61
The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation On Continuous Time Contract Theory Nizar Touzi Ecole Polytechnique, France Mete’s Academic Birthday, June 5, 2018 Nizar Touzi On Continuous Time Contract Theory

On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

On Continuous Time Contract Theory

Nizar Touzi

Ecole Polytechnique, France

Mete’s Academic Birthday, June 5, 2018

Nizar Touzi On Continuous Time Contract Theory

Page 2: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Nizar Touzi On Continuous Time Contract Theory

Page 3: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Outline

1 The Principal-Agent problemFormulationExamplesReduction to standard control problem

2 Linear and semilinear representationPath dependent heat equationPath dependent semilinear equations

3 Fully nonlinear representationCanonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 4: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

(Static) Principal-Agent Problem

• Principal delegates management of output process X ,only observes Xpays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := maxa

EUA

(ξ(X a)− c(a)

)=⇒ a(ξ)

• Principal chooses optimal contract by solving

maxξ

EUP

(X a(ξ) − ξ(X a(ξ))

)under constraint VA(ξ) ≥ ρ

Non-zero sum Stackelberg game

Nizar Touzi On Continuous Time Contract Theory

Page 5: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

(Static) Principal-Agent Problem

• Principal delegates management of output process X ,only observes Xpays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := maxa

EUA

(ξ(X a)− c(a)

)=⇒ a(ξ)

• Principal chooses optimal contract by solving

maxξ

EUP

(X a(ξ) − ξ(X a(ξ))

)under constraint VA(ξ) ≥ ρ

=⇒ Non-zero sum Stackelberg game

Nizar Touzi On Continuous Time Contract Theory

Page 6: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

(Static) Principal-Agent Problem

• Principal delegates management of output process X ,only observes Xpays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := maxa

EUA

(ξ(X a)− c(a)

)=⇒ a(ξ)

• Principal chooses optimal contract by solving

maxξ

EUP

(X a(ξ) − ξ(X a(ξ))

)under constraint VA(ξ) ≥ ρ

=⇒ Non-zero sum Stackelberg game

Nizar Touzi On Continuous Time Contract Theory

Page 7: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

(Static) Principal-Agent Problem

• Principal delegates management of output process X ,only observes Xpays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := maxa

EUA

(ξ(X a)− c(a)

)=⇒ a(ξ)

• Principal chooses optimal contract by solving

maxξ

EUP

(X a(ξ) − ξ(X a(ξ))

)under constraint VA(ξ) ≥ ρ

=⇒ Non-zero sum Stackelberg game

Nizar Touzi On Continuous Time Contract Theory

Page 8: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

(Static) Principal-Agent Problem ==> Continuous time

• Principal delegates management of output process X ,only observes Xpays salary defined by contract ξ(X )

• Agent devotes effort a =⇒ X a, chooses optimal effort by

VA(ξ) := maxa

EUA

(ξ(X a)− c(a)

)=⇒ a(ξ)

• Principal chooses optimal contract by solving

maxξ

EUP

(X a(ξ) − ξ(X a(ξ))

)under constraint VA(ξ) ≥ ρ

=⇒ Non-zero sum Stackelberg game

Nizar Touzi On Continuous Time Contract Theory

Page 9: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Principal-Agent problem formulation

Agent problem :

V A0 (ξ) := sup

P∈PEP[ξ(X )−

∫ T

0ct(νt)dt

]P ∈ P : weak solution of Output process for some ν valued in U :

dXt = bt(X , νt)dt + σt(X , νt)dWPt P− a.s.

• Given solution P∗(ξ), Principal solves the optimization problem

V P0 := sup

ξ∈Ξρ

E P∗(ξ)[U(`(X )− ξ(X )

)]where Ξρ :=

ξ(X.) : V A

0 (ξ) ≥ ρ

Possible extensions : random (possibly ∞) horizon, heterogeneousagents with possibly mean field interaction, competing Principals...

Nizar Touzi On Continuous Time Contract Theory

Page 10: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Principal-Agent problem formulation

Agent problem :

V A0 (ξ) := sup

P∈PEP[ξ(X )−

∫ T

0ct(νt)dt

]P ∈ P : weak solution of Output process for some ν valued in U :

dXt = bt(X , νt)dt + σt(X , νt)dWPt P− a.s.

• Given solution P∗(ξ), Principal solves the optimization problem

V P0 := sup

ξ∈Ξρ

E P∗(ξ)[U(`(X )− ξ(X )

)]where Ξρ :=

ξ(X.) : V A

0 (ξ) ≥ ρ

Possible extensions : random (possibly ∞) horizon, heterogeneousagents with possibly mean field interaction, competing Principals...

