Oculoparesias

Embed Size (px)

Citation preview

  • 8/21/2019 Oculoparesias

    1/31

    P a r a l y t i c S t r a b i s m u s :T h i r d , F o u r t h , a n d

    S i x t h N e r v e P a l s ySashank Prasad,   MDa,*, Nicholas J. Volpe,   MDb

    ANATOMY

    Eye movements are subserved by the ocular motor nerves (cranial nerves 3, 4, and 6),

    which innervate the 6 extraocular muscles of each eye ( Fig. 1 ). The oculomotor (third)

    nerve innervates the medial rectus, inferior rectus, superior rectus, and inferior oblique

    muscles, as well as the levator palpebrae. The trochlear (fourth) nerve innervates the

    superior oblique muscle, and the abducens (sixth) nerve innervates the lateral rectus

    muscle.

    The nuclear complex of the third nerve lies in the dorsal midbrain, anterior to thecerebral aqueduct. It consists of multiple subnuclei that give rise to distinct sets of 

    fibers destined for the muscles targeted by the third nerve. In general, the axons

    arising from these subnuclei travel in the ipsilateral nerve, except axons arising from

    the superior rectus subnucleus that travel through the contralateral third nerve

    complex to join the third nerve on that side.1 In addition, a single central caudate

    nucleus issues fibers that join both third nerves to innervate the levator palpebrae

    muscles bilaterally.2 The preganglionic cholinergic fibers that innervate the pupillary

    constrictor arise from the paired Edinger-Westphal nuclei. On exiting the nuclear

    complex, the third nerve fascicles travel ventrally, traversing the red nucleus and

    the cerebral peduncles, before exiting the midbrain into the interpeduncular fossa.The proximal portion of the nerve passes between the superior cerebellar and poste-

    rior cerebral arteries.3 The axons are topographically arranged, with fibers for the infe-

    rior rectus, medial rectus, superior rectus, and inferior oblique arranged along the

    Dr Prasad is supported by a Clinical Research Training Grant from the American Academy ofNeurology.a Division of Neuro-Ophthalmology, Department of Neurology, Brigham and Women’s

    Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USAb Division of Neuro-Ophthalmology, Scheie Eye Institute, University of Pennsylvania, 51 North39th Street, Philadelphia, PA 19104, USA* Corresponding author.E-mail address:  [email protected]

    KEYWORDS

     Paralytic strabismus    Nerve palsy    Ocular motor nerves  Eye movement abnormalities

    Neurol Clin 28 (2010) 803–833doi:10.1016/j.ncl.2010.04.001   neurologic.theclinics.com0733-8619/10/$ – see front matter ª 2010 Elsevier Inc. All rights reserved.

    mailto:[email protected]://neurologic.theclinics.com/http://neurologic.theclinics.com/mailto:[email protected]

  • 8/21/2019 Oculoparesias

    2/31

    medial-to-lateral axis. Pupillary fibers are generally located superficially, in the supe-

    rior and medial portion of the nerve.

    The trochlear (fourth) nucleus is situated in the pontomesencephalic junction,

    ventral to the cerebral aqueduct. Unlike all other cranial nerves, these axons exit the

    brainstem dorsally. They then decussate within the anterior medullary velum (beneath

    the inferior colliculi), and ultimately innervate the contralateral superior oblique muscle.

    The abducens (sixth) nucleus lies in the dorsal pons, in close proximity to the facial(seventh) nerve fascicle. The sixth nerve fascicle travels ventrally, through the cortico-

    spinal tracts, before exiting anterolaterally at the pontomedullary junction.

    The 3 ocular motor nerves pass through the subarachnoid space before piercing the

    dura and arriving at the cavernous sinus ( Fig. 2 ). Although the third and fourth nerves

    are situated along the lateral wall of the cavernous sinus, the abducens nerve has

    a more medial position, just lateral to the internal carotid artery. The third nerve splits

    into superior and inferior divisions within the anterior cavernous sinus. The superior

    division innervates the levator palpebrae and the superior rectus muscles, whereas

    the inferior division innervates the remaining third nerve muscles (the medial rectus,

    inferior rectus, inferior oblique, and the pupillary constrictor). All 3 ocular motor nervesexit the cavernous sinus via the superior orbital fissure, and then pass through the

    orbital apex to reach their target muscles.

