14
1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen Abbas Nassir Department of Mathematics, College of Computer Science and Mathematics, University of AL-Qadisiya, Diwaniya, Iraq. E-mail:[email protected] Abstract: In this paper, we introduce a class of multivalent functions defined by differential operator. We obtain some geometric properties, like, coefficient inequalities, distortion and growth theorem, closure theorem, extreme points and Hadamard product (or convolution). Keyword: Multivalent functions, Differential operator, Extreme points and Hadamard product. 2010 Mathematics Subject classification: 30C45, 30C50.

On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

1

On a Subclass of Multivalent Functions

Defined by Differential Operator

by

Zain AL-abideen Abbas Nassir

Department of Mathematics, College of Computer Science

and Mathematics, University of AL-Qadisiya, Diwaniya, Iraq.

E-mail:[email protected]

Abstract: In this paper, we introduce a class of multivalent functions defined by

differential operator. We obtain some geometric properties, like, coefficient

inequalities, distortion and growth theorem, closure theorem, extreme points and

Hadamard product (or convolution).

Keyword: Multivalent functions, Differential operator, Extreme points and

Hadamard product.

2010 Mathematics Subject classification: 30C45, 30C50.

Page 2: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

2

1. Introduction

Let π’œ(𝑝) denote the class of functions of the form:

𝑓 𝑧 = 𝑧𝑝 βˆ’ π‘Žπ‘›π‘§π‘›

∞

𝑝+1

, (π‘Žπ‘› β‰₯ 0, 𝑛 β‰₯ 𝑝 + 1, 𝑝 ∈ β„• = 1,2, … , (1.1)

which are 𝑝- valent in the unit disk π‘ˆ = {𝑧 ∈ β„‚: 𝑧 < 1}.

For a function 𝑓(𝑧) in the class π’œ(𝑝) we define

𝐷𝑝0𝑓 𝑧 = 𝑓 𝑧 ,

𝐷𝑝1𝑓 𝑧 = 𝐷𝑝𝑓 𝑧 =

𝑧

𝑝𝑓 β€² 𝑧

𝐷𝑝2𝑓 𝑧 = 𝐷 𝐷𝑝𝑓 𝑧 ,

π·π‘πœ‡π‘“ 𝑧 = 𝐷 𝐷𝑝

πœ‡βˆ’1𝑓 𝑧 = 𝑧𝑝 βˆ’

𝑛

𝑝

πœ‡

π‘Žπ‘›π‘§π‘›

∞

𝑛=𝑝+1

, πœ‡ ∈ β„•. 1.2

For 𝑝 = 1, the differential operator π·πœ‡ was introduced by salagean [4].

Let 𝑓 βˆ— 𝑔 (𝑧) denote the Hadamard product of the functions𝑓(𝑧) and 𝑔(𝑧),

that is, if 𝑓(𝑧) is given by (1.1) and 𝑔(𝑧) is given by

𝑔 𝑧 = 𝑧𝑝 βˆ’ 𝑏𝑛𝑧𝑛

∞

𝑛=𝑝+1

, 𝑏𝑛 β‰₯ 0 , (1.3)

then

𝑓 βˆ— 𝑔 𝑧 = 𝑧𝑝 βˆ’ π‘Žπ‘›π‘π‘›π‘§π‘›

∞

𝑛=𝑝+1

. (1.4)

For a function 𝑓(𝑧) of the form (1.1), we define the class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣) as

follows:

Page 3: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

3

Definition (1.1): Let 𝑓(𝑧) ∈ π’œ(𝑝) be given by (1.1). Then the class

π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣) is

π‘Šπ‘πœ‡ 𝛽, 𝛼, 𝑒, 𝑣

= 𝑓 ∈ π’œ 𝑝 : 𝑧 𝐷𝑝

πœ‡π‘“ 𝑧

β€²β€²+ 2 βˆ’ 𝑝 𝐷𝑝

πœ‡π‘“ 𝑧

β€²

𝑒 + 𝑣 + 2𝛽 π·π‘πœ‡π‘“ 𝑧

β€²+ 𝛽𝑧 𝐷𝑝

πœ‡π‘“ 𝑧

β€²β€² < 𝛼, 0

≀ 𝛽 < 1,0 < 𝑒 ≀ 1,0 ≀ 𝑣 < 1, πœ‡, 𝑝 ∈ β„• and 0 < 𝛼 < 1 1.5

The same properties have been found for other classes in [2], [3] and [1].