Nizar Touzi On Continuous Time Contract Theory

Page 11: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Principal-Agent problem formulation : non-degeneracy

Agent problem :

V A0 (ξ) := sup

P∈PEP[ξ(X )−

∫ T

0ct(νt)dt

]P ∈ P : weak solution of Output process for some ν valued in U :

dXt = σt(X , βt)[λt(X , αt)dt + dW P

t

]P− a.s.

• Given solution P∗(ξ), Principal solves the optimization problem

V P0 := sup

ξ∈Ξρ

E P∗(ξ)[U(`(X )− ξ(X )

)]where Ξρ :=

ξ(X.) : V A

0 (ξ) ≥ ρ

Possible extensions : random (possibly ∞) horizon, heterogeneousagents with possibly mean field interaction, competing Principals...

Nizar Touzi On Continuous Time Contract Theory

Page 12: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Fund managers compensation [Cvitanić, Possamaï & NT ’16]

Fund managers portfolio value

dXt = πt · (αtdt + dWt)

Manager’s problem

V A(ξ) := supα,π

E[ξ(X )−

∫ T

0ct(αt , πt)dt

]=⇒ ν? := (α?, π?)

Principal problem

V P := supξ:V A(ξ)≥R

E[U(Xν?(ξ)T − ξ(X ν?(ξ))

)]

Nizar Touzi On Continuous Time Contract Theory

Page 13: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Maker-Taker Fees [El Euch, Mastrolia, Rosenbaum & NT ’18]

Nizar Touzi On Continuous Time Contract Theory

Page 14: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Modeling Makers-Takers fees

• Fundamental price Ptt≥0, Market Maker posts bid-ask prices

pbt = Pt − δbt and pat = Pt + δat , with dPt = σdWt

• MM inventory Qt = Nbt − Na

t , where Nbt ,N

at point process with

unit jumps representing the arrivals of bid-ask order with intensities

λbt = λ(δbt ) and λat = λ(δat ), with λ(x) = Ae−kσx

• MM chooses the departure from fundamental price :

VA(ξ) := supδb,δa

EUA

(ξ +

∫ T

0pat dN

at − pbt dN

bt + QTPT

)• Given optimal response δ∗(ξ), Platform chooses optimal contract

VP = supξ∈ΞR

EUP

(−ξ + c(Na

T + NbT ))

Nizar Touzi On Continuous Time Contract Theory

Page 15: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Modeling Makers-Takers fees

• Fundamental price Ptt≥0, Market Maker posts bid-ask prices

pbt = Pt − δbt and pat = Pt + δat , with dPt = σdWt

• MM inventory Qt = Nbt − Na

t , where Nbt ,N

at point process with

unit jumps representing the arrivals of bid-ask order with intensities

λbt = λ(δbt ) and λat = λ(δat ), with λ(x) = Ae−kσx

• MM chooses the departure from fundamental price :

VA(ξ) := supδb,δa

EUA

(ξ +

∫ T

0pat dN

at − pbt dN

bt + QTPT

)• Given optimal response δ∗(ξ), Platform chooses optimal contract

VP = supξ∈ΞR

EUP

(−ξ + c(Na

T + NbT ))

Nizar Touzi On Continuous Time Contract Theory

Page 16: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Modeling Makers-Takers fees

• Fundamental price Ptt≥0, Market Maker posts bid-ask prices

pbt = Pt − δbt and pat = Pt + δat , with dPt = σdWt

• MM inventory Qt = Nbt − Na

t , where Nbt ,N

at point process with

unit jumps representing the arrivals of bid-ask order with intensities

λbt = λ(δbt ) and λat = λ(δat ), with λ(x) = Ae−kσx

• MM chooses the departure from fundamental price :

VA(ξ) := supδb,δa

EUA

(ξ +

∫ T

0pat dN

at − pbt dN

bt + QTPT

)• Given optimal response δ∗(ξ), Platform chooses optimal contract

VP = supξ∈ΞR

EUP

(−ξ + c(Na

T + NbT ))

Nizar Touzi On Continuous Time Contract Theory

Page 17: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Modeling Makers-Takers fees

• Fundamental price Ptt≥0, Market Maker posts bid-ask prices

pbt = Pt − δbt and pat = Pt + δat , with dPt = σdWt

• MM inventory Qt = Nbt − Na

t , where Nbt ,N

at point process with

unit jumps representing the arrivals of bid-ask order with intensities

λbt = λ(δbt ) and λat = λ(δat ), with λ(x) = Ae−kσx

• MM chooses the departure from fundamental price :

VA(ξ) := supδb,δa

EUA

(ξ +

∫ T

0pat dN

at − pbt dN

bt + QTPT

)• Given optimal response δ∗(ξ), Platform chooses optimal contract

VP = supξ∈ΞR

EUP

(−ξ + c(Na

T + NbT ))

Nizar Touzi On Continuous Time Contract Theory

Page 18: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Some references

Adam Smith (1723-1790), “Scottish economist, moral philosopher,pioneer of political economy

Moral hazard is a major risk in economics

Jean Tirole (Nobel Prize 2014), Industrial organization, regulation

Bengt Holmström and Oliver Hart (Nobel Prize 2016)

Cvitanić & Zhang (’12, Book)

Sannikov ’08 : new approach in continuous time...

