49
MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona On an inexact Newton-ADI solver for algebraic Riccati equations related to the LQR problem for linearized Navier-Stokes equations Peter Benner Jens Saak Heiko K. Weichelt Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Research group Computational Methods in Systems and Control Theory Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 1/20

On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Embed Size (px)

Citation preview

Page 1: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

ALAMA-GAMM-ANLA Meeting,July 14-16, 2014, Barcelona

On an inexact Newton-ADI solver foralgebraic Riccati equations related to theLQR problem for linearized Navier-Stokes

equations

Peter Benner Jens Saak Heiko K. Weichelt

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg,Research group Computational Methods in Systems and Control Theory

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 1/20

Page 2: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Motivation (Test Scenarios)Scenario 1: NSE on ”von Karman Vortex Street” [Bansch/Benner/S./Weichelt 13]

Goal: ~z = ~v − ~w → 0 Linearized Navier-Stokes equations:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

div~z = 0

defined on (0,∞)× Ω+ boundary and initial conditions

PDE: NSE

NSE

stationary NSE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.[Mv 00 0

]d

dt

[vp

]=

[Av GG T 0

][vp

]+

[Bv

0

]u

y(t) = Cv v(t)

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 1)

(0, 0)

(5, 1)

(5, 0)

Γin Γfeed,1 Γfeed,2 Γwall Γout Pobs,i

Domain Ω: von Karman vortex street

discrete Leray projection:Π := I − G (G T M−1

v G )−1G T M−1v

+ change of basis

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 2/20

Page 3: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Motivation (Test Scenarios)Scenario 1: NSE on ”von Karman Vortex Street” [Bansch/Benner/S./Weichelt 13]

Goal: ~z = ~v − ~w → 0 Linearized Navier-Stokes equations:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

div~z = 0

defined on (0,∞)× Ω+ boundary and initial conditions

PDE: NSE

NSE

stationary NSE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.[Mv 00 0

]d

dt

[vp

]=

[Av GG T 0

][vp

]+

[Bv

0

]u

y(t) = Cv v(t)

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 1)

(0, 0)

(5, 1)

(5, 0)

Γin Γfeed,1 Γfeed,2 Γwall Γout Pobs,i

Domain Ω: von Karman vortex street

discrete Leray projection:Π := I − G (G T M−1

v G )−1G T M−1v

+ change of basis

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 2/20

Page 4: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Motivation (Test Scenarios)Scenario 1: NSE on ”von Karman Vortex Street” [Bansch/Benner/S./Weichelt 13]

Goal: ~z = ~v − ~w → 0 Linearized Navier-Stokes equations:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

div~z = 0

defined on (0,∞)× Ω+ boundary and initial conditions

PDE: NSE

NSE

stationary NSE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.

M d

dtv=Av + Bu

y(t) = Cv

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 1)

(0, 0)

(5, 1)

(5, 0)

Γin Γfeed,1 Γfeed,2 Γwall Γout Pobs,i

Domain Ω: von Karman vortex street

discrete Leray projection:Π := I − G (G T M−1

v G )−1G T M−1v

+ change of basis

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 2/20

Page 5: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

MotivationScenario 2: NSE Coupled with DCE in Reactor Model [Bansch/Benner/S./Weichelt 13-2]

Goal: ~z = ~v − ~w → 0, c = c (~v) − c (~w) → 0 Linearized coupled system:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

∂c

∂t− 1

Re Sc∆c + (~w · ∇)c + (~z · ∇)c (~w) = 0

div~z = 0defined on (0,∞)× Ω plus BC,IC

PDE: NSE+DCE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.Mv 0 00 Mc 00 0 0

d

dt

vcp

=

Av 0 G− R Ac 0G T 0 0

vcp

+

Bv

00

u

y(t) = Cc c

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 3)

(0, 4)

(3, 0) (8, 0)

(3, 7) (8, 7)

(11, 3)

(11, 4)