2. Coefficient inequality

The following theorem has given a necessary and sufficient condition for a

function 𝑓 to be in the class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣).

Theorem (2.1): Let a function 𝑓(𝑧) ∈ π’œ 𝑝 . Then 𝑓(𝑧) ∈ π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣) if

and only if

𝑛[𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝] 𝑛

𝑝

πœ‡

π‘Žπ‘›

∞

𝑛=𝑝+1

≀ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 1 , (2.1)

where 0 ≀ 𝛽 < 1,0 < 𝑒 ≀ 1, πœ‡, 𝑝 ∈ β„• and 0 < 𝛼 < 1.

Proof: Suppose that the inequality (2.1) holds true and 𝑧 = 1. Then, we have

𝑧 π·π‘πœ‡π‘“ 𝑧

β€²β€²+ 2 βˆ’ 𝑝 𝐷𝑝

πœ‡π‘“ 𝑧

β€²

βˆ’ 𝛼 𝑒 + 𝑣 + 2𝛽 π·π‘πœ‡π‘“ 𝑧

β€²+ 𝛽𝑧 𝐷𝑝

πœ‡π‘“ 𝑧

β€²β€²

Page 4: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

4

= 𝑛 𝑛 βˆ’ 𝑝 + 1 𝑛

𝑝

πœ‡

π‘Žπ‘›π‘§π‘›βˆ’1

∞

𝑛=𝑝+1

βˆ’ π‘π‘§π‘βˆ’1

βˆ’ 𝛼𝑝 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘§π‘βˆ’1

βˆ’ 𝑛𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 𝑛

𝑝

πœ‡

π‘Žπ‘›π‘§π‘›βˆ’1

∞

𝑛=𝑝+1

≀ 𝑛 𝑛 βˆ’ 𝑝 + 1 𝑛

𝑝

πœ‡

π‘Žπ‘› 𝑧 π‘›βˆ’1

∞

𝑛=𝑝+1

βˆ’ π‘π‘§π‘βˆ’1

βˆ’ 𝛼𝑝 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑧 π‘βˆ’1

+ 𝑛𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 𝑛

𝑝

πœ‡

π‘Žπ‘› 𝑧 π‘›βˆ’1

∞

𝑛=𝑝+1

= 𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑛

𝑝

πœ‡

π‘Žπ‘›

∞

𝑛=𝑝+1

βˆ’ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 ≀ 0,

by hypothesis.

Hence, by maximum modulus principle, 𝑓 ∈ π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then from (1.5),

we have

𝑧 𝐷𝑝

πœ‡π‘“ 𝑧

β€²β€²+ (2 βˆ’ 𝑝) 𝐷𝑝

πœ‡π‘“ 𝑧

β€²

(𝑒 + 𝑣 + 2𝛽) π·π‘πœ‡π‘“ 𝑧

β€²+ 𝛽𝑧 𝐷𝑝

πœ‡π‘“ 𝑧

β€²β€²

= 𝑛 𝑛 βˆ’ 𝑝 + 1

𝑛

𝑝 πœ‡

π‘Žπ‘›π‘§π‘›βˆ’1βˆžπ‘›=𝑝+1 βˆ’ π‘π‘§π‘βˆ’1

𝑝 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘§π‘βˆ’1 βˆ’ 𝑛 𝛽 𝑛 + 1 + 𝑒 + 𝑣 𝑛

𝑝 πœ‡

π‘Žπ‘›π‘§π‘›βˆ’1βˆžπ‘›=𝑝+1

.

Since 𝑅𝑒(𝑧) ≀ 𝑧 for all 𝑧 𝑧 ∈ π‘ˆ , we get

Page 5: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

5

𝑅𝑒 𝑛 π‘›βˆ’π‘+1

𝑛

𝑝 πœ‡π‘Žπ‘› π‘§π‘›βˆ’1∞

𝑛=𝑝+1 βˆ’π‘π‘§π‘βˆ’1

𝑝 𝛽 𝑝+1 +𝑒+𝑣 π‘§π‘βˆ’1βˆ’ 𝑛 𝛽 𝑛+1 +𝑒+𝑣 𝑛

𝑝 πœ‡π‘Žπ‘› π‘§π‘›βˆ’1∞

𝑛=𝑝+1

< 𝛼.