Nizar Touzi On Continuous Time Contract Theory

Page 19: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

A subset of revealing contracts

• Path-dependent Hamiltonian for the Agent problem :

Ht(ω, z , γ) := supu∈U

bt(ω, u) · z +

12σtσ

>t (ω, u) :γ − ct(ω, u)

• For Y0 ∈ R, Z , Γ FX − prog meas, define P−a.s. for all P ∈ P

Y Z ,Γt = Y0 +

∫ t

0Zs · dXs +

12

Γs : d〈X 〉s − Hs(X ,Zs , Γs)ds

Proposition VA

(Y Z ,ΓT

)= Y0. Moreover P∗ is optimal iff

ν∗t = Argmaxu∈U

Ht(Zt , Γt) = ν(Zt , Γt)

Nizar Touzi On Continuous Time Contract Theory

Page 20: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

A subset of revealing contracts

• Path-dependent Hamiltonian for the Agent problem :

Ht(ω, z , γ) := supu∈U

bt(ω, u) · z +

12σtσ

>t (ω, u) :γ − ct(ω, u)

• For Y0 ∈ R, Z , Γ FX − prog meas, define P−a.s. for all P ∈ P

Y Z ,Γt = Y0 +

∫ t

0Zs · dXs +

12

Γs : d〈X 〉s − Hs(X ,Zs , Γs)ds

Proposition VA

(Y Z ,ΓT

)= Y0. Moreover P∗ is optimal iff

ν∗t = Argmaxu∈U

Ht(Zt , Γt) = ν(Zt , Γt)

Nizar Touzi On Continuous Time Contract Theory

Page 21: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Proof : classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T0 c

νt dt]. Then

JA(Y Z ,ΓT ,P

)= EP

[Y0+

∫ T

0Zt ·dXt +

12

Γt:d〈X 〉t−Ht(Zt , Γt)dt −∫ T

0cνt dt

]= Y0+EP

∫ T

0

bνt ·Zt +

12σσ>:Γt − cνt − Ht(Zt , Γt)

dt + Zt ·σνt dW P

t

≤ Y0

with equality iff ν = ν∗ maximizes the Hamiltonian

Nizar Touzi On Continuous Time Contract Theory

Page 22: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Proof : classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T0 c

νt dt]. Then

JA(Y Z ,ΓT ,P

)= EP

[Y0+

∫ T

0Zt ·dXt +

12

Γt:d〈X 〉t−Ht(Zt , Γt)dt −∫ T

0cνt dt

]= Y0+EP

∫ T

0

bνt ·Zt +

12σσ>:Γt − cνt − Ht(Zt , Γt)

dt + Zt ·σνt dW P

t

≤ Y0

with equality iff ν = ν∗ maximizes the Hamiltonian

Nizar Touzi On Continuous Time Contract Theory

Page 23: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Proof : classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T0 c

νt dt]. Then

JA(Y Z ,ΓT ,P

)= EP

[Y0+

∫ T

0Zt ·dXt +

12

Γt:d〈X 〉t−Ht(Zt , Γt)dt −∫ T

0cνt dt

]= Y0+EP

∫ T

0

bνt ·Zt +

12σσ>:Γt − cνt − Ht(Zt , Γt)

dt+Zt ·σνt dW P

t

≤ Y0

with equality iff ν = ν∗ maximizes the Hamiltonian

Nizar Touzi On Continuous Time Contract Theory

Page 24: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Proof : classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T0 c

νt dt]. Then

JA(Y Z ,ΓT ,P

)= EP

[Y0+

∫ T

0Zt ·dXt +

12

Γt:d〈X 〉t−Ht(Zt , Γt)dt −∫ T

0cνt dt

]= Y0+EP

∫ T

0

bνt ·Zt +

12σσ>:Γt − cνt − Ht(Zt , Γt)

dt+Zt ·σνt dW P

t

≤ Y0 by definition of H

with equality iff ν = ν∗ maximizes the Hamiltonian

Nizar Touzi On Continuous Time Contract Theory

Page 25: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Proof : classical verification argument !

