38
Our current understanding of the microscopic origin of gradient terms I. Groma Department of General Physics, Eötvös University Budapest FF. Csikor M. Zaiser E. Van der Giessen http://metal.elte.hu/ ˜ .groma . – p.1/14

Our current understanding of the microscopic origin of gradient terms · 2004. 7. 26. · Outline Motivations Linking micro to meso-scale Properties of the correlation functions Gradient

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Our current understanding of themicroscopic origin of gradient terms

    I. Groma

    Department of General Physics, Eötvös University Budapest

    FF. CsikorM. Zaiser

    E. Van der Giessen

    http://metal.elte.hu/.̃groma

    . – p.1/14

  • Outline

    • Motivations• Linking micro to meso-scale• Properties of the correlation functions• Gradient term• Numerical results• Extension for multiple slip• Conclusions

    . – p.2/14

  • Motivations

    l

    τ

    γ

    Local plasticity

    τclass(γ, γ̇, ...)

    . – p.3/14

  • Motivations

    l

    τ

    γ

    Local plasticity

    τclass(γ, γ̇, ...)

    Phenomenological nonlocal plasticity

    τ(γ, γ̇, ...) = τclass(γ, γ̇, ...) + l2µ

    d2

    d~r2γ

    . – p.3/14

  • Earlier examples

    Fluid dynamics, Boltzmann equation

    ∂∂tf + ~v

    ∂∂~v

    f(t, ~v, ~r) + ~F (~r) ∂∂~r

    f(t, ~v, ~r) = δfcδt⇓

    Navier − Stokes Equations

    Plasma physics

    BBGKY hierarhy

    V lasov′sEquation

    . – p.4/14

  • 2D dislocation dynamics.

    Equation of motion

    ~vi = B~b

    0

    @

    NX

    j 6=i

    τind(~ri − ~rj) + τext

    1

    A , τind(~r) =bµ

    2π(1 − ν)x(x2 − y2)(x2 + y2)2

    For dislocations with ± Burgers vectors

    ∂ρ+(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ+(~r1, t)τext +

    Z

    {ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    ∂ρ−(~r1, t)

    ∂t−~b d

    d~r1

    »

    ρ−(~r1, t)τext −Z

    {ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    . – p.5/14

  • 2D dislocation dynamics.

    Equation of motion

    ~vi = B~b

    0

    @

    NX

    j 6=i

    τind(~ri − ~rj) + τext

    1

    A , τind(~r) =bµ

    2π(1 − ν)x(x2 − y2)(x2 + y2)2

    N particle density function

    fN (t, ~r1, ~r2...~rN )d~r1d~r2...d~rN = fN (t + ∆t, ~r′1, ~r

    ′2...~r

    ′N

    )d~r′1d~r′2...d~r

    ′N

    ~r′i = ~ri + ~vi∆t d~r′i = d~ri(1 + dv

    ix/dxi∆t)

    For dislocations with ± Burgers vectors

    ∂ρ+(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ+(~r1, t)τext +

    Z

    {ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    ∂ρ−(~r1, t)

    ∂t−~b d

    d~r1

    »

    ρ−(~r1, t)τext −Z

    {ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    . – p.5/14

  • 2D dislocation dynamics.

    Equation of motion

    ~vi = B~b

    0

    @

    NX

    j 6=i

    τind(~ri − ~rj) + τext

    1

    A , τind(~r) =bµ

    2π(1 − ν)x(x2 − y2)(x2 + y2)2

    N particle density function

    fN (t, ~r1, ~r2...~rN )d~r1d~r2...d~rN = fN (t + ∆t, ~r′1, ~r

    ′2...~r

    ′N

    )d~r′1d~r′2...d~r

    ′N

    ~r′i = ~ri + ~vi∆t d~r′i = d~ri(1 + dv

    ix/dxi∆t)

    From this

    ∂fN

    ∂t+

    NX

    i=1

    ∂~ri{fN (~r1, ~r2, ..., ~rN )~vi} = 0.

    For dislocations with ± Burgers vectors

    ∂ρ+(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ+(~r1, t)τext +

    Z

    {ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    ∂ρ−(~r1, t)

    ∂t−~b d

    d~r1

    »

    ρ−(~r1, t)τext −Z

    {ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    . – p.5/14

  • 2D dislocation dynamics.