Γin Γout

Γwall

Γr

Domain Ω: Reactor Model

DCE

stationary DCE

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 3/20

Page 6: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

MotivationScenario 2: NSE Coupled with DCE in Reactor Model [Bansch/Benner/S./Weichelt 13-2]

Goal: ~z = ~v − ~w → 0, c = c (~v) − c (~w) → 0 Linearized coupled system:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

∂c

∂t− 1

Re Sc∆c + (~w · ∇)c + (~z · ∇)c (~w) = 0

div~z = 0defined on (0,∞)× Ω plus BC,IC

PDE: NSE+DCE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.Mv 0 00 Mc 00 0 0

d

dt

vcp

=

Av 0 G− R Ac 0G T 0 0

vcp

+

Bv

00

u

y(t) = Cc c

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 3)

(0, 4)

(3, 0) (8, 0)

(3, 7) (8, 7)

(11, 3)

(11, 4)

Γin Γout

Γwall

Γr

Domain Ω: Reactor Model

DCE

stationary DCE

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 3/20

Page 7: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

MotivationScenario 2: NSE Coupled with DCE in Reactor Model [Bansch/Benner/S./Weichelt 13-2]

Goal: ~z = ~v − ~w → 0, c = c (~v) − c (~w) → 0 Linearized coupled system:

∂~z

∂t− 1

Re∆~z + (~z · ∇)~w + (~w · ∇)~z +∇p = 0

∂c

∂t− 1

Re Sc∆c + (~w · ∇)c + (~z · ∇)c (~w) = 0

div~z = 0defined on (0,∞)× Ω plus BC,IC

PDE: NSE+DCE

Minimize

J (y, u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

s.t.

M d

dt

[vc

]= A

[vc

]+

[B0

]u

y(t) = Cc c

LQR

[Heinkenschloss/Sorensen/Sun ’08]

(0, 3)

(0, 4)

(3, 0) (8, 0)

(3, 7) (8, 7)

(11, 3)

(11, 4)

Γin Γout

Γwall

Γr

Domain Ω: Reactor Model

DCE

stationary DCE

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 3/20

Page 8: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Outline

1 Motivation

2 Discretized Control Systems

3 Nested Iteration

4 (Inexact) Newtons Method for AREs

5 Summary

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 4/20

Page 9: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsFinite Element Discretization

Standard FE discretization linearized (coupled) flow problems yields

Md

dtx(t) = Ax(t) + Gp(t) + Bu(t) (1a)

0 = G T v(t), (1b)

y(t) = Cx(t). (1c)

Properties

Differential algebraic system (DAE) of D-index 2 (iff G has full rank).

Matrix pencil: ([A G

G T 0

],

[M 00 0

]).

Descriptor system with multiple inputs and outputs (MIMO).

Implicit index reduction to apply standard LQR approach[Heinkenschloss/Sorensen/Sun ’08].

Scenario 1 Scenario 2

x(t) = v(t) x(t) =

[v(t)c(t)

]M = Mv M =

[Mv 00 Mc

]A = Av A =

[Av 0−R Ac

]G = G G =

[G0

]Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 5/20

Page 10: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsFinite Element Discretization

Standard FE discretization linearized (coupled) flow problems yields

Md

dtx(t) = Ax(t) + Gp(t) + Bu(t) (1a)

0 = G T v(t), (1b)

y(t) = Cx(t). (1c)

Properties

Differential algebraic system (DAE) of D-index 2 (iff G has full rank).

Matrix pencil: ([A G

G T 0

],

[M 00 0

]).

Descriptor system with multiple inputs and outputs (MIMO).

Implicit index reduction to apply standard LQR approach[Heinkenschloss/Sorensen/Sun ’08].

Scenario 1 Scenario 2

x(t) = v(t) x(t) =

[v(t)c(t)

]M = Mv M =

[Mv 00 Mc

]A = Av A =

[Av 0−R Ac

]G = G G =

[G0

]Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 5/20

Page 11: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsFinite Element Discretization

Standard FE discretization linearized (coupled) flow problems yields

Md

dtx(t) = Ax(t) + Gp(t) + Bu(t) (1a)

0 = G T v(t), (1b)

y(t) = Cx(t). (1c)

Properties

Differential algebraic system (DAE) of D-index 2 (iff G has full rank).