For all P ∈ P, denote JA(ξ,P) := EP[ξ − ∫ T0 c

νt dt]. Then

JA(Y Z ,ΓT ,P

)= EP

[Y0+

∫ T

0Zt ·dXt +

12

Γt:d〈X 〉t−Ht(Zt , Γt)dt −∫ T

0cνt dt

]= Y0+EP

∫ T

0

bνt ·Zt +

12σσ>:Γt − cνt − Ht(Zt , Γt)

dt+Zt ·σνt dW P

t

≤ Y0 by definition of H

with equality iff ν = ν∗ maximizes the Hamiltonian

Nizar Touzi On Continuous Time Contract Theory

Page 26: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Principal problem restricted to revealing contracts

Dynamics of the pair (X ,Y ) under “optimal response”

dXt = ∇zHt(X ,YZ ,Γt ,Zt , Γt)︸ ︷︷ ︸

bt(X ,ν(Yt ,Zt ,Γt))

dt +2∇γHt(X ,Y

Z ,Γt ,Zt , Γt)

12︸ ︷︷ ︸

σt(X ,ν(Yt ,Zt ,Γt))

dWt

dY Z ,Γt = Zt · dXt + 1

2Γt : d〈X 〉t − Ht(X ,YZ ,Γt ,Zt , Γt)dt

=⇒ Principal’s value function under revealing contracts :

VP ≥ V0(X0,Y0) := sup(Z ,Γ)∈V

E[U(`(X )− Y Z ,Γ

T

)], for all Y0 ≥ ρ

where V :=

(Z , Γ) : Z ∈ H2(P) and P∗(Y Z ,ΓT

)6= ∅

Nizar Touzi On Continuous Time Contract Theory

Page 27: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Reduction to standard control problem

Theorem (Cvitanić, Possamaï & NT ’15)

Assume V 6= ∅. Then

V P0 = sup

Y0≥ρV0(X0,Y0)

Given maximizer Y ?0 , the corresponding optimal controls (Z ?, Γ?)

induce an optimal contract

ξ? = Y ?0 +

∫ T

0Z ?t · dXt +

12

Γ?t : d〈X 〉t − Ht(X ,YZ?,Γ?

t ,Z ?t , Γ?t )dt

Nizar Touzi On Continuous Time Contract Theory

Page 28: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Recall the subclass of contracts

Y Z ,Γt = Y0 +

∫ t

0Zs · dXs +

12

Γs :d〈X 〉s − Hs(X ,Y Z ,Γs ,Zs , Γs)ds

P− a.s. for all P ∈ P

To prove the main result, it suffices to prove the representation

for all ξ ∈?? ∃ (Y0,Z , Γ) s.t. ξ = Y Z ,ΓT , P− a.s. for all P ∈ P

OR, weaker sufficient condition :

for all ξ ∈?? ∃ (Y n0 ,Z

n, Γn) s.t. “Y Zn,Γn

T −→ ξ”

Nizar Touzi On Continuous Time Contract Theory

Page 29: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Recall the subclass of contracts

Y Z ,Γt = Y0 +

∫ t

0Zs · dXs +

12

Γs :d〈X 〉s − Hs(X ,Y Z ,Γs ,Zs , Γs)ds

P− a.s. for all P ∈ P

To prove the main result, it suffices to prove the representation

for all ξ ∈?? ∃ (Y0,Z , Γ) s.t. ξ = Y Z ,ΓT , P− a.s. for all P ∈ P

OR, weaker sufficient condition :

for all ξ ∈?? ∃ (Y n0 ,Z

n, Γn) s.t. “Y Zn,Γn

T −→ ξ”

Nizar Touzi On Continuous Time Contract Theory

Page 30: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Recall the subclass of contracts

Y Z ,Γt = Y0 +

∫ t

0Zs · dXs +

12

Γs :d〈X 〉s − Hs(X ,Y Z ,Γs ,Zs , Γs)ds

P− a.s. for all P ∈ P

To prove the main result, it suffices to prove the representation

for all ξ ∈?? ∃ (Y0,Z , Γ) s.t. ξ = Y Z ,ΓT , P− a.s. for all P ∈ P

OR, weaker sufficient condition :

for all ξ ∈?? ∃ (Y n0 ,Z

n, Γn) s.t. “Y Zn,Γn

T −→ ξ”

Nizar Touzi On Continuous Time Contract Theory

Page 31: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

FormulationExamplesReduction to standard control problem

Gamma, Mete, and I

H.M. Soner, and NT. Super-replication under Gamma constraint,SIAM Journal on Control and Optimization 39, 73-96 (2000).

P. Cheridito, H.M. Soner and NT. The multi-dimensionalsuper-replication problem under Gamma constraints, Annales del’Institut Henri Poincaré, Série C : Analyse Non-Linéaire 22,633-666 (2005)

H.M. Soner, and NT. Hedging under Gamma constraints byoptimal stopping and face-lifting. Mathematical Finance 17, 1,59-80 (2007).

