Building Core(Shanghai Tower, 2,073 ft)

5‐SoftenedMembraneModel

76

12/9/2016

12/9/2016

39

77

An efficient method to assess the overall shear response of a strengthenedmember is to study the behavior of an element constituting the structure.

Element Study based on Truss Model

5‐SoftenedMembraneModel

12/9/2016

Universal Panel Tester FRP strengthened RC Panel

On-Going Panel Tester Project

5‐SoftenedMembraneModel

12/9/2016

78

12/9/2016

40

79

Softened Membrane Model (2002) SMM-FRP

5‐SoftenedMembraneModel

12/9/2016

80

Softened Membrane Model (2002) Governing Equations of SMM

• Stress equilibrium equations

Applied Stress

Principal Stress

Contribution of Steel Rebar

Contribution of FRP

5‐SoftenedMembraneModel

12/9/2016

12/9/2016

41

81

Universal Panel Tester

Unique facility to test full scale panel elements under various combination of in-plane and out-of-plane stress conditions.

5‐SoftenedMembraneModel

12/9/2016

82

Softened Membrane Model (2002) Governing Equations of SMM

• Strain transformation equations

Smeared Strains

Principal Strain

5‐SoftenedMembraneModel

12/9/2016

BA18

12/9/2016

42

Softened Membrane Model (2002) Governing Equations of SMM

• Material laws

-Smeared Stress-Strain Curves of Concrete in Tension

83

Smeared Stress

Smeared Strain

Poisson’s Ratio

experimental tests by Zhu and Hsu (2002)

Ave

rage

str

ess

in C

oncr

ete

Average strain in Concrete

RC

Plain Concrete

Ave

rage

str

ess

in C

oncr

ete

Average strain in Concrete

RC

Plain Concrete

FRP RC

Due to the extra bond created by the FRP and the smaller crack distribution, the tension stiffening is

expected to be increased

5‐SoftenedMembraneModel

12/9/2016

84

softening coefficient

Ave

rage

str

ess

in C

oncr

ete

Average strain in Concrete

Under Compression

Under Tension-Compression

Ave

rage

str

ess

in C

oncr

ete

Average strain in Concrete

Under Compression

Under Tension-Compression

FRP RC

Due to the confinement effect of FRP,concrete should be less “softened”

Softened Membrane Model (2002) Governing Equations of SMM

• Material laws

-Concrete Softening under Biaxial Load

Smeared Stress

Smeared Strain

Poisson’s Ratio

5‐SoftenedMembraneModel

12/9/2016

12/9/2016

43

85

Softened Membrane Model (2002) Governing Equations of SMM

• Material laws

-Smeared Stress-Strain Curves of Steel in Tension

Ave

rage

str

ess

in s

teel

Average strain in steel

Bare Rebar

Rebar in RC

Rebar in FRP RC

The apparent yielding point will increasedue to the decrease in crack width becauseof FRP.

Ave

rage

str

ess

in s

teel

Average strain in steel

Bare Rebar

Rebar in RC

Apparent Yielding Point

Smeared Stress

Smeared Strain

Poisson’s Ratio

5‐SoftenedMembraneModel

12/9/2016

86

Shear Test Panels

= 40 MPa concrete strengths = 420 MPa steel reinforcements

• Specimen preparation- grinded- Sandblasted- Power washed- Primer and putty- Wet lay up FRP

application system

• Material tests- Concrete: ASTM C39- Steel: ASTM 8M-01 - FRP: ASTM D3039

5‐SoftenedMembraneModel

12/9/2016

BA19

12/9/2016

44

87

Specimen # 

Name   (%)   (%)   (%)  Wrapping Scheme  Anchorage method 

1 REF_P4 0.76 0.76 - - - 2 REF_P3 0.76 0.43 - - - 3 P4_040_SB 0.76 0.76 0.87 Side Bonding - 4 P4_040_FA 0.76 0.76 0.87 U-Wrap CFRP anchor 5 P4_025_FW 0.76 0.76 0.54 Fully Wrap - 6 P4_040_FW 0.76 0.76 0.87 Fully Wrap - 7 P4_025_FA 0.76 0.76 0.54 U-Wrap CFRP anchor 8 P3_040_FW 0.76 0.43 0.87 Fully Wrap - 9 P3_025_FW 0.76 0.43 0.54 Fully Wrap -

10 P4_080_FW 0.76 0.76 1.74 Fully Wrap -

Specimen # 

Name   (%)   (%)   (%)  Wrapping Scheme  Anchorage method 

1 REF_P4 0.76 0.76 - - - 2 REF_P3 0.76 0.43 - - - 3 P4_040_SB 0.76 0.76 0.87 Side Bonding - 4 P4_040_FA 0.76 0.76 0.87 U-Wrap CFRP anchor 5 P4_025_FW 0.76 0.76 0.54 Fully Wrap - 6 P4_040_FW 0.76 0.76 0.87 Fully Wrap - 7 P4_025_FA 0.76 0.76 0.54 U-Wrap CFRP anchor 8 P3_040_FW 0.76 0.43 0.87 Fully Wrap - 9 P3_025_FW 0.76 0.43 0.54 Fully Wrap -

10 P4_080_FW 0.76 0.76 1.74 Fully Wrap -

Shear Test Matrix

5‐SoftenedMembraneModel

12/9/2016

88

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.002 0.004 0.006 0.008 0.01

21

Average Tensile Strain (in/in)

PR-025PR-040PR-080Model for RC

0

1

2

3

4

0 0.002 0.004 0.006 0.008 0.01

12

Average Tensile Strain (in/in)

PR-025PR-040PR-080Model for RC

The proposed equation for calculating Hsu/Zhu ratio for RC element significantly overestimated the Poisson effect for the FRP RC element.With the increase of FRP stiffness, the Poisson effect becomes less significant.

5‐SoftenedMembraneModel

12/9/2016

12/9/2016

45

89

To develop a model based on SMM for FRP strengthenedRC members, new material Laws have to be used

New material models consider:

Smeared Stress-Strain Curves of Concrete in Tension

Concrete Softening under Biaxial Load

Smeared Stress-Strain Curves of Steel in Tension

Poisson Ratio under Biaxial Load

• Stiffness of FRP• Wrapping scheme• Spacing of External

reinforcement• Steel reinforcement ratio• FRP reinforcement ratio• Bond

5‐SoftenedMembraneModel

12/9/2016

90

5‐SoftenedMembraneModel

12/9/2016

12/9/2016

46

91

• Where do we stand in terms of level of knowledge regarding the shear behavior of FRP strengthened reinforced concrete members ? How much do we know about shear behavior?

6‐ConcludingRemarks

12/9/2016

Preservation and Renewal of Civil Engineering Infrastructure Using FRP Composites

Thank you!Abdeldjelil Belarbi, Ph.D., P.E.

Distinguished Professor of Civil [email protected]