8
OPTIMIZATION Foundations and Applications RONALD E. MILLER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester Weinheim Brisbane Singapore Toronto

OPTIMIZATION - gbv.de

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OPTIMIZATION - gbv.de

OPTIMIZATION

Foundations and Applications

RONALD E. MILLER

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Page 2: OPTIMIZATION - gbv.de

CONTENTS

Preface xv

PARTI FOUNDATIONS: LINEARMETHODS 1

1 Matrix Algebra 3

1.1 Matrices: Definition and General Representation 4 1.2 The Algebra of Matrices 4

1.2.1 Matrix Operations: Addition and Subtraction 4 1.2.2 Matrix Defmitions: Equality and the Null Matrix 5 1.2.3 Matrix Operations: Multiplication 5 1.2.4 Matrix Defmitions: The Identity Matrix 7 1.2.5 Matrix Operations: Transposition 8 1.2.6 Matrix Operations: Partitioning 9 1.2.7 Additional Definitions and Operations 9

1.3 Linear Equation Systems: A Preview 11 1.3.1 Matrix Operations: Division 14 1.3.2 The Geometry of Simple Equation Systems: Solution Possibilities 26

1.4 The Geometry of Vectors 29 1.4.1 Linear Combinations of Vectors 29 1.4.2 The Geometry of Multiplication by a Scalar 31 1.4.3 The Geometry of Addition (and Subtraction) 32 1.4.4 Additional Vector Geometry 32

1.5 Linear Dependence and Independence 35 1.6 Quadratic Forms 39

1.6.1 Basic Structure of Quadratic Forms 40 1.6.2 Rewritten Structure of Quadratic Forms 41 1.6.3 Principal Minors and Permutation Matrices 42

vii

Page 3: OPTIMIZATION - gbv.de

vüi CONTENTS

1.6.4 The Sign of a Quadratic Form 48 1.7 Summary 49 Problems 49

2 Systems of Linear Equations 53

2.1 The 2x2 Case Again 54 2.2 The 3 x 3 Case 58

2.2.1 Numerical Illustrations 59 2.2.2 Summary of 2 x 2 and 3 x 3 Solution Possibilities 62

2.3 The n*n Case 62 2.3.1 Consistent Systems [p(A) = p(A j B)] 62 2.3.2 Inconsistent Systems [p(A) * p(A|B)] 64

2.4 More Matrix Algebra: Inverses for Nonsquare Matrices 65 2.4.1 Them>n Case 65 2.4.2 The m < n Case 66 2.4.3 Nonsquare Inverses and Systems of Linear Equations 66

2.5 Fewer Equations than Unknowns (m < n) 67 2.5.1 Consistent Systems [p(A) = p(A j B)] 67 2.5.2 Inconsistent Systems [p(A) * p(A j B)] 71 2.5.3 Summary: Fewer Equations than Unknowns 71

2.6 More Equations than Unknowns {m > n) 72 2.6.1 Consistent Systems [p(A) = p(A j B)] 72 2.6.2 Inconsistent Systems [p(A) # p(AjB)] 74 2.6.3 Summary: More Equations than Unknowns 75

2.7 Numerical Methods for Solving Systems of Linear Equations 75 2.7.1 Elementary Matrix Operations and Gaussian Methods 76 2.7.2 Iterative Methods 79 2.7.3 Factorization of the Matrix A 81 2.7.4 Numerical Illustration 84

2.8 Summary 89 Problems 89

PARTE FOUNDATIONS: NONLINEAR METHODS 97

3 Unconstrained Maximization and Minimization 99

3.1 Limits and Derivatives for Functions of One Variable 100 3.1.1 Limits 100 3.1.2 The Derivative (Algebra) 102 3.1.3 The Derivative (Geometry) 105

3.2 Maximum and Minimum Conditions for Functions of One Variable 106 3.2.1 The (First) Derivative—a Question of Slope 106 3.2.2 The Second Derivative—a Question of Shape 109 3.2.3 Maxima and Minima Using First and Second Derivatives 110 3.2.4 The Differential 112 3.2.5 Maxima and Minima with Differentials 113

3.3 Taylor's Series, Concavity, and Convexity of/(x) 114

Page 4: OPTIMIZATION - gbv.de

CONTENTS ix

3.3.1 Taylor's Series for/(x) 114 3.3.2 Concavity and Convexity off(x) 116 3.3.3 Local, Global and Unique Maxima and Minima 121 3.3.4 Additional Kinds of Convexity and Concavity 121 3.3.5 Numerical Examples 122

3.4 Maxima and Minima for Functions of Two Independent Variables 124 3.4.1 Partial Derivatives, Gradient Vectors, and Hessian Matrices 125 3.4.2 Maxima and Minima foif(xux2) 128 3.4.3 The Total Differential for Functions of Two Variables 129

3.5 Taylor's Series, Concavity, and Convexity of/(X) 134 3.5.1 Taylor's Series for/(X) 134 3.5.2 Concavity and Convexity of/(X) 135 3.5.3 Convex Sets 137 3.5.4 Numerical Illustrations for thef(xux2) Case 141 3.5.5 QuasiconcaveandQuasiconvexFunctions/fo,^) 146