    The blood supply to the third, fourth, and sixth nerves has multiple sources that feed

    a vasa nervorum capillary network.4 In the subarachnoid space, the third nerve is

    supplied by small thalamomesenchephalic branches from the basilar artery and

    posterior ciliary artery (PCA); in the cavernous sinus, it is supplied by branches of 

    Fig. 1.  Anatomic structures subserving eye movements: lateral view of the right eye. Theoculomotor nerve (CN III), trochlear nerve (CN IV), and abducens nerve (CN VI) arise fromthe brainstem. After passing through the subarachnoid space and cavernous sinus, theyenter the orbit through the superior orbital fissure. The oculomotor nerve divides into supe-rior and inferior divisions, and ultimately innervates the superior rectus, inferior rectus,medial rectus, inferior oblique (shown cut), and levator palpebrae muscles. In addition,parasympathetic fibers of the third nerve synapse in the ciliary ganglion then innervatethe pupillary constrictor muscle. The trochlear nerve innervates the superior oblique muscle.The abducens nerve innervates the lateral rectus muscle (shown cut). ( Adapted from Agur

    AMR, Dalley AF. Grant’s atlas of anatomy. 12th edition. Philadelphia: Lippincott, Williams& Wilkins; 2009; with permission.)

    Prasad & Volpe804

  • 8/21/2019 Oculoparesias

    3/31

    the intracavernous carotid, and within the orbit its supply arises from recurrentbranches of the ophthalmic artery. A watershed zone may exist between the

    subarachnoid and intracavernous portions of this blood supply.5 In the subarachnoid

    segment, the blood supply of the fourth nerve comprises branches from the superior

    cerebellar artery (SCA), and that of the sixth nerve arises from branches of the PCA 

    and SCA.4 In the cavernous sinus and the orbit, the blood supply to both of these

    nerves arises from the same vessels that supply the third nerve.

    THIRD NERVE PALSY

    Clinical Features

    Complete, isolated third nerve palsy causes ipsilateral weakness of elevation, depres-sion, and adduction of the globe, in combination with ptosis and mydriasis. Depending

    on the specific cause, complete third nerve palsy may involve the pupil (causing mydri-

    asis) or spare the pupil ( Figs. 3 and  4 ). In partial third nerve palsy, different patterns of 

    impaired motility may occur with or without pupillary involvement. The motility deficit

    may be subtle, and a reduced duction may not be easily observed. In this case, more

    detailed assessment of alignment, with alternate cover or Maddox rod testing, will

    Fig. 2.  The cavernous sinus, coronal view. The oculomotor nerve and trochlear nerve are sit-uated on the lateral wall of the cavernous sinus (along with the ophthalmic and maxillarydivisions of the trigeminal nerve). The abducens nerve floats freely within the cavernoussinus. The internal carotid artery is located medially in the cavernous sinus, and the pituitarygland is within the sella turcica in the midline. (Reprinted from Drake R, Vogl W, Mitchell A.Gray’s anatomy for students. 2nd edition. London: Churchill Livingstone; 2010; withpermission.)

    Paralytic Strabismus   805

  • 8/21/2019 Oculoparesias

    4/31

    show an incomitant pattern of ocular misalignment supporting the diagnosis of partial

    third nerve palsy. A characteristic feature is that the affected eye is hypotropic inupgaze but hypertropic in downgaze, because of the combined weakness of the supe-

    rior and inferior rectus muscles.

     As opposed to lesions of the third nerve fascicle or nerve, a lesion of the third nerve

    nucleus will cause bilateral abnormalities. Specifically, there is bilateral ptosis

    (because the central caudal nucleus supplies both levator palpebrae muscles) and

    a bilateral elevation deficit (because the superior rectus subnucleus sends fibers

    through the contralateral third nerve nucleus to join the opposite nerve) ( Fig. 5 ).1,6,7