Matrix pencil: ([A G

G T 0

],

[M 00 0

]).

Descriptor system with multiple inputs and outputs (MIMO).

Implicit index reduction to apply standard LQR approach[Heinkenschloss/Sorensen/Sun ’08].

Scenario 1 Scenario 2

x(t) = v(t) x(t) =

[v(t)c(t)

]M = Mv M =

[Mv 00 Mc

]A = Av A =

[Av 0−R Ac

]G = G G =

[G0

]

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 5/20

Page 12: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsFinite Element Discretization

Standard FE discretization linearized (coupled) flow problems yields

Md

dtx(t) = Ax(t) + Gp(t) + Bu(t) (1a)

0 = G T v(t), (1b)

y(t) = Cx(t). (1c)

Properties

Differential algebraic system (DAE) of D-index 2 (iff G has full rank).

Matrix pencil: ([A G

G T 0

],

[M 00 0

]).

Descriptor system with multiple inputs and outputs (MIMO).

Implicit index reduction to apply standard LQR approach[Heinkenschloss/Sorensen/Sun ’08].

Scenario 1 Scenario 2

x(t) = v(t) x(t) =

[v(t)c(t)

]M = Mv M =

[Mv 00 Mc

]A = Av A =

[Av 0−R Ac

]G = G G =

[G0

]

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 5/20

Page 13: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsLQR Approach for Projected System [Bansch/Benner/S./Weichelt 13]

Minimize

J (y,u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

subject to

M d

dtx(t) = Ax(t) + Bu(t),

y(t) = Cx(t).(2)

Riccati Based Feedback Approach (e.g.:[Locatelli ’01])

Optimal control: u(t) = −Kx(t).

Feedback: K = BT XM,

where X is the solution of the generalized algebraic Riccati equation

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 6/20

Page 14: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Discretized Control SystemsLQR Approach for Projected System [Bansch/Benner/S./Weichelt 13]

Minimize

J (y,u) =1

2

∫ ∞0

λ||y||2 + ||u||2 dt

subject to

M d

dtx(t) = Ax(t) + Bu(t),

y(t) = Cx(t).(2)

Riccati Based Feedback Approach (e.g.:[Locatelli ’01])

Optimal control: u(t) = −Kx(t).

Feedback: K = BT XM,

where X is the solution of the generalized algebraic Riccati equation

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 6/20

Page 15: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)

[AT − (K (m))T BT + qi M

T G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 16: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)

[AT − (K (m))T BT + qi M

T G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 17: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)

[AT − (K (m))T BT + qi M

T G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 18: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)

[AT − (K (m))T BT + qi M

T G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 19: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)

[AT − (K (m))T BT + qi M

T G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 20: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested Iteration – Overview

Compute feedback matrix K = BT XM with X solves:

R(X ) = CTC +AT XM+MT XA−MT XBBT XM = 0

Step (m + 1): solve Lyapunov equation [Kleinman ’68]

(A− BK(m))T X (m+1)M+MT X (m+1)(A− BK(m)) = −(W(m))TW(m)

Step i: solve the projected linear system [Benner/Kurschner/S. ’13]

(A− BK(m) + qiM)TVi = Yi−1 (3)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun ’08]:Replace (3) and solve instead the saddle point system (SPS)(using Sherman Morrison Woodbury formula)[

AT + qi MT G

G T 0

] [Vi

]=

[Y0

]for different ADI shifts qi ∈ C− for a couple of rhs Y .