U. Cetin, M. Soner and NT, Option hedging under liquidity costs,Finance and Stochastics, 14, 317-341

Nizar Touzi On Continuous Time Contract Theory

Page 32: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Outline

1 The Principal-Agent problemFormulationExamplesReduction to standard control problem

2 Linear and semilinear representationPath dependent heat equationPath dependent semilinear equations

3 Fully nonlinear representationCanonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 33: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Linear representation of random variables

Predictable Representation Property of BM

Theorem

For all ξ ∈ L2(FWT ), there is a unique (Y ,Z ) FW−prog. meas. s.t.

ξ = Yt +∫ Tt ZsdWs , P− a.s. E

[ ∫ T0 (|Yt |2 + |Zt |2)dt

]<∞,

• For ξ = g(WT ) : Heat equation and Itô’s formula• True for ξ = g(Wt1 , . . . ,Wtn)... conclude by density argument

Heat equation with path dependent boundary condition

Connection with W 1,2−solution of Heat equation

Nizar Touzi On Continuous Time Contract Theory

Page 34: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Linear representation of random variables

Predictable Representation Property of BM

Theorem

For all ξ ∈ L2(FWT ), there is a unique (Y ,Z ) FW−prog. meas. s.t.

ξ = Yt +∫ Tt ZsdWs , P− a.s. E

[ ∫ T0 (|Yt |2 + |Zt |2)dt

]<∞,

• For ξ = g(WT ) : Heat equation and Itô’s formula• True for ξ = g(Wt1 , . . . ,Wtn)... conclude by density argument

Heat equation with path dependent boundary condition

Connection with W 1,2−solution of Heat equation

Nizar Touzi On Continuous Time Contract Theory

Page 35: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Linear representation of random variables

Predictable Representation Property of BM

Theorem

For all ξ ∈ L2(FWT ), there is a unique (Y ,Z ) FW−prog. meas. s.t.

ξ = Yt +∫ Tt ZsdWs , P− a.s. E

[ ∫ T0 (|Yt |2 + |Zt |2)dt

]<∞,

• For ξ = g(WT ) : Heat equation and Itô’s formula• True for ξ = g(Wt1 , . . . ,Wtn)... conclude by density argument

Heat equation with path dependent boundary condition

Connection with W 1,2−solution of Heat equation

Nizar Touzi On Continuous Time Contract Theory

Page 36: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Backward SDE and semilinear PDE

Required representation in differential form

dYt = ZtdWt , t ≤ T , andYT = ξ, P− a.s.

In the Markovian case ξ = g(WT ) =⇒

Yt = v(t,Wt), so that dYt = ∂tv(t,Wt)dt+Dv(t,Wt)·dWt+12

∆v(t,Wt)dt

by Itô’s formula. Direct identification yields

Zt = Dv(t,Wt) and ∂tv(t,Wt) +12

∆v(t,Wt) = 0

Nizar Touzi On Continuous Time Contract Theory

Page 37: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Backward SDE and semilinear PDE

Required representation in differential form

dYt = ZtdWt , t ≤ T , andYT = ξ, P− a.s.

In the Markovian case ξ = g(WT ) =⇒

Yt = v(t,Wt), so that dYt = ∂tv(t,Wt)dt+Dv(t,Wt)·dWt+12

∆v(t,Wt)dt

by Itô’s formula. Direct identification yields

Zt = Dv(t,Wt) and ∂tv(t,Wt) +12

∆v(t,Wt) = 0

Nizar Touzi On Continuous Time Contract Theory

Page 38: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Backward SDE and semilinear PDE

Required representation in differential form

dYt = ZtdWt , t ≤ T , andYT = ξ, P− a.s.

In the Markovian case ξ = g(WT ) =⇒

Yt = v(t,Wt), so that dYt = ∂tv(t,Wt)dt+Dv(t,Wt)·dWt+12

∆v(t,Wt)dt

by Itô’s formula. Direct identification yields

Zt = Dv(t,Wt) and ∂tv(t,Wt) +12

∆v(t,Wt) = 0

Nizar Touzi On Continuous Time Contract Theory

Page 39: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Semilinear representation of random variables

Here again, ξ = ξ(Ws , s ≤ T ). Let

f : R× Ω× R× Rd −→ R, Lip in (y , z), unif in (t, ω), E[∫ T

0 |f0s |2ds

]<∞

Theorem (Pardoux & Peng ’92)

For all ξ ∈ L2(FWT ), there is a unique FW−prog. meas. (Y ,Z ),

E[ ∫ T

0 (|Yt |2 + |Zt |2)dt]<∞, s.t

Yt = ξ+∫ T

tfs(Ys ,Zs)ds −

∫ T

tZsdWs , P− a.s.

