97
Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D. Luk´ s SFB F013 ”Numerical and Symbolic Scientific Computing”, University Linz, AT Department of Applied Mathematics, V ˇ SB–Technical University Ostrava, CZ web: http://lukas.am.vsb.cz, email: [email protected] Supervisor: Prof. Z. Dost´ al, Dep. of Applied Mathematics, V ˇ SB–TU Ostrava Referees: Prof. J. Haslinger, Charles University Prague Prof. M. Kˇ ıˇ zek, Mathematical Institute of the CAS, Prague Prof. U. Langer, Inst. of Computational Mathematics, University Linz

Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal Shape Design in Magnetostatics

Disputation of the Ph.D. thesisNovember 27, 2003

D. Lukas

SFB F013 ”Numerical and Symbolic Scientific Computing”,University Linz, AT

Department of Applied Mathematics, VSB–Technical University Ostrava, CZweb: http://lukas.am.vsb.cz, email: [email protected]

Supervisor: Prof. Z. Dostal, Dep. of Applied Mathematics, VSB–TU Ostrava

Referees: Prof. J. Haslinger, Charles University PragueProf. M. Krızek, Mathematical Institute of the CAS, PragueProf. U. Langer, Inst. of Computational Mathematics, University Linz

Page 2: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 3: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 4: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Homogeneous electromagnets

Maltese cross electromagnet

• is used for measurements of magnetooptic ef-fects,

• produces magnetic field constant in the middle,

• is capable to rotate the magnetic field,

• is produced at Institute of Physics, VSB–TUOstrava,

• is also used at INSA Toulouse, UniversityParis VI, Simon Fraser University Vancouver,Charles University Prague

Page 5: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Homogeneous electromagnets

Optimization problem

Find optimal shapes of the poleheads in order to minimize inho-mogeneities of the magnetic field inthe middle area Ωm among the poleheads.

minα∈U

Ωm

|Bα(x) − Bavgα |2 dx,

whereBα(x) . . . the magnetic flux density,Bavg

α (x) . . . the average mag. fluxdensity over Ωm, Bavg

α ≥ Bmin,U . . . the set of admissible shapes(bounded continuous functions)

−0.2 −0.1 0 0.1 0.2−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x [m]

y [m

]

ferromagneticyoke

+

+ −

+

+ −

pole

pole head

magnetizationarea Ωm

magnetizationplanes

coil

Page 6: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations

curl

(1

µB

)= J + σE +

∂(εE)

∂t

curl (E) = −∂B

∂tdiv(εE) = ρ

div(B) = 0

in Ω × T ⊂ R3 × (0,∞)

Page 7: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations

curl

(1

µB

)= J + σE +

∂(εE)

∂t

curl (E) = −∂B

∂tdiv(εE) = ρ

div(B) = 0

in Ω × T ⊂ R3 × (0,∞)

+ homogeneous boundary conditions

E × n = 0 and B · n = 0 on ∂Ω × T

Page 8: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations

curl

(1

µB

)= J + σE +

∂(εE)

∂t

curl (E) = −∂B

∂tdiv(εE) = ρ

div(B) = 0

in Ω × T ⊂ R3 × (0,∞)

+ homogeneous boundary conditions

E × n = 0 and B · n = 0 on ∂Ω × T

+ initial conditions

E = E0 and B = B0 in Ω × 0

Page 9: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations

curl

(1

µB

)= J + σE +

∂(εE)

∂t

curl (E) = −∂B

∂tdiv(εE) = ρ

div(B) = 0

in Ω × T ⊂ R3 × (0,∞)

+ homogeneous boundary conditions

E × n = 0 and B · n = 0 on ∂Ω × T

+ initial conditions

E = E0 and B = B0 in Ω × 0

Page 10: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations for linear magnetostatics

curl

(1

µ(x)B(x)

)= J(x)

div(B(x)) = 0

in Ω

Page 11: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations for linear magnetostatics

curl

(1

µ(x)B(x)

)= J(x)

div(B(x)) = 0

in Ω

+ boundary condition

u(x) × n(x) = 0 on ∂Ω,

whereB(x) = curl(u(x))

Page 12: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maxwell’s equations for linear magnetostatics

curl

(1

µ(x)B(x)

)= J(x)

div(B(x)) = 0

in Ω

+ boundary condition

u(x) × n(x) = 0 on ∂Ω,

whereB(x) = curl(u(x))

