31
Optimal Sampling Strategies for tree-based models Los Alamos, May 2005 Rolf Riedi Vinay Ribeiro R. Baraniuk

Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Optimal Sampling Strategies for tree-based models

Los Alamos, May 2005

Rolf Riedi Vinay RibeiroR. Baraniuk

Page 2: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Statistical Models with Scaling

A tree based model for Brownian motion

Page 3: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Brownian Motion (BM)

• Brownian motion B(s): – Gaussian process– E[B(s)B(t)]= min(s,t)– B(0)=0 a.s.

• Increments–– i.i.d. (white noise):

– Self-similar

Page 4: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multi-scale approach to BM• By definition:

• Alternative writing:– Celebrated mid-point displacement

• Compare: Haar wavelet decomposition• Alternative view:

– BM given by Tree of innovations

Page 5: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Tree Models

Algorithmically efficientVersatile

Ex: Network traffic modeling

Page 6: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Trees

• Simple graphical model• Symbiosis of probability theory and graph

theory• Parsimonious representation of complexity• Examples

– Time series at multiple scales– Wavelet scaling tree– Sensor placement– Bandwidth estimation– Multi-resolution image

Page 7: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiscale ModelingTime

Scale

Analysis: flow up the tree by adding

Start at bottom with trace itself

Var1

Var2

Var3

Varj

Multiscale statistics

Page 8: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiscale ModelingTime

Scale

Synthesis: flow down via innovations

Start at top with total arrival

Signal: bottom nodes

Var1

Var2

Var3

Varj

Multiscale parameters

Page 9: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Match variances on all dyadic scalesCLT: asymptotically Gaussian

Additive Innovations Wjk ~ N(0, σ2 2-j(2H-1)) : Model for BH(t)

Additive innovations:Linear Processes

Page 10: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiplicative innovationsMultifractal Wavelet Model (MWM)

• Random multiplicativeinnovationsAj,k on [0,1]

eg: beta

• Parsimonious modeling(one parameter per scale)

• Strong ties with rich theory of multifractals

Page 11: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiscale Traffic Trace Matching

4ms

16ms

64ms

Auckland 2000 MWM matchscale

Page 12: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Marginal Matching

4ms

16ms

64ms

scale Auckland 2000 MWM Gaussian

Page 13: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiscale Queuing

Summary:• Tree models can accuratelycapture salient features of time series, such asQueuing of network traffic

• Multiplicative tree models superior to additive ones for network traffic

Page 14: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Optimal Estimation

Formulating the problem

Page 15: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Estimation Problem

• Find optimal choice of N leaf node samples to estimate tree root

• …using the LMMSE

• Applications:– Time-series: Root gives the average over a large

interval or square which may not be observable– Probing for traffic volume in Internet– Prediction from partial observation– Sensor Networks: average climate in a region

R

X1 X2XN

Page 16: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Estimation Problem

• Find optimal choice of N leaf node samples to estimate tree root

• …using the LMMSE

• Intuition: – Positive correlation:

Space samples as far as possibleBut how?

– Negative correlation: Pull samples close togetherNext to each other?

Page 17: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Independent Innovation Tree

• Each child node is obtained from its parent node by adding an independent innovation

• Formally:

R

RnRkR1

+W1 +Wk

+Wn

+Wk1k2

Rk1k2

Page 18: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Independent Innovations (2)

• Simplified Correlation Structure:

R

RnRkR1

+W1 +Wk

+Wn

+Wk1k2

Rk1k2

Page 19: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Water-filling

An optimization methodand

Vital ingredient

Page 20: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

A useful lemma• Optimization of sum of concave functions

– Wanted:

• Solution, iterative in N:– Lemma:

– In other words, “Greedy waterfilling” solves the problem:

Page 21: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

A useful lemma: anchor• Optimization of sum of concave functions

– Lemma:

– Anchor:

1 1 2

h

1 1

… …

max

Page 22: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

A useful lemma: induction• Optimization of sum of concave functions

– Lemma:

– Induction :

1 1 2

h

1 1

… …

max

Page 23: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

A useful lemma: alternative view• Optimization of sum of concave functions

– Lemma:

– Alternative view: order increments according to size. Due to concavity they come in increasing variable for each

1 1 2

h

1 1

… …

max

Page 24: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Optimal Tree Estimation

Iterative solution

Page 25: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Recall: problem setting

• Given N – N = number of leaf nodes available for estimation

• Minimize Var(root | leaves) over ΛN, – ΛN = collection of all sets of N leaf nodes L

• Simple correlation structure on trees– Correlations depend only on common ancestors– Optimal configuration depends only on the number

of samples per sub-tree

Page 26: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Subtrees

• Key-lemma [Willsky ‘02]:

• Consequence:

• Divide and Conquer:– Optimal configuration number of samples per sub-tree

R

RKRkR1

+W1 +Wk

+Wn

Page 27: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Recursion and water-filling

• Recall:

• Technical lemma:– (a)– (b)

• Meaning:– (a): Water-filling applies– (b): Recursively find as optimal LMMS error

R

RnRkR1

+W1 +Wk

+Wn

+Wk1k2

Rk1k2

Page 28: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Optimal estimation

• Optimal N leaf nodes for the LSMME of root – can be found recursively via subtrees.– and iteratively with respect to N

• Numerically efficient search: Water-filling– Given solution for N leaf nodes– Computation: start with leaves and compute improvement

for each subtree for adding one node to it; work up to root– Placement: On each level add the new leaf node to one

subtree with largest improvement; – Overall cost: N*total number of leaves– Avoids searching all possible placements (exponential

cost)

Page 29: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Corollaries • Special case:

– Assume: Var of innovation depends only on depth– Then: All Ψk are identical and

Optimal placement means homogeneous, or well-balanced

• Generalization to covariance trees:–

– If φ is increasing in m, then: • Homogeneous placement is optimal• Next-neighbor samples are provably worst

– if φ is decreasing in m, then • Homogeneous provably worst.

Page 30: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Growing the treeR

RnRkR1

+W1 +Wk

+Wn

+Wk1k2

Rk1k2

• Refining the “resolution”– add subtrees at leaves– Recompute improvements with

the new leaves which are one level further out

– Since the solution is recursive by subtrees, we only need to assign the leaf node to the most effective place in the new subtrees.

Page 31: Optimal Sampling Strategies for tree-based modelsriedi/Publ/TALKS/TalkOptTree.pdf · Rudolf Riedi Rice University stat.rice.edu/~riedi Trees •Simple graphical model • Symbiosis

Rudolf Riedi Rice University stat.rice.edu/~riedi

Summary

• Exploit tree structure to develop intuitive and simple strategies

• Homogeneous sampling is optimal for a positively correlated statistical tree

• Future: Generalize to vector-trees– Towards overcoming non-stationarities

WillskyTree ofTriples