Kle

inm

an

-New

ton

met

ho

d

low

ran

kA

DI

met

ho

d

Kry

lov

solv

er

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 7/20

Page 21: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNumerical Issues

Nested iteration depends on various parameters:

Reynolds and Schmidt number (physical)

ADI shifts qi and refinement level (physical, FEM)

regularization parameter λ (design)

accuracy for Newton, ADI, and SPS iteration(experiences, nested influence)

Selected Convergence Problems

Newton-ADI vs. mesh refinement

Newton-ADI vs. λ

ADI vs. SPS solver

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 8/20

Page 22: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. Mesh Refinement: Scenario 1 [Bansch/Benner/S./Weichelt ’13]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Level 1 (n = 5 468)

Level 2 (n = 12 942)

Level 3 (n = 29 698)

Level 4 (n = 72 952)

Level 5 (n = 157 988)

Level 6 (n = 334 489)

Relative change of feedback matrix K for different refinement levels

(Re = 500, λ = 100, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 9/20

Page 23: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. Mesh Refinement: Scenario 1 [Bansch/Benner/S./Weichelt ’13]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Level 1 (n = 5 468)

Level 2 (n = 12 942)

Level 3 (n = 29 698)

Level 4 (n = 72 952)

Level 5 (n = 157 988)

Level 6 (n = 334 489)

Relative change of feedback matrix K for different refinement levels

(Re = 500, λ = 100, tolNM = 10−8, tolADI = 10−8).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 9/20

Page 24: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. Mesh Refinement: Scenario 1 [Bansch/Benner/S./Weichelt ’13]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Level 1 (n = 5 468)

Level 2 (n = 12 942)

Level 3 (n = 29 698)

Level 4 (n = 72 952)

Level 5 (n = 157 988)

Level 6 (n = 334 489)

Relative change of feedback matrix K for different refinement levels

(Re = 500, λ = 100, tolNM = 10−8, tolADI = 10−9).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 9/20

Page 25: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. λ: Scenario 2 [Bansch/Benner/S./Weichelt ’13-2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Re = 1; Sc = 1Re = 1; Sc = 10Re = 10; Sc = 1Re = 1; Sc = 100Re = 10; Sc = 10

Relative change of feedback matrix K : λ = 10−2

(n = 11 555, direct solver, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 10/20

Page 26: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. λ: Scenario 2 [Bansch/Benner/S./Weichelt ’13-2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Re = 1; Sc = 1Re = 1; Sc = 10Re = 10; Sc = 1Re = 1; Sc = 100Re = 10; Sc = 10

Relative change of feedback matrix K : λ = 10−1

(n = 11 555, direct solver, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 10/20

Page 27: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. λ: Scenario 2 [Bansch/Benner/S./Weichelt ’13-2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Re = 1; Sc = 1Re = 1; Sc = 10Re = 10; Sc = 1Re = 1; Sc = 100Re = 10; Sc = 10

Relative change of feedback matrix K : λ = 100

(n = 11 555, direct solver, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 10/20

Page 28: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. λ: Scenario 2 [Bansch/Benner/S./Weichelt ’13-2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Re = 1; Sc = 1Re = 1; Sc = 10Re = 10; Sc = 1Re = 1; Sc = 100Re = 10; Sc = 10

Relative change of feedback matrix K : λ = 101

(n = 11 555, direct solver, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 10/20

Page 29: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationNewton-ADI vs. λ: Scenario 2 [Bansch/Benner/S./Weichelt ’13-2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

10−2

10−4

10−6

10−10

10−12

10−8

Newton step m

||K(m

) −K

(m−

1) ||

F

||K(m

) ||F

Re = 1; Sc = 1Re = 1; Sc = 10Re = 10; Sc = 1Re = 1; Sc = 100Re = 10; Sc = 10

Relative change of feedback matrix K : λ = 102

(n = 11 555, direct solver, tolNM = 10−8, tolADI = 10−7).Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 10/20

Page 30: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Nested IterationADI vs. SPS solver: Stokes on Scenario 1 [Benner/S./Stoll/Weichelt ’13]