    Therefore, the classic clinical picture of unilateral nuclear third nerve palsy is ipsilateral

    mydriasis; ipsilateral weakness of the medial rectus, inferior rectus, and inferior obli-

    que muscles; bilateral ptosis; and bilateral superior rectus weakness. As the third nerve fascicle travels ventrally through the midbrain, it is vulnerable to an

    intraparenchymal lesion. Partial deficits are possible, in keeping with the topographic

    arrangement of fibers within the nerve fascicle.2,8–10 In these cases, other neurologic

    deficits often accompany the third nerve palsy. For example, a lesion also affecting the

    corticospinal tracts in the cerebral peduncle will cause contralateral hemiparesis

    (Weber syndrome), a lesion involving the red nucleus will cause contralateral limb

    Fig. 3.  A 32-year-old woman with traumatic complete left third nerve palsy, showing righthypertropia in upgaze that becomes left hypertropia in downgaze. ( A) Left ptosis, mydriasis,exotropia, and right hypertropia in primary gaze. (B) Absent left elevation. (C ) Reduced leftdepression. (D) The left pupil shows minimal consensual response to light, with greateranisocoria.

    Prasad & Volpe806

  • 8/21/2019 Oculoparesias

    5/31

    tremor (Benedikt syndrome), and a lesion involving the brachium conjunctivum

    (involving the crossing dentatorubrothalamic fibers of   the superior cerebellarpeduncle) will cause contralateral ataxia (Claude syndrome).11 Rarely, fascicular third

    nerve palsy may occur in isolation.6

    Given the segregation of the third nerve into superior and inferior divisions, a lesion

    of the anterior cavernous sinus or orbit may cause selective impairments. Disruption of 

    the superior division causes ptosis and impaired elevation, whereas disruption of the

    inferior division causes impaired depression, adduction, and mydriasis ( Figs. 6 and 7 ).12

    However, in rare cases, more proximal lesions (ie, intraparenchymal fascicular lesions

    or subarachnoid lesions) may mimic a divisional palsy.10,13–16

     Aberrant regeneration refers to miswiring of third nerve innervated structures,

    leading to patterns of co-contraction (ie, synkinesis).17 Common manifestations arecontraction of the levator palpebrae on adduction or depression of the eye, or miosis

    of a dilated pupil during adduction ( Fig. 8 ). This phenomenon occurs in primary and

    secondary forms. Primary aberrant regeneration suggests chronic compression, typi-

    cally due to an expanding cavernous sinus lesion such as a meningioma, aneurysm,

    tumor, or other mass.18–20 Secondary aberrant regeneration occurs in the recovery

    phase following acute third nerve palsy, commonly after trauma but also after ophthal-

    moplegic migraine, pituitary apoplexy, or inflammation. Aberrant regeneration does

    not occur after vasculopathic third nerve palsy.

    Differential DiagnosisNuclear or fascicular third nerve palsy is typically due to midbrain infarction from

    occlusion of a small penetrating artery from the proximal PCA. Other possible causes

    of midbrain disease include tumors, vascular malformations, abscesses, demyelin-

    ation, and inflammatory disorders.

    In the subarachnoid space, an expanding aneurysm of the posterior communicating

    artery (PComm) is an important cause of third nerve palsy. More than 90% of patients

    Fig. 4.   A 55-year-old woman with a microvasculopathic partial right third nerve palsy due todiabetes and hypertension. Magnetic resonance imaging and magnetic resonance angiog-raphy were normal. ( A) Right ptosis without mydriasis in primary position. Mild physiologicanisocoria was present. (B) Normal right gaze. (C ) Decreased right adduction on left gaze.(D) Decreased right elevation on upgaze. (E ) Decreased right depression on downgaze.The motility became normal within 8 weeks.

    Paralytic Strabismus   807

  • 8/21/2019 Oculoparesias

    6/31

    Prasad & Volpe808

  • 8/21/2019 Oculoparesias

    7/31

    with subarachnoid hemorrhage from a PComm aneurysm initially present with a third

    nerve palsy.21,22 These aneurysms commonly project posterolaterally to compress the

    third nerve and involve the pupillary fibers in most cases. When the motility deficits are

    complete, pupillary involvement is virtually always present. If the motility deficit is

    partial, then the pupil may initially be spared.23 Sparing of pupillomotor fibers may

    occur because they are resistant to evenly distributed compression, or because

    they are positioned dorsally, and in some cases compression is limited to the inferior