Maxwell’s equations for vector potential

curl

(1

µ(x)curl(u(x))

)= J(x) in Ω

u(x) × n(x) = 0 on ∂Ω

Page 13: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 14: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Weak formulation of 3d linear magnetostatics

(W )

Find u ∈ H0(curl; Ω)/Ker0(curl; Ω) =: H0,⊥(curl; Ω) :

a(u,v) :=

Ω

1

µcurl(u) · curl(v) dx =

Ω

J · v dx ∀v ∈ H0,⊥(curl; Ω),

where 0 < µ0 ≤ µ(x) ≤ µ1 a.e. x ∈ Ω and J ∈ Ker0(div; Ω)

Page 15: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Weak formulation of 3d linear magnetostatics

(W )

Find u ∈ H0(curl; Ω)/Ker0(curl; Ω) =: H0,⊥(curl; Ω) :

a(u,v) :=

Ω

1

µcurl(u) · curl(v) dx =

Ω

J · v dx ∀v ∈ H0,⊥(curl; Ω),

where 0 < µ0 ≤ µ(x) ≤ µ1 a.e. x ∈ Ω and J ∈ Ker0(div; Ω)

Hiptmair ’96: a(v,v) ≥ C‖v‖2curl,Ω on H0,⊥(curl; Ω), i.e., ∃!u solution to (W )

Page 16: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Weak formulation of 3d linear magnetostatics

(W )

Find u ∈ H0(curl; Ω)/Ker0(curl; Ω) =: H0,⊥(curl; Ω) :

a(u,v) :=

Ω

1

µcurl(u) · curl(v) dx =

Ω

J · v dx ∀v ∈ H0,⊥(curl; Ω),

where 0 < µ0 ≤ µ(x) ≤ µ1 a.e. x ∈ Ω and J ∈ Ker0(div; Ω)

Regularization (ε > 0)

(Wε)

Find uε ∈ H0(curl; Ω) :

aε(uε,v) := a(uε,v) + ε

Ω

uε · v dx =

Ω

J · v dx ∀v ∈ H0(curl; Ω)

Hiptmair ’96: a(v,v) ≥ C‖v‖2curl,Ω on H0,⊥(curl; Ω), i.e., ∃!u solution to (W )

Page 17: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Weak formulation of 3d linear magnetostatics

(W )

Find u ∈ H0(curl; Ω)/Ker0(curl; Ω) =: H0,⊥(curl; Ω) :

a(u,v) :=

Ω

1

µcurl(u) · curl(v) dx =

Ω

J · v dx ∀v ∈ H0,⊥(curl; Ω),

where 0 < µ0 ≤ µ(x) ≤ µ1 a.e. x ∈ Ω and J ∈ Ker0(div; Ω)

Regularization (ε > 0)

(Wε)

Find uε ∈ H0(curl; Ω) :

aε(uε,v) := a(uε,v) + ε

Ω

uε · v dx =

Ω

J · v dx ∀v ∈ H0(curl; Ω)

Hiptmair ’96: a(v,v) ≥ C‖v‖2curl,Ω on H0,⊥(curl; Ω), i.e., ∃!u solution to (W )

L. ’03: ∃!uε solution to (Wε) and |uε − u|curl,Ω → 0

Page 18: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Weak formulation of 3d linear magnetostatics

(W )

Find u ∈ H0(curl; Ω)/Ker0(curl; Ω) =: H0,⊥(curl; Ω) :

a(u,v) :=

Ω

1

µcurl(u) · curl(v) dx =

Ω

J · v dx ∀v ∈ H0,⊥(curl; Ω),

where 0 < µ0 ≤ µ(x) ≤ µ1 a.e. x ∈ Ω and J ∈ Ker0(div; Ω)

Regularization (ε > 0)

(Wε)

Find uε ∈ H0(curl; Ω) :

aε(uε,v) := a(uε,v) + ε

Ω

uε · v dx =

Ω

J · v dx ∀v ∈ H0(curl; Ω)

Hiptmair ’96: a(v,v) ≥ C‖v‖2curl,Ω on H0,⊥(curl; Ω), i.e., ∃!u solution to (W )

L. ’03: ∃!uε solution to (Wε) and |uε − u|curl,Ω → 0

Schoberl ’02: Since J ∈ Ker0(div; Ω), then uε ∈ H0,⊥(curl; Ω) and ‖uε − u‖curl,Ω → 0