ν = 100 ν = 10−1 ν = 10−2 ν = 10−3

tolSPS nN nA time nN nA time nN nA time nN nA time

10−5 – – – – – – – – – – – –10−6 – – – 12 343 536 17 645 1067 23 1266 203610−7 7 144 279 11 273 504 17 525 1001 22 1004 183810−8 7 139 304 11 247 520 17 457 998 22 686 141310−9 7 139 342 11 247 580 17 434 1074 22 616 143710−10 7 138 374 11 247 638 17 434 1167 22 612 156810−11 7 138 405 11 247 693 17 434 1222 22 612 170710−12 7 138 442 11 247 756 17 434 1312 22 606 1856

direct 7 138 / 11 247 / 17 434 / 22 606 /

Table: Number of Newton and ADI steps for varying accuracy of GMRES.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 11/20

Page 31: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newton Methods for AREsBasic Concepts [Kleinman ’68, Feitzinger/Hylla/Sachs ’09]

ConsiderR(X ) := C T C +AT XM+MT XA−MT XBBT XM = 0

Inexact Kleinman’s Iteration for the ARE

R′|X (m) (X (m+1))−R′|X (m) (X (m)) +R(X (m)) = R(m), m = 0, 1, . . .

i.e., in every Newton step (approximately) solve a

Lyapunov Equation

(F (m))T X (m+1)M+MT X (m+1)F (m) =

−(W(m))TW(m)+R(m).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 12/20

Page 32: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsConvergence Result[Kleinman ’68, Lancaster/Rodman ’95, Feitzinger/Hylla/Sachs ’09]

TheoremLet Assumption 1 hold,

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M.

Then the iterates defined by

(F (m))T X (m+1) + X (m+1)F (m) = −(W(m))TW(m)+R(m),

converge to the unique symmetric matrix X (∞), such that

R(X (∞)) = 0

and A− BBT X (∞)M is stable.

Furthermore the convergence is quadratic and monotone with

0 ≤ X (∞) ≤ · · · ≤ X (m+1) ≤ X (m) ≤ · · · ≤ X (1).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 13/20

Page 33: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsConvergence Result (Remarks)

Weaker Condition [Hylla ’10]

ReplacingR(m) ≤ CTC

byR(m) ≤ CTC + (K(m))TK(m)

keeps the iteration well defined.

Large Scale Difficulty

In general none of the conditions

R(m) ≤ CTC,

R(m) ≤ CTC + (K(m))TK(m),

0 ≤ R(m) ≤MT N(m)BBT N(m)M,

can hold in large scale applications.

Crucial for the proof. ⇒ Lyapunov solver needs to ensure this.R(m) = YnA

YTnA

, but column spans are unrelated

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 14/20

Page 34: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsConvergence Result (Remarks)

Weaker Condition [Hylla ’10]

ReplacingR(m) ≤ CTC

byR(m) ≤ CTC + (K(m))TK(m)

keeps the iteration well defined.

Large Scale Difficulty

In general none of the conditions

R(m) ≤ CTC,

R(m) ≤ CTC + (K(m))TK(m),

0 ≤ R(m) ≤MT N(m)BBT N(m)M,

can hold in large scale applications.

Crucial for the proof. ⇒ Lyapunov solver needs to ensure this.

R(m) = YnAYT

nA, but column spans are unrelated

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 14/20

Page 35: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R′|X (m) (X (m+1))−R′|X (m) (X (m)) +R(X (m))

and thus

R(X (m+1)) = R(m) +1

2R′′|X (m) (X (m+1) − X (m),X (m+1) − X (m)).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 36: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R′|X (m) (X (m+1))−R′|X (m) (X (m)) +R(X (m))

and thus

R(X (m+1)) = R(m) +1

2R′′|X (m) (X (m+1) − X (m),X (m+1) − X (m)).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 37: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R′|X (m) (X (m+1))−R′|X (m) (X (m)) +R(X (m))

and thus

R(X (m+1)) = R(m) +1

2R′′|X (m) (X (m+1) − X (m),X (m+1) − X (m)).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 38: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R(X (m)) +R′|X (m) (X (m+1) − X (m))

and thus

R(X (m+1)) = R(m) +1

2R′′|X (m) (X (m+1) − X (m),X (m+1) − X (m)).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 39: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R(X (m)) +R′|X (m) (X (m+1) − X (m))

and thus

R(X (m+1)) = R(m) +1

2R′′|X (m) (X (m+1) − X (m),X (m+1) − X (m)).