    aspect of the nerve.24  A PComm aneurysm presenting acutely as a third nerve palsy

    represents a true neurosurgical emergency and may be treated by surgical clipping or

    endovascular coiling.25

    Microvascular third nerve palsy is commonly associated with risk factors including

    hypertension, diabetes, hyperlipidemia, advanced age, and smoking (see Fig. 4 ). This

    disorder results from impairment of microcirculation leading to circumscribed,

    ischemic demyelination of axons at the core of the nerve, typically in the cavernous

    sinus portion where a watershed territory exists.5,26 Most of these patients exhibit

    pupillary sparing, because the pupillary fibers are located peripherally, closest to

    the blood supply provided by the surrounding vasa nervorum. However, some pupil-

    lary involvement may occur, typically with less than 1 mm (up to a maximum of 2.5

    mm) of anisocoria found in approximately 40% of cases.27 A microvascular third nerve

    palsy is frequently associated with orbital pain, which can be severe. Although it

    remains uncertain, the pain may result from ischemia of trigeminal sensory fibers

    that join the third nerve within the cavernous sinus.28 There is an excellent prognosis

    for recovery of motility deficits from microvascular third nerve palsy, typically in 8 to 12

    weeks.29

    Severe trauma is another common cause of third nerve palsies, involving traction atthe skull base or fracture of the bones of the orbit or skull base ( Fig. 9 ).30,31  A third

    nerve   palsy that follows minor head trauma may indicate an underlying structural

    lesion.32,33  Although there is good prognosis for recovery following traumatic third

    nerve palsy, there is a high incidence of secondary aberrant regeneration.

    Slowly progressive third nerve palsies occasionally occur due to growth of a primary

    tumor of the nerve or nerve sheath. These lesions include neurinomas, neurofibromas,

    neurilemmomas, and schwannomas.34 Neuroimaging will identify an enlarged,

    enhancing nerve in these cases. Uncommonly, a malignant meningioma, glioblastoma

    multiforme, or lymphoma may directly affect the third nerve.35

    Uncal herniation can cause direct compression of the third nerve against the freeedge of the tentorium. In addition to third nerve deficits, these patients will have

    depressed mental status among other prominent neurologic deficits. In this situation,

    isolated pupil dilation may be the earliest manifestation of third nerve dysfunction.

    However, an isolated dilated pupil is never a manifestation of third nerve dysfunction

    in an awake and alert patient.

    Fig. 5.  A 15-year-old boy with bilateral nuclear third nerve palsies following resection ofa midline juvenile pilocytic astrocytoma. ( A) Severe bilateral ptosis in primary gaze. Note

    compensatory contraction of the frontalis muscle. (B) Reduced left adduction. Mydriasisof the left pupil is observed. (C ) Slightly reduced right adduction. (D) Severe elevation limi-tation on attempted upgaze. The vertical gaze limitation was not overcome by the oculoce-phalic maneuver. (E ) Bilateral depression deficit, greater on the right than on the left.Preoperative axial fluid-attenuated inversion-recovery (FLAIR) (F ) and sagittal T2-weightedbrain MRI (G) revealed a large heterogeneous midline mass (arrow ) compressing the dorsalmidbrain and causing hydrocephalus. Axial (H ) and coronal MRI (I ) 2 years following surgicalresection showing focal volume loss in the dorsal midbrain (arrow ).

         :

    Paralytic Strabismus   809

  • 8/21/2019 Oculoparesias

    8/31

    In the pediatric population, ophthalmoplegic migraine may cause transient isolated

    third nerve palsy. This rare form of complicated migraine typically presents before the

    age of 10 years.36 Ispilateral headache and nausea often accompany abnormal eye

    movements. For unclear reasons, third nerve involvement is most common, occurring

    in 95% of cases. The cause may relate to transient ischemia or compression of the

    nerve within the cavernous sinus by an edematous, dilated carotid artery.37,38 This

    condition is a diagnosis of exclusion, after a workup including imaging, blood work,and often lumbar puncture are unrevealing. Ophthalmoplegic migraine should be

    considered extremely unlikely in an adult without prior history of similar episodes in

    childhood.