Page 19: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element method: Nedelec’s elements

• Nedelec space Pe :=p(x) := ae × x + be

∣∣ ae,be ∈ R3, x ∈ Ke

Page 20: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element method: Nedelec’s elements

• Nedelec space Pe :=p(x) := ae × x + be

∣∣ ae,be ∈ R3, x ∈ Ke

• Degrees of freedom σei (v) :=

∫cei

v · tei ds, i = 1, . . . , 6

PSfrag replacements

0

1

1

1

x1

x2

x3

cr1

cr2

cr3

cr4

cr5

cr6

Kr

Re

x1

x2

x3

ce1

ce2

ce3

ce4

ce5

ce6

Ke

Page 21: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element method: Nedelec’s elements

• Nedelec space Pe :=p(x) := ae × x + be

∣∣ ae,be ∈ R3, x ∈ Ke

• Degrees of freedom σei (v) :=

∫cei

v · tei ds, i = 1, . . . , 6

PSfrag replacements

0

1

1

1

x1

x2

x3

cr1

cr2

cr3

cr4

cr5

cr6

Kr

Re

x1

x2

x3

ce1

ce2

ce3

ce4

ce5

ce6

Ke

• H(curl)–conformity condition: continuity of tangential components

Page 22: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

Page 23: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

Page 24: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

Page 25: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

• Density argument ∀τ > 0 ∀v ∈ H0(curl; Ω) ∃v ∈ H20(Ω) : ‖v − v‖curl,Ω ≤ τ

Page 26: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

• Density argument ∀τ > 0 ∀v ∈ H0(curl; Ω) ∃v ∈ H20(Ω) : ‖v − v‖curl,Ω ≤ τ

• vh := Xh(πh0(uε|Ωh)) , where πh

0 is the FE–interpolation operator

Page 27: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

• Density argument ∀τ > 0 ∀v ∈ H0(curl; Ω) ∃v ∈ H20(Ω) : ‖v − v‖curl,Ω ≤ τ

• vh := Xh(πh0(uε|Ωh)) , where πh

0 is the FE–interpolation operator

• Provided µh(x) → µ(x) a.e. in Ω, using Lebesgue dominated convergence theorem:

Xh(uhε) → uε in H0(curl; Ω)

Page 28: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

• Density argument ∀τ > 0 ∀v ∈ H0(curl; Ω) ∃v ∈ H20(Ω) : ‖v − v‖curl,Ω ≤ τ

• vh := Xh(πh0(uε|Ωh)) , where πh

0 is the FE–interpolation operator

• Provided µh(x) → µ(x) a.e. in Ω, using Lebesgue dominated convergence theorem:

Xh(uhε) → uε in H0(curl; Ω)

Page 29: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation

• Inner approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ωh ⊂ Ω

• Extension (by zero) operator Xh : H0(curl; Ωh)h 7→ H0(curl; Ω)h

• 1st Strang’s lemma: ∀vh ∈ Xh(H0(curl; Ωh)h), being a Hilbert space,

‖uε−Xh(uhε)‖curl,Ω ≤ 1

minC, ε

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

• Density argument ∀τ > 0 ∀v ∈ H0(curl; Ω) ∃v ∈ H20(Ω) : ‖v − v‖curl,Ω ≤ τ

• vh := Xh(πh0(uε|Ωh)) , where πh

0 is the FE–interpolation operator

• Provided µh(x) → µ(x) a.e. in Ω, using Lebesgue dominated convergence theorem:

Xh(uhε) → uε in H0(curl; Ω)

Page 30: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

Page 31: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

Page 32: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

• Schoberl ’02: uε ∈ H0,⊥(curl; Ω)

Page 33: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

• Schoberl ’02: uε ∈ H0,⊥(curl; Ω)

• However, H0,⊥(curl; Ω)h 6⊂ H0,⊥(curl; Ω)

Page 34: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

• Schoberl ’02: uε ∈ H0,⊥(curl; Ω)

• However, H0,⊥(curl; Ω)h 6⊂ H0,⊥(curl; Ω)

• H0,⊥(curl; Ω) ∩ H20(Ω) is dense in H0,⊥(curl; Ω)

Page 35: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

• Schoberl ’02: uε ∈ H0,⊥(curl; Ω)

• However, H0,⊥(curl; Ω)h 6⊂ H0,⊥(curl; Ω)

• H0,⊥(curl; Ω) ∩ H20(Ω) is dense in H0,⊥(curl; Ω)

• vh := Xh(πh0(uε,⊥|Ωh))

Page 36: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Langer’s comment

The ellipticity constant 1/minC, ε decreases the rate of convergence to√

h only!