Letting 𝑧 β†’ 1βˆ’ , through real values, we obtain the inequality (2.1), so the

proof is complete.

Corollary (2.1): Let 𝑓 ∈ π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then

π‘Žπ‘› ≀𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 , 𝑛 = 𝑝 + 1, 𝑝 + 2, … 2.2

3. Distortion and Growth Theorem

Theorem (3.1): Let the function 𝑓(𝑧) defined by (1.2) be in the class

π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then for 𝑧 = π‘Ÿ < 1 and 𝑛 β‰₯ 𝑝 + 1, we have

π·π‘πœ‡π‘“ 𝑧 β‰₯ 1 +

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2 π‘Ÿ π‘Ÿπ‘ , 3.1

and

π·π‘πœ‡π‘“ 𝑧 ≀ 1 βˆ’

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2 π‘Ÿ π‘Ÿπ‘ . 3.2

The result is sharp for the function 𝑓 𝑧 is given by

𝑓 𝑧 = 𝑧𝑝

βˆ’π‘[1 + 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 ]

𝑝+1

𝑝 πœ‡

𝑝 + 1 [𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2]𝑧𝑝+1 , 𝑧

∈ π‘ˆ . (3.3)

Proof: Let 𝑓 ∈ π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then by Theorem (2.1), we get

Page 6: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

6

𝑝 + 1

𝑝

πœ‡

𝑝 + 1 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2 π‘Žπ‘›

∞

𝑛=𝑝+1

≀ 𝑛 𝑛 + 1 + 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑛

𝑝

πœ‡βˆž

𝑛=𝑝+1

≀ 𝑝 1 + 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣

or

π‘Žπ‘›

∞

𝑛=𝑝+1

≀𝑝 1 + 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣

𝑝+1

𝑝 πœ‡

𝑝 + 1 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2 . 3.4

Hence,

π·π‘πœ‡π‘“ 𝑧 ≀ 𝑧 𝑝 +

𝑛

𝑝

πœ‡

π‘Žπ‘› 𝑧 π‘›βˆž

𝑛=𝑝+1

≀ 𝑧 𝑝 + 𝑝 + 1

𝑝

πœ‡

𝑧 𝑝+1 π‘Žπ‘›

∞

𝑛=𝑝+1

= π‘Ÿπ‘ + 𝑝 + 1

𝑝

πœ‡

π‘Ÿπ‘+1 π‘Žπ‘›

∞

𝑛=𝑝+1

≀ π‘Ÿπ‘ +𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿπ‘+1

= 1 +𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿ π‘Ÿπ‘ . 3.5

Similarly,

π·π‘πœ‡π‘“ 𝑧 β‰₯ 𝑧 𝑝 βˆ’

𝑛

𝑝

πœ‡

π‘Žπ‘› 𝑧 π‘›βˆž

𝑛=𝑝+1

β‰₯ 𝑧 𝑝 βˆ’ 𝑝 + 1

𝑝

πœ‡

𝑧 𝑝+1 π‘Žπ‘›

∞

𝑛=𝑝+1

= π‘Ÿπ‘ βˆ’ 𝑝 + 1

𝑝

πœ‡

π‘Ÿπ‘+1 π‘Žπ‘›

∞

𝑛=𝑝+1

β‰₯ π‘Ÿπ‘ βˆ’π‘ 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿπ‘+1

= 1 βˆ’π‘ 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝 + 1 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿ π‘Ÿπ‘ . 3.6

From (3.5) and (3.6), we get (3.1) and (3.2) and the proof is complete.

Page 7: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

7

Theorem (3.2): Let the function 𝑓(𝑧) defined by (1.2) be in the class

π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then for 𝑧 = π‘Ÿ < 1 and 𝑛 β‰₯ 𝑝 + 1, we have

π·π‘πœ‡π‘“ 𝑧

β€² β‰₯

𝑝

π‘Ÿ+

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿπ‘ , 3.7

and

π·π‘πœ‡π‘“ 𝑧

β€² ≀

𝑝

π‘Ÿβˆ’

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 + 2 π‘Ÿπ‘ , 3.8

The result is sharp for the function 𝑓 is given by (3.3).