    Isolated persistent third nerve palsy in childhood is commonly a congenital defect.39

    These cases are believed to result from aplasia or maldevelopment of the structures of 

    the ocular motor nucleus due to in utero insult.40 The motility deficit and ptosis is

    Fig. 6.  63-year-old woman with right superior divisional third nerve palsy following resec-tion of right sphenoid wing meningioma, causing isolated dysfunction of the levator palpe-brae and superior rectus muscles. ( A) Complete right ptosis. (B) Slight right hypotropia in

    primary gaze. (C ) Right hypotropia in right gaze. (D) Slight right hypotropia in left gaze.(E ) Markedly reduced elevation of the right eye. (F ) Normal downgaze. (G) Preoperativepostcontrast T1-weighted brain MRI showing right sphenoid wing meningioma (arrow ).

    Prasad & Volpe810

  • 8/21/2019 Oculoparesias

    9/31

    typically accompanied by miosis, rather than mydriasis, which probably results from

    anomalous innervation of the pupillary constrictor. Cyclic oculomotor spasms may

    occur, which are characterized by brief (10–30 seconds), involuntary contractions of 

    third nerve innervated structures, causing periods of adduction, lid elevation, and

    miosis.41 This condition rarely occurs with acquired third nerve palsy, typically dueto a compressive lesion.

    Third nerve palsy frequently occurs in combination with other cranial nerve deficits.

    The disorders capable of affecting multiple cranial nerves include cavernous sinus

    lesions, neoplasms of the base of the skull, carcinomatous meningitis, sinus muco-

    celes, infections, and inflammatory conditions. These conditions are discussed later

    in this article.

    Fig. 7.  An 8-year-old girl with idiopathic postviral left inferior divisional third nerve palsy,causing isolated dysfunction of the medial rectus, inferior rectus, and pupillary constrictormuscles. Brain MRI and spinal fluid constituents were normal. ( A) Left mydriasis and exotro-pia. (B) Complete left adduction deficit on right gaze. (C ) Normal left gaze. (D) Normal up-gaze bilaterally (not fully seen in this photograph). (E ) Left depression deficit. (F ) At 3-monthfollow-up, there was marked improvement of the motility deficit, with residual left mydri-asis (anisocoria greatest in light). (G) Left adduction deficit has resolved. (H ) Left gazeremains normal. (I ) Upgaze remains normal. ( J ) Slight left depression deficit persists.

    Paralytic Strabismus   811

  • 8/21/2019 Oculoparesias

    10/31

    Fig. 8.   A 45-year-old woman with aberrant regeneration following traumatic left thirdnerve palsy. ( A) Left mydriasis, exotropia, and right hypertropia in primary position. (B)Reduced left adduction with synkinetic left pupillary constriction and left lid elevation.(C ) Complete left gaze (not fully shown in this photograph). (D) Reduced left elevation.(E ) Reduced left depression with abnormal lid elevation due to synkinesis.

    Fig. 9.   A 14-year-old boy with left partial third nerve palsy following head trauma. ( A)Complete left ptosis. (B) Reduced left adduction. No mydriasis is evident. (C ) Completeleft gaze. (D) Reduced left elevation. (E ) Normal depression. (F ) Noncontrast head computedtomography (CT) revealed frontal contusions (black arrow ), occipital fracture, and epiduralhematoma (white arrow ). The motility deficit recovered completely within 3 months,without aberrant regeneration.

    Prasad & Volpe812

  • 8/21/2019 Oculoparesias

    11/31

    Diagnostic Testing

    The appropriate workup for a patient with third nerve palsy depends on the patient’s

    age and pupil function. In adults with acquired, isolated, complete, or partial third

    nerve palsy that involves the pupil, there is no controversy to the workup: these

    patients need urgent imaging to exclude a PComm aneurysm or other mass.42,43

    Computed tomography angiography (CTA) and magnetic resonance angiography

    are useful, but the exact sensitivity and availability of these tests vary across institu-

    tions.44 Nevertheless, if these tests are negative, a catheter angiogram often remains

    necessary in these patients because small aneurysms are potentially missed on nonin-

    vasive imaging studies.