3.6 Maxima and Minima for Functions of n Independent Variables 146 3.6.1 First-Order Conditions 147 3.6.2 Second-Order Conditions 148 3.6.3 Example 149

3.7 Summary 150 Appendix 3.1 Quasiconcave and Quasiconvex Functions 150

3 A. 1.1 Quasiconcavity and Quasiconvexity of/(x) 151 3 A. 1.2 Quasiconcavity and Quasiconvexity of/(X) 158

Appendix 3.2 Maclaurin's and Taylor's Series 165 3A.2.1 Maclaurin's Series 165 3A.2.2 Taylor's Series 166 3A.2.2 Taylor's Theorem 167

References 168 Problems 168

4 Constrained Maximization and Minimization 171

4.1 Quadratic Forms with Side Conditions 172 4.2 Maxima and Minima for Functions of Two Dependent Variables 174

4.2.1 First-Order Conditions: Differentials 174 4.2.2 First-Order Conditions: Lagrange Multipliers 178 4.2.3 Second-Order Conditions 179 4.2.4 Example 181 4.2.5 Geometry ofthe First-Order Conditions 183 4.2.6 Two Examples with Gradients that Are Null Vectors 187 4.2.7 A Note on the Form of the Lagrangian Function 190

4.3 Extension to More Dependent Variables 191 4.3.1 First-Order Conditions 191 4.3.2 Second-Order Conditions 192 4.3.3 Example 192

4.4 Extension to More Constraints 193 4.4.1 First-Order Conditions 193 4.4.2 Second-Order Conditions 195

Page 5: OPTIMIZATION - gbv.de

x CONTENTS

4.4.3 Example 196 4.5 Maxima and Minima with Inequality Constraints 197

4.5.1 Standard Forms for Inequality-Constrained Problems 198 4.5.2 More on Inequalities and Convex Sets 199 4.5.3 One Inequality Constraint 200 4.5.4 More than One Inequality Constraint 207 4.5.5 A Systematic Approach: The Kuhn-Tucker Method 210 4.5.6 Further Complications 221

4.6 Summary 223 References 224 Problems 224

PART i n APPLICATIONS: ITERATIVE METHODS FOR NONLINEAR PROBLEMS 227

5 Solving Nonlinear Equations 229

5.1 Solutions Xof(x) = 0 233 5.1.1 Nonderivative Methods 233 5.1.2 Derivative Methods 243

5.2 Solutions to F(X) = 0 251 5.2.1 Nonderivative Methods 253 5.2.2 Derivative Methods 266

5.3 Summary 274 Appendix 5.1 Finite-Difference Approximations to Derivatives, Gradients, and

Hessian Matrices 276 5 A. 1.1 Functions of One Variable 276 5A.1.2 Functions ofSeveral Variables 278 5A.1.3 Systems of Equations 278 5A.1.4 Hessian Matrices 279

Appendix 5.2 The Sherman-Morrison-Woodbury Formula 281 References 286 Problems 287

6 Solving Unconstrained Maximization and Minimization Problems 291

6.1 Minimization off(x) 292 6.1.1 Simultaneous Methods 293 6.1.2 Sequential Methods 299 6.1.3 Parabolic Interpolation 312 6.1.4 Combined Techniques 313 6.1.5 Line Search with Derivatives 314

6.2 Minimization of/(X): Nonderivative Methods 315 6.2.1 Test Functions 315 6.2.2 Simplex Methods 316 6.2.3 Sequential Univariate Search 327 6.2.4 Conjugate Directum Methods 329 6.2.5 Results for Additional Test Functions 341

Page 6: OPTIMIZATION - gbv.de

CONTENTS xi

6.3 Minimization of/(X): Derivative Methods 346 6.3.1 Classical Gradient Methods 347 6.3.2 Restricted Step Methods 349 6.3.3 Conjugate Gradient Methods 358 6.3.4 Quasi-Newton (Variable Metrie) Methods 360 6.3.5 ResultsforAdditional Test Functions 367 "

6.4 Summary 369 Appendix 6.1 The Sherman-Morrison-Wöodbury Formula Revisited 371

6A.1.1 Introduction 371 6A.1.2 Symmetrie Rank 1 Changes 372 6A.1.3 An Alternative SMW Expression 373 6A. 1.4 Symmetrie Rank 2 Changes 374 6A.1.5 Another Alternative SMW Expression 375 6A. 1.6 Symmetrie Rank n Changes (n > 2) and the

Accompanying SMW Expression 375 References 375 Problems 376

PART IV APPLICATIONS: CONSTRAINED OPTIMIZATION IN LINEAR MODELS 381

7 Linear Programming: Fundamentals 383

7.1 Fundamental Structure, Algebra, and Geometry 387 7.1.1 Illustrative Example 387 7.1.2 The Minimization Problem: Algebra 389 7.1.3 The Maximization Problem: Geometry 390