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 40: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Main Problem:Can we enforce quadratic convergence without checking

0 ≤ R(m) ≤ CTC and 0 ≤ R(m) ≤MT N(m)BBT N(m)M?

Due to the quadratic nature of R(.) we have

R(Y ) = R(X ) +R′|X (Y − X ) +1

2R′′|X (Y − X ,Y − X ).

Recall the Inexact Kleinman step:

R(m) = R(X (m)) +R′|X (m) (X (m+1) − X (m))

and thus

R(X (m+1)) = R(m) −MT N(m)BBT N(m)M.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 15/20

Page 41: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

New Question

How can we exploit R(X (m+1)) = R(m) −MN(m)BBT N(m)M to controlthe ADI accuracy?

Riccati residual inner Lyapunov residual

MT N(m)BBT N(m)M =MT (X (m+1) − X (m))BBT (X (m+1) − X (m))M= (K(m+1))TK(m+1) + (K(m))TK(m)

− (K(m+1))TK(m) − (K(m))TK(m+1)

= (∆K(m+1))T ∆K(m+1)

Key Idea:

‖R(X (m+1))‖ = ‖R(m) − (∆K(m+1))T ∆K(m+1)‖ ≤ α‖R(X (m))‖2

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 16/20

Page 42: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

New Question

How can we exploit R(X (m+1)) = R(m) −MN(m)BBT N(m)M to controlthe ADI accuracy?

Riccati residual inner Lyapunov residual

MT N(m)BBT N(m)M =MT (X (m+1) − X (m))BBT (X (m+1) − X (m))M= (K(m+1))TK(m+1) + (K(m))TK(m)

− (K(m+1))TK(m) − (K(m))TK(m+1)

= (∆K(m+1))T ∆K(m+1)

Key Idea:

‖R(X (m+1))‖ = ‖R(m) − (∆K(m+1))T ∆K(m+1)‖ ≤ α‖R(X (m))‖2

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 16/20

Page 43: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Overestimation approach (good steps are bad)

‖R(X (m+1))‖ ≤ ‖R(m)‖+ ‖(∆K(m+1))T ∆K(m+1)‖ ≤ α‖R(X (m))‖2

Low-rank residual approach (several version with disadvantages)

‖R(m) − (∆K(m+1))T ∆K(m+1)‖ = ‖Y (m)(Y(m))T − (∆K(m+1))T ∆K(m+1)‖

= ‖U (m)(U (m))T‖

U (m) = [Y(m), ı(∆K(m+1))T ]

‖.‖ = ‖.‖2 eigensolver convergence?

U is complex wrong outer product

‖.‖ = ‖.‖F inner product version reformulation may suffer fromnumerical cancelation?

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 17/20

Page 44: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Overestimation approach (good steps are bad)

‖R(X (m+1))‖ ≤ ‖R(m)‖+ ‖(∆K(m+1))T ∆K(m+1)‖ ≤ α‖R(X (m))‖2

Low-rank residual approach (several version with disadvantages)

‖R(m) − (∆K(m+1))T ∆K(m+1)‖ = ‖Y (m)(Y(m))T − (∆K(m+1))T ∆K(m+1)‖

= ‖U (m)(U (m))T‖

U (m) = [Y(m), ı(∆K(m+1))T ]

‖.‖ = ‖.‖2 eigensolver convergence?

U is complex wrong outer product

‖.‖ = ‖.‖F inner product version reformulation may suffer fromnumerical cancelation?