    Equation of motion

    ~vi = B~b

    0

    @

    NX

    j 6=i

    τind(~ri − ~rj) + τext

    1

    A , τind(~r) =bµ

    2π(1 − ν)x(x2 − y2)(x2 + y2)2

    N particle density function

    fN (t, ~r1, ~r2...~rN )d~r1d~r2...d~rN = fN (t + ∆t, ~r′1, ~r

    ′2...~r

    ′N

    )d~r′1d~r′2...d~r

    ′N

    ~r′i = ~ri + ~vi∆t d~r′i = d~ri(1 + dv

    ix/dxi∆t)

    With integration

    ∂ρ1(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ1(~r1, t)τext +

    Z

    ρ2(~r1, ~r2, t)τind(~r1 − ~r2)d~r2–

    = 0

    For dislocations with ± Burgers vectors

    ∂ρ+(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ+(~r1, t)τext +

    Z

    {ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    ∂ρ−(~r1, t)

    ∂t−~b d

    d~r1

    »

    ρ−(~r1, t)τext −Z

    {ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    . – p.5/14

  • 2D dislocation dynamics.

    Equation of motion

    ~vi = B~b

    0

    @

    NX

    j 6=i

    τind(~ri − ~rj) + τext

    1

    A , τind(~r) =bµ

    2π(1 − ν)x(x2 − y2)(x2 + y2)2

    N particle density function

    fN (t, ~r1, ~r2...~rN )d~r1d~r2...d~rN = fN (t + ∆t, ~r′1, ~r

    ′2...~r

    ′N

    )d~r′1d~r′2...d~r

    ′N

    ~r′i = ~ri + ~vi∆t d~r′i = d~ri(1 + dv

    ix/dxi∆t)

    For dislocations with ± Burgers vectors

    ∂ρ+(~r1, t)

    ∂t+~b

    d

    d~r1

    »

    ρ+(~r1, t)τext +

    Z

    {ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    ∂ρ−(~r1, t)

    ∂t−~b d

    d~r1

    »

    ρ−(~r1, t)τext −Z

    {ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2–

    = 0

    . – p.5/14

  • Long range ⇔ Short range

    Let

    ρss′ (~r1, ~r2, t) = ρs(~r1)ρs′ (~r2)(1 + dss′ (~r1, ~r2)) s, s′ ∈ {+,−}

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    (x-x') ρ 1/2

    ( y-y

    ') ρ

    1/2

    X ray line profile analysis

    0.0001

    0.001

    0.01

    0.1

    1

    -4 -2 0 2 4

    I(q)

    q 108 m-1

    a.

    A(n) = exp[ρn2 ln(n/R)]√

    ρR ≈ 1

    . – p.6/14

  • Long range ⇔ Short range

    Let

    ρss′ (~r1, ~r2, t) = ρs(~r1)ρs′ (~r2)(1 + dss′ (~r1, ~r2)) s, s′ ∈ {+,−}

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    (x-x') ρ 1/2

    ( y-y

    ') ρ

    1/2

    X ray line profile analysis

    0.0001

    0.001

    0.01

    0.1

    1

    -4 -2 0 2 4

    I(q)

    q 108 m-1

    a.

    A(n) = exp[ρn2 ln(n/R)]√

    ρR ≈ 1

    . – p.6/14

  • Long range ⇔ Short range

    Let

    ρss′ (~r1, ~r2, t) = ρs(~r1)ρs′ (~r2)(1 + dss′ (~r1, ~r2)) s, s′ ∈ {+,−}

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    (x-x') ρ 1/2

    ( y-y

    ') ρ

    1/2

    X ray line profile analysis

    0.0001

    0.001

    0.01

    0.1

    1

    -4 -2 0 2 4

    I(q)

    q 108 m-1

    a.

    A(n) = exp[ρn2 ln(n/R)]√

    ρR ≈ 1

    . – p.6/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    τsc(~r) =

    Z

    κ(~r1, t)τind(~r − ~r1)d~r1, τind =x(x2 − y2)(x2 + y2)2

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    Field equations (Kröner)

    ∆2χ = −Ab∂κ∂y

    , τsc =∂2

    ∂x∂yχ

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    Field equations (Kröner)

    ∆2χ = −Ab∂κ∂y

    , τsc =∂2

    ∂x∂yχ

    τf(~r) =

    Z

    ρ(~r1)da(~r − ~r1)τind(~r − ~r1)d ~r1 da = d+− − d−+

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    Field equations (Kröner)