Unique fixed point for the Picard iteration

(Y ,Z ) 7−→ Y ′t = ξ +∫ T

tfs(Ys ,Zs)ds −

∫ T

tZ ′sdWs , 0 ≤ t ≤ T

W 1,2−type solution of semilinear heat equation with

path-dependent nonlinearity and boundary data

Nizar Touzi On Continuous Time Contract Theory

Page 40: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Path dependent heat equationPath dependent semilinear equations

Semilinear representation of random variables

Here again, ξ = ξ(Ws , s ≤ T ). Let

f : R× Ω× R× Rd −→ R, Lip in (y , z), unif in (t, ω), E[∫ T

0 |f0s |2ds

]<∞

Theorem (Pardoux & Peng ’92)

For all ξ ∈ L2(FWT ), there is a unique FW−prog. meas. (Y ,Z ),

E[ ∫ T

0 (|Yt |2 + |Zt |2)dt]<∞, s.t

Yt = ξ+∫ T

tfs(Ys ,Zs)ds −

∫ T

tZsdWs , P− a.s.

Unique fixed point for the Picard iteration

(Y ,Z ) 7−→ Y ′t = ξ +∫ T

tfs(Ys ,Zs)ds −

∫ T

tZ ′sdWs , 0 ≤ t ≤ T

W 1,2−type solution of semilinear heat equation with

path-dependent nonlinearity and boundary data

Nizar Touzi On Continuous Time Contract Theory

Page 41: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Outline

1 The Principal-Agent problemFormulationExamplesReduction to standard control problem

2 Linear and semilinear representationPath dependent heat equationPath dependent semilinear equations

3 Fully nonlinear representationCanonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 42: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Towards fully nonlinear PDEs : quasi-sure stochastic analysis

Ω :=ω ∈ C 0(R+,Rd) : ω(0) = 0

X : canonical process, i.e. Xt(ω) := ω(t)

Ft := σ(Xs , s ≤ t), F := Ft , t ≥ 0

PW : collection of all semimartingale measures P such that

dXt = btdt + σtdWt , P− a.s.

for some F−processes b and σ, and P−Brownian motion W

Class of prob. meas. on Ω : P ⊂ PW , sufficiently rich...

P−quasi-surely MEANS P−a.s. for all P ∈ P

Nizar Touzi On Continuous Time Contract Theory

Page 43: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Towards fully nonlinear PDEs : quasi-sure stochastic analysis

Ω :=ω ∈ C 0(R+,Rd) : ω(0) = 0

X : canonical process, i.e. Xt(ω) := ω(t)

Ft := σ(Xs , s ≤ t), F := Ft , t ≥ 0

PW : collection of all semimartingale measures P such that

dXt = btdt + σtdWt , P− a.s.

for some F−processes b and σ, and P−Brownian motion W

Class of prob. meas. on Ω : P ⊂ PW , sufficiently rich...

P−quasi-surely MEANS P−a.s. for all P ∈ P

Nizar Touzi On Continuous Time Contract Theory

Page 44: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Towards fully nonlinear PDEs : quasi-sure stochastic analysis

Ω :=ω ∈ C 0(R+,Rd) : ω(0) = 0

X : canonical process, i.e. Xt(ω) := ω(t)

Ft := σ(Xs , s ≤ t), F := Ft , t ≥ 0

PW : collection of all semimartingale measures P such that

dXt = btdt + σtdWt , P− a.s.

for some F−processes b and σ, and P−Brownian motion W

Class of prob. meas. on Ω : P ⊂ PW , sufficiently rich...

P−quasi-surely MEANS P−a.s. for all P ∈ P

Nizar Touzi On Continuous Time Contract Theory

Page 45: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Semimartingale measures on canonical space

〈X 〉 : quadratic variation process (defined on R+ × Ω)

〈X 〉t := X 2t −

∫ t0 2XsdXs = P−lim|π|→0

∑n≥1

∣∣Xt∧tπn − Xt∧tπn−1

∣∣2for all P ∈ PW , and set

σ2t := limh0

〈X 〉t+h−〈X 〉th

Example : (d = 1) Let P1 :=Wiener measure, i.e. X is a P1−BM,and define P2 := P1 (2X )−1. Then

σt = 1, P1 − a.s. and σt = 2, P2 − a.s.

Nizar Touzi On Continuous Time Contract Theory

Page 46: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nonlinear expectation operators

P0 : subset of local martingale measures, i.e.

dXt = σtdWt , P− a.s. for all P ∈ P0

and

PL := ∪P∈P0PL(P) where PL(P) :=Q = D(λ) · P : ‖λ‖L∞ ≤ L

D(λ) : the Doléans-Dade exponential dD(λ)t

D(λ)t= λt · dWt , D(λ)0 = 1

=⇒ Nonlinear expectations

Et := supP∈P0

EPt and ELt := sup

P∈PL

EPt

Nizar Touzi On Continuous Time Contract Theory

Page 47: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nonlinearity

Assumptions F : R+ × ω × R× Rd × Sd+ −→ R satisfies

(C1L) Lipschitz in (y , σz) :∣∣F (., y , z , σ)− F (., y ′, z ′, σ)∣∣ ≤ L

(|y − y ′|+

∣∣σ(z − z ′)∣∣

(C2µ) Monotone in y :

(y − y ′) ·[F (., y , .)− F (., y ′, .)