Proof: The proof is similar to that of Theorem (3.1)

4. Closure Theorem

Let the function𝑓𝑖 𝑧 𝑖 = 1,2, … , π‘š be defined by

𝑓𝑖 𝑧 = 𝑧𝑝 βˆ’ π‘Žπ‘› ,𝑖𝑧𝑛

∞

𝑛=𝑝+1

, π‘Žπ‘› ,𝑖 β‰₯ 0 . 4.1

We shall prove the following results for the closure functions in the class

π‘Šπ‘πœ‡ 𝛽, 𝛼, 𝑒, 𝑣 .

Theorem (4.1): Let the functions 𝑓𝑖 𝑧 𝑖 = 1,2, … , π‘š be defined by (4.1) be

in the class π‘Šπ‘πœ‡ 𝛽, 𝛼, 𝑒, 𝑣 . Then the function 𝑕(𝑧) defined by

𝑕 𝑧 = 𝑐𝑖𝑓𝑖 𝑧

π‘š

𝑖=1

, 𝑐𝑖 β‰₯ 0 ,

is also in theclass π‘Šπ‘πœ‡ 𝛽, 𝛼, 𝑒, 𝑣 , where

𝑐𝑖 = 1

π‘š

𝑖=1

.

Proof: According to the definition of 𝑕(𝑧), it can be written as

Page 8: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

8

𝑕 𝑧 = 𝑐𝑖 𝑧𝑝 βˆ’ π‘Žπ‘› ,𝑖𝑧𝑛

∞

𝑛=𝑝+1

π‘š

𝑖=1

= 𝑐𝑖𝑧𝑝 βˆ’ π‘π‘–π‘Žπ‘› ,𝑖𝑧

𝑛

∞

𝑛=𝑝+1

π‘š

𝑖=1

π‘š

𝑖=1

= 𝑧𝑝 βˆ’ π‘π‘–π‘Žπ‘› ,𝑖𝑧𝑛

π‘š

𝑖=1

∞

𝑛=𝑝+1

.

Furthermore, since the functions 𝑓𝑖 𝑧 (𝑖 = 1,2, … , π‘š) are in the class

π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣), then

𝑛[𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝] 𝑛

𝑝

πœ‡

π‘Žπ‘› ,𝑖

∞

𝑛=𝑝+1

≀ 𝑝 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 .

Hence

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑛

𝑝

πœ‡

π‘π‘–π‘Žπ‘› ,𝑖

π‘š

𝑖=1

∞

𝑛=𝑝+1

= 𝑐𝑖 𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑛

𝑝

πœ‡βˆž

𝑛=𝑝+1

π‘Žπ‘› ,𝑖

π‘š

𝑖=1

≀ 𝑝 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 ,

which implies that 𝑕(𝑧) is in the class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣).

Corollary (4.1): Let the function 𝑓𝑖 𝑧 (𝑖 = 1,2) defined by (4.1) be in the

classπ‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣).

Then the function 𝑕(𝑧) defined by

𝑕 𝑧 = 1 βˆ’ 𝛾 𝑓1 𝑧 + 𝛾𝑓2 𝑧 , 0 ≀ 𝛾 < 1 , is also in the class

π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣).

5. Extreme points:

Page 9: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

9

Theorem (5.1): Let 𝑓𝑝 = 𝑧𝑝 and

𝑓𝑝 = 𝑧𝑝 βˆ’π‘ 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑧𝑛 , 𝑛 β‰₯ 𝑝 + 1; 𝑝 ∈ β„• . 5.1

Then the function 𝑓(𝑧) is in the class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣) if and only if it can be

expressed in the form

𝑓 𝑧 = πœŽπ‘›π‘“π‘› 𝑧

∞

𝑛=𝑝+1

,

where

πœŽπ‘› β‰₯ 0 and πœŽπ‘›

∞

𝑛=𝑝

= 1. (5.2)

Proof: Suppose that 𝑓(𝑧) is expressed in the form

𝑓 𝑧 πœŽπ‘›π‘“π‘› 𝑧

∞

𝑛=𝑝

= πœŽπ‘π‘§π‘ + πœŽπ‘› 𝑧𝑝 βˆ’π‘ 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑧𝑛

∞

𝑛=𝑝+1

= 𝑧𝑝 πœŽπ‘ + πœŽπ‘›

∞

𝑛=𝑝+1

βˆ’ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 πœŽπ‘›π‘§π‘›

∞

𝑛=𝑝+1

= 𝑧𝑝 βˆ’ π‘žπ‘›π‘§π‘›

∞

𝑛=𝑝+1

,

where

π‘žπ‘› =𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

πœŽπ‘› .