    ∆2χ = −Ab∂κ∂y

    , τsc =∂2

    ∂x∂yχ

    τf(~r) =

    Z

    ρ(~r1)da(~r − ~r1)τind(~r − ~r1)d ~r1 da = d+− − d−+

    τb(~r) =

    Z

    κ(~r1)d(~r − ~r1)τind(~r − ~r1)d ~r1 d = d+− + d−+ + d++ + d−−

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    Field equations (Kröner)

    ∆2χ = −Ab∂κ∂y

    , τsc =∂2

    ∂x∂yχ

    τf(~r) = ρ(~r)

    Z

    da(~r)τind(~r)d~r,

    τb(~r) = −dκ(~r)

    d~r

    Z

    ~rd(~r)τind(~r)d~r

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D

    1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Structure of equations

    With ρ = ρ+ + ρ− and κ = ρ+ − ρ−

    ∂ρ(~r, t)

    ∂t+~b

    d

    d~r[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = f(ρ, τext, ...)

    ∂κ(~r, t)

    ∂t+~b

    d

    d~r[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0

    Field equations (Kröner)

    ∆2χ = −Ab∂κ∂y

    , τsc =∂2

    ∂x∂yχ

    τf(~r) =µb

    2π(1 − ν)C(τ)p

    ρ(~r)

    τb(~r) = −µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    . – p.7/14

  • Plasticity

    By definition

    bκ = −∂γ∂x

    b∂κ

    ∂t= −∂γ̇

    ∂x

    Rate of deformationγ̇ = κ

    »

    τ − τf −µb

    2π(1 − ν)D

    1

    ρ(~r)

    ∂κ(~r)

    ∂x

    Gradient term

    τeff = τ +µ

    2π(1 − ν)D1

    ρ(~r)

    ∂2γ(~r)

    ∂x2

    . – p.8/14

  • Plasticity

    By definition

    bκ = −∂γ∂x

    b∂κ

    ∂t= −∂γ̇

    ∂x

    Rate of deformationγ̇ = κ

    »

    τ − τf −µb

    2π(1 − ν)D

    1

    ρ(~r)

    ∂κ(~r)

    ∂x

    Gradient term

    τeff = τ +µ

    2π(1 − ν)D1

    ρ(~r)

    ∂2γ(~r)

    ∂x2

    . – p.8/14

  • Plasticity

    By definition

    bκ = −∂γ∂x

    b∂κ

    ∂t= −∂γ̇

    ∂x

    Rate of deformationγ̇ = κ

    »

    τ − τf −µb

    2π(1 − ν)D

    1

    ρ(~r)

    ∂κ(~r)

    ∂x

    Gradient term

    τeff = τ +µ

    2π(1 − ν)D1

    ρ(~r)

    ∂2γ(~r)

    ∂x2

    . – p.8/14

  • Plasticity

    By definition

    bκ = −∂γ∂x

    b∂κ

    ∂t= −∂γ̇

    ∂x

    Rate of deformationγ̇ = κ

    »

    τ − τf −µb

    2π(1 − ν)D

    1

    ρ(~r)

    ∂κ(~r)

    ∂x

    Gradient term

    τeff = τ +µ

    2π(1 − ν)D1

    ρ(~r)

    ∂2γ(~r)

    ∂x2

    . – p.8/14

  • Finite size effect

    y x

    L 0 2 4 6 8 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Effe

    ctiv

    e st

    ress

    [ µbρ

    01/2/(

    2 π(1

    - ν))

    ]

    Strain[bρ01/2D]

    -2 -1 0 1 2

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    γ [ D

    bρ01

    /2]

    κ [ ρ

    0]

    x [ρ0-1/2]

    . – p.9/14

  • Finite size effect

    -2 -1 0 1 2

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    γ [ D

    bρ01

    /2]

    κ [ ρ

    0]

    x [ρ0-1/2]

    . – p.9/14

  • Finite size effect

    -2 -1 0 1 2

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    γ [ D

    bρ01

    /2]

    κ [ ρ

    0]

    x [ρ0-1/2]

    if ρ = 1/l2

    τ =µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    κ(~r) = τ1

    l22π(1 − ν)

    µbDx

    . – p.9/14

  • Finite size effect

    -2 -1 0 1 2

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    γ [ D

    bρ01

    /2]

    κ [ ρ

    0]

    x [ρ0-1/2]

    if ρ = 1/l2

    τ =µb

    2π(1 − ν)D1

    ρ(~r)

    ∂κ(~r)

    ∂x

    κ(~r) = τ1

    l22π(1 − ν)