]≤ −µ |y − y ′|2

Denote f 0t := Ft

(0, 0, σt

)

Nizar Touzi On Continuous Time Contract Theory

Page 48: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Random horizon 2ndorder backward SDE

For a stop. time τ , and Fτ−measurable ξ :

Yt∧τ = ξ +

∫ τ

t∧τFs(Ys ,Zs , σs)ds −

∫ τ

t∧τZs · dXs+

∫ τ

t∧τdKs , P − q.s.

K non-decreasing, K0 = 0, and minimal in the sense

infP∈P

EP[ ∫ t2∧τ

t1∧τdKt

]= 0, for all t1 ≤ t2

Nizar Touzi On Continuous Time Contract Theory

Page 49: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form

dYt = −Ft(Yt ,Zt , σt)dt + Zt · dXt − dKt , t ≤ τ, andYT = ξ, P − q.s.

Markovian case ξ = g(XT ) and Ft(X , y , z , σt) = f (t,Xt , y , z , σt) =⇒Yt = v(t,Xt)

dYt = ∂tv(t,Xt)dt + Dv(t,Xt)·dXt +12Tr[σ2tD

2v(t,Xt)]dt, P − q.s.

by Itô’s formula. Direct identification yields

Zt = Dv(t,Xt) and ∂tv(t,Xt) +12Tr[σ2tD

2v(t,Xt)]≤ − Ft(v ,Dv , σt)

Finally, the minimality condition on K implies the fully nonlinear PDE

∂tv(t,Xt) + supσ

12Tr[σ2D2v(t,Xt)

]+ Ft(v ,Dv , σ)

= 0

Nizar Touzi On Continuous Time Contract Theory

Page 50: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form

dYt = −Ft(Yt ,Zt , σt)dt + Zt · dXt − dKt , t ≤ τ, andYT = ξ, P − q.s.

Markovian case ξ = g(XT ) and Ft(X , y , z , σt) = f (t,Xt , y , z , σt) =⇒Yt = v(t,Xt)

dYt = ∂tv(t,Xt)dt + Dv(t,Xt)·dXt +12Tr[σ2tD

2v(t,Xt)]dt, P − q.s.

by Itô’s formula. Direct identification yields

Zt = Dv(t,Xt) and ∂tv(t,Xt) +12Tr[σ2tD

2v(t,Xt)]≤ − Ft(v ,Dv , σt)

Finally, the minimality condition on K implies the fully nonlinear PDE

∂tv(t,Xt) + supσ

12Tr[σ2D2v(t,Xt)

]+ Ft(v ,Dv , σ)

= 0

Nizar Touzi On Continuous Time Contract Theory

Page 51: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form

dYt = −Ft(Yt ,Zt , σt)dt + Zt · dXt − dKt , t ≤ τ, andYT = ξ, P − q.s.

Markovian case ξ = g(XT ) and Ft(X , y , z , σt) = f (t,Xt , y , z , σt) =⇒Yt = v(t,Xt)

dYt = ∂tv(t,Xt)dt + Dv(t,Xt)·dXt +12Tr[σ2tD

2v(t,Xt)]dt, P − q.s.

by Itô’s formula. Direct identification yields

Zt = Dv(t,Xt) and ∂tv(t,Xt) +12Tr[σ2tD

2v(t,Xt)]≤ − Ft(v ,Dv , σt)

Finally, the minimality condition on K implies the fully nonlinear PDE

∂tv(t,Xt) + supσ

12Tr[σ2D2v(t,Xt)

]+ Ft(v ,Dv , σ)

= 0

Nizar Touzi On Continuous Time Contract Theory

Page 52: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Connection with fully nonlinear PDEs

Rewrite the 2BSDE in differential form

dYt = −Ft(Yt ,Zt , σt)dt + Zt · dXt − dKt , t ≤ τ, andYT = ξ, P − q.s.