• Hiptmair ’96: C is common for both H0,⊥(curl; Ω) and H0,⊥(curl; Ω)h

• Schoberl ’02: uε ∈ H0,⊥(curl; Ω)

• However, H0,⊥(curl; Ω)h 6⊂ H0,⊥(curl; Ω)

• H0,⊥(curl; Ω) ∩ H20(Ω) is dense in H0,⊥(curl; Ω)

• vh := Xh(πh0(uε,⊥|Ωh))

• The wish:

‖uε − Xh(uhε)‖curl,Ω ≤ 1

C

(‖uε − vh‖curl,Ω +

∣∣[aε − ahε ](X

h(uhε) − vh,vh)

∣∣‖Xh(uh

ε) − vh‖curl,Ω

)

Page 37: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Haslinger’s question

Can the theory be extended to non–inner domain approximations?

Page 38: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Haslinger’s question

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ω, Ωh ⊂ Ω

Page 39: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Haslinger’s question

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ω, Ωh ⊂ Ω

• Extension (by zero) operators Xh,X : H0(curl; Ωh)h,H0(curl; Ω) 7→H0(curl; Ω),

• However, Xh(H0(curl; Ωh)h) 6⊂ Xh(H0(curl;Ω)) and 1st Strang’s lemma can’tbe used!

Page 40: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Haslinger’s question

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ω, Ωh ⊂ Ω

• Extension (by zero) operators Xh,X : H0(curl; Ωh)h,H0(curl; Ω) 7→H0(curl; Ω),

• However, Xh(H0(curl; Ωh)h) 6⊂ Xh(H0(curl;Ω)) and 1st Strang’s lemma can’tbe used!

• Using 2nd Strang’s lemma, for vh := Xh(πh0(uε|Ωh)):

‖X(uε)−Xh(uhε)‖curl,Ω ≤ 1 + µ1

C‖X(uε)−vh‖curl,Ω +

1

C

|f(vh) − ahε(X(uε),v

h)|‖vh‖curl,Ω

Page 41: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite element approximation: Prof. Haslinger’s question

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ωh

∀xh ∈ ∂Ωh ∃x ∈ Ω : ‖xh − x‖ ≤ h, where Ω, Ωh ⊂ Ω

• Extension (by zero) operators Xh,X : H0(curl; Ωh)h,H0(curl; Ω) 7→H0(curl; Ω),

• However, Xh(H0(curl; Ωh)h) 6⊂ Xh(H0(curl;Ω)) and 1st Strang’s lemma can’tbe used!

• Using 2nd Strang’s lemma, for vh := Xh(πh0(uε|Ωh)):

‖X(uε)−Xh(uhε)‖curl,Ω ≤ 1 + µ1

C‖X(uε)−vh‖curl,Ω +

1

C

|f(vh) − ahε(X(uε),v

h)|‖vh‖curl,Ω

• Provided µh → µ a.e. in Ω, it yields Xh(uhε) → X(uε) in H0(curl; Ω)

Page 42: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Set of admissible shapes

U := α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖

Page 43: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Set of admissible shapes

U := α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖, αn ⇒ α

Page 44: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Set of admissible shapes

U := α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖, αn ⇒ αPSfrag replacements

Ω0(α)Ω1(α)

α

x1

x2

x3

ω

Page 45: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Set of admissible shapes

U := α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖, αn ⇒ αPSfrag replacements

Ω0(α)Ω1(α)

α

x1

x2

x3

ωMultistate problem

(W v(α))

Find uv(α) ∈ H0,⊥(curl; Ω) :∫

Ω0(α)

1

µ0curl(uv(α)) · curl(v) dx +

Ω1(α)

1

µ1curl(uv(α)) · curl(v) dx =

=

Ω

Jv · v dx ∀v ∈ H0,⊥(curl; Ω)

Page 46: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 47: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maltese cross electromagnet: Multistate problem