    µbDx

    at the boundary −L/2 ρ = −κτ = − µb

    2π(1 − ν)D1

    κ(~r)

    ∂κ(~r)

    ∂x

    κ(~r) = κ0 exp

    −τ 2π(1 − ν)µbD

    x

    ff

    . – p.9/14

  • Boundary layer

    -2 -1 0 1 2

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    γ [ D

    bρ01

    /2]

    κ [ ρ

    0]x [ρ0

    -1/2]

    . – p.10/14

  • Nontrivial problems (Erik, Serge)

    2w 2 3h=

    2h 2hf

    2wf

    U· hΓ·=

    U· hΓ·=

    x1

    x2

    . – p.11/14

  • Nontrivial problems (Erik, Serge)

    Γ(%)

    τ/µ

    x10

    3

    0 0.25 0.5 0.75 10

    0.5

    1

    1.5

    2

    2.5

    3 ∆τn=0

    (i)

    (iii)discretecontinuum

    |

    . – p.11/14

  • Nontrivial problems (Erik, Serge)

    -1 0 1-1

    0

    1400350300250200150100500

    ρL2

    -1 0 1-1

    0

    14003002001000

    -100-200-300-400

    κL2

    . – p.11/14

  • Multiple slip?

    ∂ρi(~r, t)

    ∂t+~bi

    d

    d~r[κi(~r, t)

    ˘

    τsc(~r) + τiext − τ if (~r) + τ ib(~r)

    ¯

    ] = fi(ρi, τiext, ...)

    ∂κi(~r, t)

    ∂t+~bi

    d

    d~r[ρi(~r, t)

    ˘

    τ isc(~r) + τiext − τ if (~r) + τ ib(~r)

    ¯

    ] = 0,

    τ ib(~r) = −N

    X

    j=1

    Dij(ρk)~bjdκj(~r)

    d~r

    Dij(ρk, γ)

    . – p.12/14

  • Multiple slip?

    ∂ρi(~r, t)

    ∂t+~bi

    d

    d~r[κi(~r, t)

    ˘

    τsc(~r) + τiext − τ if (~r) + τ ib(~r)

    ¯

    ] = fi(ρi, τiext, ...)

    ∂κi(~r, t)

    ∂t+~bi

    d

    d~r[ρi(~r, t)

    ˘

    τ isc(~r) + τiext − τ if (~r) + τ ib(~r)

    ¯

    ] = 0,

    τ ib(~r) = −N

    X

    j=1

    Dij(ρk)~bjdκj(~r)

    d~r

    Dij(ρk, γ). – p.12/14

  • Temperature?, Climb?

    Temperature

    vix = Bg(T )bτ(xi, yi) +p

    kTBgζix < ζ

    ix(t)ζ

    ix(0) >= δ(t)

    . – p.13/14

  • Temperature?, Climb?

    Temperature

    vix = Bg(T )bτ(xi, yi) +p

    kTBgζix < ζ

    ix(t)ζ

    ix(0) >= δ(t)

    Climb

    viy = −Bc(T )bσ11(xi, yi) +p

    kTBcζiy < ζ

    iy(t)ζ

    iy(0) >= δ(t)

    . – p.13/14

  • Temperature?, Climb?

    Temperature

    vix = Bg(T )bτ(xi, yi) +p

    kTBgζix < ζ

    ix(t)ζ

    ix(0) >= δ(t)

    Climb

    viy = −Bc(T )bσ11(xi, yi) +p

    kTBcζiy < ζ

    iy(t)ζ

    iy(0) >= δ(t)

    Fokker-Planck type equation

    ∂tρ± ∓

    d

    d~rρ±B̂

    d

    d~rV (~r) ∓ d

    d~rD̂

    d

    d~r(ρ+ − ρ−) + kT

    d

    d~rB̂

    d

    d~rρ± = f(ρ±, ...)

    . – p.13/14

  • Summary

    Continuum theory of dislocation dynamics• Balance equation for ρ and κ• Self-consistent (long range) field• Flow stress• Back stress, gradient term

    . – p.14/14

    includegraphics [angle=0,width=1.4cm]{eltecimer.ps} Outline $ $Motivations $ $Earlier examples $ $2D dislocation dynamics. $ $Long range $Leftrightarrow $ Short range $ $Structure of equations $ $Plasticity $ $ Finite size effect $ $Boundary layer $ $Nontrivial problems (Erik, Serge)$ $Multiple slip? $ $Temperature?, Climb? $ $Summary $ $