7.2 Convex Set Theory Again 394 7.3 The Simplex Method 400

7.3.1 The Simplex Criterion 401 7.3.2 Simplex Arithmetic 404

7.4 Duality 412 7.4.1 Mathematical Relationships and Interpretation 412 7.4.2 Dual Values in the Simplex Tables 417 7.4.3 The Optimal Solution to the Dual 419

7.5 Sensitivity Analysis 419 7.5.1 Changes in the Right-HandSideof aConstraint 419 7.5.2 Changes in an Objective Function Coefficient 423

7.6 Summary 424 Problems 424

8 Linear Programming: Extensions 429

8.1 Multiple Optima and Degeneracy 430 8.1.1 Primal Multiple Optima 430 8.1.2 Primal Degenerate Optimum 432

8.2 Artificial Variables 434 8.3 Equations as Constraints 438

Page 7: OPTIMIZATION - gbv.de

xii CONTENTS

8.4 The Transportation Problem 439 8.4.1 Fundamental Structure 439 8.4.2 Numerical Illustration 443

8.5 The Assignment Problem 447 8.5.1 Fundamental Structure 447 8.5.2 Numerical Illustration 448

8.6 Integer Programming 449 8.6.1 The Geometryof Integer Programs 450 8.6.2 Complete Enumeration 451 8.6.3 Gomory's Cutting-Plane Method 453 8.6.4 Branch-and-Bound Methods 461

8.7 Hierarchical Optimization and Goal Programming 467 8.7.1 Hierarchical Optimization: Structure 468 8.7.2 Hierarchical Optimization: Numerical Illustration 470 8.7.3 An Alternative Hierarchical Optimization Approach 473 8.7.4 Numerical Illustration of This Alternative Approach 475 8.7.5 Goal Programming: Structure 477 8.7.6 Goal Programming: Numerical Illustration 480

8.8 Summary 484 References 485 Problems 485

9 Linear Programming: Interior Point Methods

9.1 Introduction to Interior Point Methods 494 9.2 Affine Scaling Interior Point Methods 497

9.2.1 Direction of Movement 499 9.2.2 Step Size 503 9.2.3 Scaling 505 9.2.4 Starting and Stopping 509

9.3 Path-Following Interior Point Methods 510 9.4 Additional Variations and Implementation Issues 517

9.4.1 Regulär Simplices; Circles and Ellipses 517 9.4.2 Alternative Scalings 521 9.4.3 Computational Issues 521 9.4.4 Cholesky Factorizations 523

9.5 Relative Performance: Simplex versus Interior Point Methods on Real-World Problems 527

9.6 Summary 528 References 529 Problems 529

PART V APPLICATIONS: CONSTRAEVED OPTIMIZATION IN NONLINEAR MODELS

10 Nonlinear Programming: Fandamentals

10.1 Structure ofthe Nonlinear Programming Problem 536

Page 8: OPTIMIZATION - gbv.de

CONTENTS xiii

10.1.1 Algebra 536 10.1.2 Geometry 537

10.2 The Kuhn-Tucker Approach to Nonlinear Programming Problems 539 10.2.1 Kuhn-Tucker Conditions for Programming Problems that

IncludeX>0 540 10.2.2 Computational Implications 544 10.2.3 Numerical Illustrations 545 10.2.4 Constraint Gradient Geometry Once Again 550 10.2.5 The Linear Programming Case and Dual Variables 553 10.2.6 Quasiconcavity, Quasiconvexity and Sufficiency 557

10.3 The Kuhn-Tucker Constraint Qualification 564 10.3.1 Unconstrained Optimum Inside or on the Boundaries of the

Feasible Region 564 10.3.2 Unconstrained Optimum Outside the Feasible Region 565 10.3.3 Numerical Illustrations: Convex Feasible Regions 565 10.3.4 Numerical Illustration: Nonconvex Feasible Regions with

Cusps at Optimal Corners 569 10.3.5 Practical Considerations 571

10.4 Saddle Point Problems 575 10.4.1 Saddle Points Defined 571 10.4.2 Saddle Points and Linear Programming Problems 577 10.4.3 Saddle Points and Nonlinear Programming Problems 578

10.5 Summary 580 References 580 Problems 581

11 Nonlinear Programming: Duality and Computational Methods 583

11.1 Gradientlike Computational Methods for Nonlinear Programs 584 11.1.1 Zoutendijk's Method of Feasible Directions 585 11.1.2 Rosen's Gradient Projection Method 588 11.1.3 Alternative Interior Point Methods for Nonlinear Programs 591

11.2 Duality in Nonlinear Programming 591 11.3 Additional Computational Methods for Nonlinear Programs 595

11.3.1 Separable Programming 595 11.3.2 Cutting-Plane Methods 602 11.3.3 Sequential Unconstrained Techniques 609

11.4 Quadratic Programming 617 11.4.1 Structure 617 11.4.2 Computational Methods 620 11.4.3 Duality in Quadratic Programming Problems 621 11.4.4 Numerical Examples 622

11.5 Summary 626 References 627 Problems 628

Answers to Selected Problems Index

633 647