Vertical and diagonal current excitations

5 Amperes, 600 turns, relative permeability of AREMA = 5100

Page 48: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 49: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Continuous cost functional

J (α) := I(α, curl(u1(α)), . . . , curl(unv(α))), where uv(α) is the solution to (W v(α))

Page 50: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Continuous cost functional

J (α) := I(α, curl(u1(α)), . . . , curl(unv(α))), where uv(α) is the solution to (W v(α))

Optimization problem

(P )

Find α∗ ∈ U :

J(α∗) ≤ J(α) ∀α ∈ U , there exists α∗ a solution to (P )

Page 51: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Continuous setting

Continuous cost functional

J (α) := I(α, curl(u1(α)), . . . , curl(unv(α))), where uv(α) is the solution to (W v(α))

Optimization problem

(P )

Find α∗ ∈ U :

J(α∗) ≤ J(α) ∀α ∈ U , there exists α∗ a solution to (P )

Shape parameterization

• Υ ⊂ RnΥ a compact subset

• F : Υ 7→ U a continuous mapping, e.g., Bezier parameterization

(P )

Find p∗ ∈ Υ :

[J F ](p∗) ≤ [J F ](p) ∀p ∈ Υ, there exists p∗ a solution to (P )

Page 52: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Existence and convergence analysis

Existence

U compact

uv : U 7→ H0,⊥(curl; Ω) continuous

I : U ×[L2(Ω)

]nv 7→ R continuous

⇒ ∃α∗ ∈ U a solution to (P )

Page 53: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Existence and convergence analysis

Existence

U compact

uv : U 7→ H0,⊥(curl; Ω) continuous

I : U ×[L2(Ω)

]nv 7→ R continuous

⇒ ∃α∗ ∈ U a solution to (P )

Convergence

∃α∗, αhnεn

∗solutions to (P ), (P hn

εn)

∀α ∈ U : πhnω (α) ⇒ α

uv,hnεn

: Uhn 7→ H0,⊥(curl; Ωhn)hn continuous

I : U ×[L2(Ω)

]nv 7→ R continuous

⇒ ∃nk∞k=1 ⊂ n∞n=1 : αhnkεnk

∗⇒ α∗

Page 54: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Optimal shape design: Existence and convergence analysis

Existence

U compact

uv : U 7→ H0,⊥(curl; Ω) continuous

I : U ×[L2(Ω)

]nv 7→ R continuous

⇒ ∃α∗ ∈ U a solution to (P )

Convergence

∃α∗, αhnεn

∗solutions to (P ), (P hn

εn)

∀α ∈ U : πhnω (α) ⇒ α

uv,hnεn

: Uhn 7→ H0,⊥(curl; Ωhn)hn continuous

I : U ×[L2(Ω)

]nv 7→ R continuous

⇒ ∃nk∞k=1 ⊂ n∞n=1 : αhnkεnk

∗⇒ α∗

Bottleneck

For fine discretizations it is hard to find a continuous shape–to–mesh mapping!

Page 55: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Page 56: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of Jp

Page 57: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh

Page 58: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh

Page 59: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n

Page 60: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n An

ε ·uv,nε =f v,n

−−−−−−−→ uv,nε

Page 61: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n An

ε ·uv,nε =f v,n

−−−−−−−→ uv,nε

curl−−→curl−−→ B v,n

ε

Page 62: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n An

ε ·uv,nε =f v,n

−−−−−−−→ uv,nε

curl−−→curl−−→ B v,n

ε

Ih(αh,xh,B1,nε ,...,B

nv,nε )−−−−−−−−−−−−−→ J h

ε (p)

Page 63: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n An

ε ·uv,nε =f v,n

−−−−−−−→ uv,nε

curl−−→curl−−→ B v,n

ε

Ih(αh,xh,B1,nε ,...,B

nv,nε )−−−−−−−−−−−−−→ J h

ε (p)

Shape–to–mesh elasticity mapping: initial design

−0.2 −0.1 00

0.05

0.1

x1 [m]

x3 [

m]

−0.2 −0.1 00

0.05

0.1

x1 [m]

x3 [

m]

Page 64: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Finite–dimensional optimization