Markovian case ξ = g(XT ) and Ft(X , y , z , σt) = f (t,Xt , y , z , σt) =⇒Yt = v(t,Xt)

dYt = ∂tv(t,Xt)dt + Dv(t,Xt)·dXt +12Tr[σ2tD

2v(t,Xt)]dt, P − q.s.

by Itô’s formula. Direct identification yields

Zt = Dv(t,Xt) and ∂tv(t,Xt) +12Tr[σ2tD

2v(t,Xt)]≤ − Ft(v ,Dv , σt)

Finally, the minimality condition on K implies the fully nonlinear PDE

∂tv(t,Xt) + supσ

12Tr[σ2D2v(t,Xt)

]+ Ft(v ,Dv , σ)

= 0

Nizar Touzi On Continuous Time Contract Theory

Page 53: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Wellposedness of random horizon 2ndorder backward SDE

Theorem (Soner-NT-Zhang ’12, Possamaï-Tan-Zhou ’18,Lin-Ren-NT-Yang’18)

Let ‖ξ‖Lqρ,τ (PL) <∞, f qρ,τ := EL[( ∫ τ

0

∣∣eρt f 0t

∣∣2ds) q2] 1q <∞, for

some ρ > −µ, q > 1. Then the Random horizon 2BSDE has aunique solution (Y ,Z ) with

Y ∈ Dp

η,τ (PL), Z ∈ Hp

η,τ (PL) for all η ∈ [µ, ρ), p ∈ [1, q)

‖ξ‖pLqρ,τ (P):= EL

[∣∣eρτξ∣∣q]‖Y ‖pDp

η,τ (P):= EL

[supt≤τ

∣∣eηtYt

∣∣p]‖Z‖pHp

η,τ (P):= EL

[( ∫ τ

0

∣∣eηt σTt Zt

∣∣2dt) p2]

Nizar Touzi On Continuous Time Contract Theory

Page 54: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Back to Principal-Agent problem

Recall the subclass of contracts

Y Z ,Γt = Y0+

∫ t

0Zs ·dXs+

12

Γs :d〈X 〉s−Hs(X ,Y Z ,Γs ,Zs , Γs)ds, P − q.s.

In the uncontrolled diffusion case, we have :

for all ξ ∈ Lp(P), ∃ (Y0,Z ) s.t. ξ = Y Z ,0T , P− a.s.

(≡ P − q.s.

)If both drift and diffusion are controlled, then :

for all ξ ∈?? ∃ (Y n0 ,Z

n, Γn) s.t. “Y Zn,Γn

T −→ ξ”

Nizar Touzi On Continuous Time Contract Theory

Page 55: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Back to Principal-Agent problem

Recall the subclass of contracts

Y Z ,Γt = Y0+

∫ t

0Zs ·dXs+

12

Γs :d〈X 〉s−Hs(X ,Y Z ,Γs ,Zs , Γs)ds, P − q.s.

In the uncontrolled diffusion case, we have :

for all ξ ∈ Lp(P), ∃ (Y0,Z ) s.t. ξ = Y Z ,0T , P− a.s.

(≡ P − q.s.

)If both drift and diffusion are controlled, then :

for all ξ ∈?? ∃ (Y n0 ,Z

n, Γn) s.t. “Y Zn,Γn

T −→ ξ”

Nizar Touzi On Continuous Time Contract Theory

Page 56: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Reduction to second order BSDE

• Ht(ω, y , z , γ) non-decreasing and convex in γ, Then

Ht(ω, y , z , γ) = supσ≥0

12σ2 : γ − H∗t (ω, y , z , σ)

Denote kt := Ht(Yt ,Zt , Γt)− 1

2 σ2t : Γt + H∗t (Yt ,Zt , σt) ≥ 0

Then, required representation ξ = Y Z ,ΓT , P−q.s. is equivalent to

ξ = Y0 +

∫ T

0Zt · dXt + H∗t (Yt ,Zt , σt)dt −

∫ T

0ktdt, P − q.s.

=⇒ 2BSDE up to approximation of nondecreasing process K

Nizar Touzi On Continuous Time Contract Theory

Page 57: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Reduction to second order BSDE

• Ht(ω, y , z , γ) non-decreasing and convex in γ, Then

Ht(ω, y , z , γ) = supσ≥0

12σ2 : γ − H∗t (ω, y , z , σ)

Denote kt := Ht(Yt ,Zt , Γt)− 1

2 σ2t : Γt + H∗t (Yt ,Zt , σt) ≥ 0

Then, required representation ξ = Y Z ,ΓT , P−q.s. is equivalent to

ξ = Y0 +

∫ T

0Zt · dXt + H∗t (Yt ,Zt , σt)dt −

∫ T

0ktdt, P − q.s.

=⇒ 2BSDE up to approximation of nondecreasing process K

Nizar Touzi On Continuous Time Contract Theory

Page 58: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 59: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 60: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory

Page 61: On Continuous Time Contract Theory · 2018-06-07 · The Principal-Agent problem Linear and semilinear representation Fully nonlinear representation OnContinuousTimeContractTheory

The Principal-Agent problemLinear and semilinear representation

Fully nonlinear representation

Canonical spacePath dependent fully nonlinear PDEs

Nizar Touzi On Continuous Time Contract Theory