Therefore 𝑓 ∈ π‘Šπ‘πœ‡(𝛽, 𝛼, 𝑒, 𝑣), since

Page 10: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

10

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘ž

𝑛

∞

𝑛=𝑝+1

= πœŽπ‘›

∞

𝑛=𝑝+1

= 1 βˆ’ πœŽπ‘ ≀ 1.

Conversely, assume that 𝑓 ∈ π‘Šπ‘πœ‡(𝛽, 𝛼, 𝑒, 𝑣), then by (2.1) we may set

πœŽπ‘› =

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› , 𝑛 β‰₯ 𝑝 + 1

and

1 βˆ’ πœŽπ‘›

∞

𝑛=𝑝+1

= πœŽπ‘ .

Then

𝑓 𝑧 = 𝑧𝑝 βˆ’ π‘Žπ‘›π‘§π‘›

∞

𝑛=𝑝+1

= 𝑧𝑝 βˆ’ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 𝑧𝑛

∞

𝑛=𝑝+1

,

= 𝑧𝑝 βˆ’ πœŽπ‘›(

∞

𝑛=𝑝+1

𝑧𝑝 βˆ’ π‘“πœŽ(𝑧)) = 𝑧𝑝(1 βˆ’ πœŽπ‘›

∞

𝑛=𝑝+1

) + πœŽπ‘›π‘“π‘› 𝑧

∞

𝑛=𝑝+1

= π‘§π‘πœŽπ‘ + πœŽπ‘›π‘“π‘› 𝑧

∞

𝑛=𝑝+1

= πœŽπ‘›π‘“π‘› 𝑧

∞

𝑛=𝑝

.

This completes the proof.

Page 11: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

11

6. Hadamard product:

Let the function 𝑓𝑖 𝑧 (𝑖 = 1,2) defined by (4.1). The Hadamard product of

the functions 𝑓1(𝑧) and 𝑓2(𝑧) is defined by

𝑓1 βˆ— 𝑓2 𝑧 = 𝑧𝑝 + π‘Žπ‘›,1π‘Žπ‘›,2𝑧𝑛

∞

𝑛=𝑝+1

. 6.1

Theorem (6.1): Let the functions 𝑓𝑖 𝑧 𝑖 = 1,2 defined by (4.1) be in the

class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣) and 𝑛 β‰₯ 𝑝 + 1 . Then 𝑓1 βˆ— 𝑓2 𝑧 ∈ π‘Šπ‘πœ‡

(𝛽, 𝛿, 𝑒, 𝑣) ,

where

𝛿 ≀

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 2 βˆ’ 𝑛 + 1 βˆ’ 𝑝 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 2

𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 2 βˆ’ 𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 2 .

The result is sharp for the functions 𝑓𝑖(𝑧) given by

𝑓𝑖 𝑧 =𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑝+1

𝑝 πœ‡

𝑝 + 1 𝛼 𝛽 𝑝 + 2 + 𝑒 + 𝑣 + 2 𝑧𝑝+1 , 𝑖 = 1,2 . 6.2

Proof: Since the functions 𝑓𝑖 𝑧 (𝑖 = 1,2) belong to the class π‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣),

then from Theorem (2.1), we have

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› ,1

∞

𝑛=𝑝+1

≀ 1. (6.3)

Employing the technique used earlier by Schild and Silverman [5], we need to

find the largest 𝛿 such that

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› ,1π‘Žπ‘› ,2

∞

𝑛=𝑝+1

≀ 1. 6.4

By Cauchy – Schwarz inequality, we get

Page 12: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

12

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› ,1π‘Žπ‘› ,2

∞

𝑛=𝑝+1

≀ 1. 6.5

Thus, it is sufficient to show that

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› ,1π‘Žπ‘› ,2 ≀

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 π‘Žπ‘› ,1π‘Žπ‘› ,2

that is, that

π‘Žπ‘› ,1π‘Žπ‘› ,2 ≀ 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 . 6.6

But from (6.5), we have

π‘Žπ‘› ,1π‘Žπ‘› ,2 ≀𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝 πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 . 6.7

Thus it is enough to show that

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

≀ 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 ,

which implies

𝛿 ≀

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 2 βˆ’ 𝑛 + 1 βˆ’ 𝑝 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 2

𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 2 βˆ’ 𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 2 .