(P )

minp∈R

nΥJ (p)

subject to υ(p) ≤ 0

Structure of J

pπhωF−−−→ αh linear elasticity−−−−−−−−→ xh FEM−−→ An

ε , fv,n An

ε ·uv,nε =f v,n

−−−−−−−→ uv,nε

curl−−→curl−−→ B v,n

ε

Ih(αh,xh,B1,nε ,...,B

nv,nε )−−−−−−−−−−−−−→ J h

ε (p)

Shape–to–mesh elasticity mapping: deformed design

−0.2 −0.1 00

0.05

0.1

x1 [m]

x3 [

m]

−0.2 −0.1 00

0.05

0.1

x1 [m]

x3 [

m]

Page 65: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 66: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

PSfr

agre

pla

cem

ents

h

p0

p0

α(p

0)

x0

x0,T

Ω(α

(p0))

p∗

p

p

p

αx

T

TT

T

J,υ

J(p

),υ

(p)

gra

d( J

(p))

Gra

d(υ

(p))

gra

d(J

),G

rad(υ

)

I α,I

x,I

Bv

I Bv,δ

H0(B

;Ω),a

,fv

A,f

vu

v

Bv

Bv

Bv

τ1,τ

2,

λ

θ

θτ

γ

BFG

S–S

QP

Com

puta

tion

Com

puta

tion

ofof

Use

rin

terf

ace

Exte

rnalP

DE

tools

contr

olnodes

xω,1,.

..,x

ω,n

α

Des

ign–t

o–sh

ape

Shap

e–to

–mes

hm

appin

g

map

pin

g

Adjo

int

met

hod

Sol

ver

oflinea

rsy

stem

s

Mes

hge

ner

ator

FE

Mpre

–/pos

t–pro

cess

or

Page 67: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)

Page 68: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)- FEM approximation using edge elements - FEPP (by J. Schoberl et al.)

Page 69: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)- FEM approximation using edge elements - FEPP (by J. Schoberl et al.)- multigrid PCG solver - PEBBLES (by S. Reitzinger)

Page 70: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)- FEM approximation using edge elements - FEPP (by J. Schoberl et al.)- multigrid PCG solver - PEBBLES (by S. Reitzinger)- SQP with BFGS update of the Hessian - FEPP optimization tools (by W. Muhlhuber)

Page 71: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)- FEM approximation using edge elements - FEPP (by J. Schoberl et al.)- multigrid PCG solver - PEBBLES (by S. Reitzinger)- SQP with BFGS update of the Hessian - FEPP optimization tools (by W. Muhlhuber)- gradients by finite differences

or by the adjoint variable method - FEPP sensitivity analysis module (by D.L.)

Page 72: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Scientific software development

Numerical methods Software (SFB F013)

- mesh generation - NETGEN (by J. Schoberl)- FEM approximation using edge elements - FEPP (by J. Schoberl et al.)- multigrid PCG solver - PEBBLES (by S. Reitzinger)- SQP with BFGS update of the Hessian - FEPP optimization tools (by W. Muhlhuber)- gradients by finite differences

or by the adjoint variable method - FEPP sensitivity analysis module (by D.L.)

NETGEN + FEPP + PEBBLES = NgSolve

see http://www.hpfem.jku.at

Page 73: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 74: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maltese cross electromagnet

Optimized pole heads

Page 75: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maltese cross electromagnet

Optimized pole heads

Parameters

design variables 7 12deg. of freedom 12272 29541SQP iterations 72 93cost func. decrease 1.97.10−6 to 1.49.10−6 2.57.10−6 to 7.32.10−7

comput. time 2 hours 30 hours

Page 76: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Maltese cross electromagnet

Manufacture and measurements

The calculated cost functional has improved twice and the measured cost functionalhas improved even 4.5–times.

−8 −6 −4 −2 0 2 4 6 8600

800

1000

1200

1400

1600

1800

distance [mm]

norm

al c

ompo

nent

of m

agne

tic fl

ux d

ensi

ty [1

04 T

]

init. shape, vertical excit.init. shape, diagonal excit.opt. shape, vertical excit.opt. shape, diagonal excit.

Page 77: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlin

e:

On

the

road

PSfr

agre

pla

cem

ents

phy

sics

mat

hem

atic

sco

mpute

rsc

ience

Page 78: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

General multilevel approach

optimizeddesigns

# of des.variables

# ofunknowns

SQPiters.

CPUtime

2 2777 6 44s

Page 79: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

General multilevel approach

optimizeddesigns

# of des.variables

# ofunknowns

SQPiters.