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 17/20

Page 45: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy control for the (G-)LRCF-ADI

Overestimation approach (good steps are bad)

‖R(X (m+1))‖ ≤ ‖R(m)‖+ ‖(∆K(m+1))T ∆K(m+1)‖ ≤ α‖R(X (m))‖2

Low-rank residual approach (several version with disadvantages)

‖R(m) − (∆K(m+1))T ∆K(m+1)‖ = ‖Y (m)(Y(m))T − (∆K(m+1))T ∆K(m+1)‖

= ‖U (m)(U (m))T‖

U (m) = [Y(m), ı(∆K(m+1))T ]

‖.‖ = ‖.‖2 eigensolver convergence?

U is complex wrong outer product

‖.‖ = ‖.‖F inner product version reformulation may suffer fromnumerical cancelation?

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 17/20

Page 46: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy Control of the SPS Solver

Exact Solution of the SPS [Benner/Kurschner/S. ’13]

Z(m)i = [V1, V2, . . . , Vi ].

rank(R(m)

)= rank

(Y(m)

i

)= p + q (B ∈ Rn×p, C ∈ Rq×n),

Inexact/Iterative Solution of the SPS

Z(m)i = [V1 + E1, V2 + E2, . . . , Vi + Ei ],

rank(R(m)

)= (2i + 1) · (p + q),

Y(m)i can serve as a convergence indicator, but is not the actual

residual factor.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 18/20

Page 47: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

(Inexact) Newtons Method for AREsAccuracy Control of the SPS Solver

Exact Solution of the SPS [Benner/Kurschner/S. ’13]

Z(m)i = [V1, V2, . . . , Vi ].

rank(R(m)

)= rank

(Y(m)

i

)= p + q (B ∈ Rn×p, C ∈ Rq×n),

Inexact/Iterative Solution of the SPS

Z(m)i = [V1 + E1, V2 + E2, . . . , Vi + Ei ],

rank(R(m)

)= (2i + 1) · (p + q),

Y(m)i can serve as a convergence indicator, but is not the actual

residual factor.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 18/20

Page 48: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Summary

ConclusionExplained idea of feedback stabilization for mulit-field flow problems.

Recalled and adapted the concept of inexact Newtons method forthe arising projected AREs.

Discovered a gap in the theory.

Showed possible computationally efficient criteria to use once thisgap has been closed.

OutlookInvestigate inexact Newton theory to close the gap.

Extend ideas to the whole nested iteration, i.e. accuracy control forthe SPS solvers.

Implement and test new ideas.

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 19/20

Page 49: On an inexact Newton-ADI solver for algebraic Riccati ...€¦MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary

Literatur

E. Bansch and P. Benner, Stabilization of incompressible flow problems by Riccati-based feedback, in Constrained optimization

and optimal control for partial differential equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz,M. Ulbrich, and S. Ulbrich, eds., vol. 160 of International Series of Numerical Mathematics, Birkhauser, 2012, pp. 5–20.

E. Bansch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible

Navier-Stokes flow, Preprint SPP1253-154, DFG-SPP1253, 2013.

, Optimal control-based feedback stabilization of multi-field flow problems, in Trends in PDE Constrained Optimization,

G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, eds., International Seriesof Numerical Mathematics, Birkhauser, 2014, to appear.

P. Benner, J. Saak, M. Stoll, and H. K. Weichelt, Efficient solution of large-scale saddle point systems arising in

Riccati-based boundary feedback stabilization of incompressible Stokes flow, SIAM J. Sci. Comput., 35 (2013), pp. S150–S170.

H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid

dynamics, Oxford University Press, Oxford, 2005.

F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman-Newton method for Riccati equations, SIAM J. Matrix Anal.

Appl., 31 (2009), pp. 272–288.

M. Heinkenschloss, D. C. Sorensen, and K. Sun, Balanced truncation model reduction for a class of descriptor systems with

application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), pp. 1038–1063.

D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Automat. Control, AC-13 (1968),

pp. 114–115.

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optim., 45

(2006), pp. 790–828.

Thank you for your time!

Max Planck Institute Magdeburg [email protected], inexact Newton-ADI for AREs related to NSEs 20/20