This completes the proof.

Theorem (6.2): Let the functions 𝑓𝑖 𝑧 (𝑖 = 1,2) defined by (4.1) be in the

classπ‘Šπ‘πœ‡

(𝛽, 𝛼, 𝑒, 𝑣). Then the function

𝑕 𝑧 = 𝑧𝑝 βˆ’ π‘Žπ‘› ,12 + π‘Žπ‘› ,2

2 𝑧𝑛

∞

𝑛=𝑝+1

, (6.8)

is in the class π‘Šπ‘πœ‡

(𝛽, 𝛿, 𝑒, 𝑣), where

Page 13: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

13

𝛿 ≀ 𝑛 + 1 βˆ’ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 βˆ’ 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝛽 𝑛 + 1 + 𝑒 + 𝑣 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 βˆ’ 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 .

The result is sharp for the functions 𝑓𝑖 𝑧 (𝑖 = 1,2) given by (6.2).

Proof: From Theorem (2.1), we have

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

2

π‘Žπ‘› ,𝑖2

∞

𝑛=𝑝+1

≀

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

∞

𝑛=𝑝+1

π‘Žπ‘› ,𝑖

2

≀ 1,

it follows that

1

2

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣

2

π‘Žπ‘› ,12 + π‘Žπ‘› ,2

2 ≀ 1

∞

𝑛=𝑝+1

. 6.9

But 𝑕 ∈ π‘Šπ‘πœ‡(𝛽, 𝛿, 𝑒, 𝑣) if and only if

𝑛

𝑝

πœ‡π‘› 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 (π‘Žπ‘› ,1

2 + π‘Žπ‘› ,22 )

∞

𝑛=𝑝+1

≀ 1, 6.10

the inequality (6.10) will satisfies if

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛿 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛿 𝛽 𝑝 + 1 + 𝑒 + 𝑣 ≀

𝑛

𝑝

πœ‡

𝑛 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 , 𝑛 β‰₯ 𝑝 + 1

so that

𝛿 ≀ 𝑛 + 1 βˆ’ 𝑝 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 βˆ’ 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝

𝛽 𝑛 + 1 + 𝑒 + 𝑣 1 + 𝛼 𝛽 𝑝 + 1 + 𝑒 + 𝑣 βˆ’ 𝛽 𝑝 + 1 + 𝑒 + 𝑣 𝑛 + 1 + 𝛼 𝛽 𝑛 + 1 + 𝑒 + 𝑣 βˆ’ 𝑝 .

This completes the proof.

References:

[1] M. K. Aouf, on certain subclass of multivalent functions with negative coefficients

defined by using a differential operator, Bulletin of Institute of Mathematics, 5(2) (2010),

181-200.

Page 14: On a Subclass of Multivalent Functions Defined by ...qu.edu.iq/cm/wp-content/uploads/2015/08/...1 On a Subclass of Multivalent Functions Defined by Differential Operator by Zain AL-abideen

14

[2] M. K. Aout A. O. Msotafa, Certain class of p-valent functions defined by convolution,

General Math., 20(1) (2012), 85-98.

[3] W. G. Atshan, S. R. Kulkarni, same application of generalized Ruscheweyh

derivatives involving a general fractional derivative operator to a class of analytic

functions with negative coefficient, surveys in Mathematics and its Applications, 5(2010),

35-47.

[4] G. S .SαΊ·lαΊ·gean, Subclass of univalent functions, Lecture Notes in Math.,Springer-

verlag,1013,(1983),362-372.

[5] A.Schild and H.Silverman,Convolutions of univalent functions with

negativecoefficients,Ann.Univ.Mariae curie-Sklodowska,sect.A,29(1975),99-107.