CPUtime

2 2777 6 44s

4 12086 56 7h 27m

Page 80: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

General multilevel approach

optimizeddesigns

# of des.variables

# ofunknowns

SQPiters.

CPUtime

2 2777 6 44s

4 12086 56 7h 27m

12 29541 93 29h 46m

Page 81: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Contributions of the thesis

Physics/electrical engineering

- development and manufacture of an electromagnet

Page 82: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Contributions of the thesis

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics- development of a multilevel optimization algorithm

Page 83: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Contributions of the thesis

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics- development of a multilevel optimization algorithm

Computer science

- efficient implementation of the 1st–order sensitivity analysis- development of a scientific software package NgSolve (Schoberl et al.)

Page 84: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Contributions of the thesis

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics- development of a multilevel optimization algorithm

Computer science

- efficient implementation of the 1st–order sensitivity analysis- development of a scientific software package NgSolve (Schoberl et al.)

Education

- MATLAB tutorial code for 2d shape optimization (IMAMM ’03)- the thesis can serve as lecture notes

Page 85: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

PSfr

agre

pla

cem

ents

init

ialst

ruct

ure

(ablo

ck)

coar

seto

pol

ogy

opti

miz

atio

n

opti

miz

atio

n

coar

seop

tim

ized

stru

cture

coar

seop

tim

ized

stru

cture

wit

ha

rough

bou

ndar

y shap

e

shap

eid

enti

ficat

ion

and

hie

rarc

hic

aldes

crip

tion

wit

ha

smoo

thbou

ndar

y

shap

e

opti

miz

edst

ruct

ure

hpr

–FE

Mer

ror

anal

ysis

Isth

eer

ror

smal

len

ough

?

Yes

No

hpr

–refi

nem

ent

mult

igri

dpre

cond.

ofK

KT

syst

emre

fined

stru

cture

opti

mal

stru

cture

Page 86: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

Page 87: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

Page 88: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

Page 89: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

Page 90: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

Page 91: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

Page 92: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

• Applications to real–life problems

Page 93: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

• Applications to real–life problems

• Nonlinear problems (strongly monotone operators, . . . , hysteresis)

Page 94: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

• Applications to real–life problems

• Nonlinear problems (strongly monotone operators, . . . , hysteresis)

• Various elliptic(–parabolic) operators: time–harmonic case, eddy currents

Page 95: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

• Applications to real–life problems

• Nonlinear problems (strongly monotone operators, . . . , hysteresis)

• Various elliptic(–parabolic) operators: time–harmonic case, eddy currents

• Scientific software development

Page 96: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Outlook

• Adaptive structural optimization

– common aspects of topology and shape optimization

– smooth hierarchical parameterization of rough interfaces

– fixed grid approach, composite finite elements −→ overcomes the bottleneck

– fe–adaptivity respecting the cost functional

– simultaneous (all–at–once) approach

– multigrid preconditioning techniques for indefinite KKT systems

• Applications to real–life problems

• Nonlinear problems (strongly monotone operators, . . . , hysteresis)

• Various elliptic(–parabolic) operators: time–harmonic case, eddy currents

• Scientific software development

• Attracting some diploma students, industrial partners; cooperations abroad

Page 97: Optimal Shape Design in Magnetostaticshomel.vsb.cz/~luk76/publications/PhD-talk.pdf · Optimal Shape Design in Magnetostatics Disputation of the Ph.D. thesis November 27, 2003 D

Publications by Dalibor Lukas

• L. - Shape optimization of homogeneous electromagnets. Lect. Notes Comp. Sci.Eng. 18, 2001.

• L., Kopriva - Shape optimization of homogeneous electromagnets and their appli-cations for measurements of magneto–optical effects. Rec. of COMPUMAG 2001.

• L., Muhlhuber, Kuhn - An object-oriented library for the shape optimization prob-lems governed by systems of linear elliptic PDEs. Trans. of TU Ostrava 2001.

• L. - On the road – between Sobolev spaces and a manufacture of electromagnets.To appear in Trans. of TU Ostrava.

• L. - On solution to an optimal shape design problem in 3–dimensional linear mag-netostatics. To appear in Appl. Math.

• L., Ciprian, Pistora, Postava, Foldyna - Multilevel solvers for 3–dimensional optimalshape design with an application to magneto–optics. To appear in SCIE.