    For patients with complete, pupil-sparing third nerve palsy who are more than 50

    years of age and have vascular risk factors, clinical observation may be reasonable. If 

    these patients fail to spontaneously recover within 12 weeks, then detailed neuroimag-

    ing is necessary. However, the appropriate threshold for obtaining imaging in this patient

    population remains an ongoing source of controversy. There are a growing number of reports of lesions diagnosed by magnetic resonance imaging (MRI) in patients who

    mimicked microvasculopathic third nerve palsy.43 Therefore, in clinical practice it may

    be prudent to obtain imaging studies to exclude vascular lesions in these patients.

    In patients with partial, pupil-sparing third nerve palsies, the threshold to obtain

    imaging is also low. Historically, it would have been reasonable to observe these

    patients for several days; in cases of evolving acute third nerve palsy due to aneurysm,

    mydriasis would occur in almost all cases within that time period.23 If mydriasis

    develops, urgent imaging becomes necessary. If the motility deficit remains unaccom-

    panied by pupillary abnormalities after 1 week, then a microvasculopathic cause is

    most likely. In the modern era, given the high risks of missing the diagnosis of an aneu-rysm and the increased availability of magnetic resonance (MR) or computed tomog-

    raphy (CT) imaging, it has become an appropriate strategy to obtain imaging in these

    patients earlier.

    Consideration of imaging should also be given to patients with third nerve palsy

    due to trauma, especially if the extent of trauma was minor, because of the inci-

    dence of underlying mass lesions (including aneurysms). Imaging these patients

    will also evaluate for muscle entrapment due to fracture of the orbital wall.

    In cases in which an infectious, inflammatory, or neoplastic cause is suspected, and

    MRI is negative or nonspecific, additional workup may include serologies for Lyme

    disease, syphilis, and an erythrocyte sedimentation rate to exclude temporal arteritis.Cerebrospinal fluid (CSF) analysis including cell counts, protein, glucose, cytology,

    and Lyme and Venereal Disease Reference Laboratory (VDRL) titers may be required.

    Treatment 

    The treatment of diplopia due to acute third nerve palsy may include monocular patch-

    ing or prisms. If the third nerve palsy is improving quickly over several weeks, prisms

    may be unnecessary and difficult to use successfully. If the misalignment remains fairly

    stable, then prisms may reduce diplopia in primary gaze. However, given the incom-

    itance of these deviations, prisms are unlikely to alleviate diplopia in eccentric gaze,

    and patient satisfaction may vary.Once ocular misalignment from third nerve palsy has been stable for 6 to 12 months,

    surgical correction can be considered. The complexity of these cases depends on

    whether the third nerve palsy is complete or partial. Complete third nerve palsy pres-

    ents a highly incomitant deviation in the horizontal and vertical planes. The ultimate

    goal for surgery in these cases is to establish single binocular vision in the primary

    position.45 Exodeviation in the primary position may be reduced by performing

    Paralytic Strabismus   813

  • 8/21/2019 Oculoparesias

    12/31

    a supramaximal lateral rectus recession (a weakening procedure that completely abol-

    ishes abduction), potentially in combination with a medial rectus resection (a tight-

    ening procedure to augment the muscle’s action). A medial rectus resection alone

    often becomes ineffective in these cases. Other strategies include transposition of 

    the horizontal muscles to facilitate vertical eye movements and transposition of the

    superior oblique tendon to create an adducting force.

    For patients with partial third nerve palsy, the surgical plan is tailored to the specific

    pattern of misalignment. In general, a combination of procedures is used to achieve

    better alignment. These include resection of the partially paretic muscle and recession

    or posterior fixation suture of the contralateral yoke muscle. A posterior fixation suture

    creates a mild limitation of eye movement without affecting primary position. A reces-

    sion procedure can be done with adjustable sutures so that the realignment can be

    fine-tuned based on the awake patient’s subjective experience.46 For instance,

    a patient with partial third nerve palsy causing isolated impairment of elevation or

    depression can be treated with a resection of the involved vertical muscle combined

    with an adjustable recession (or posterior fixation suture) of the contralateral yoke

    muscle, producing an improved field of single binocular vision.

    The risks of surgery should be weighed carefully in the decision to treat patients with

    third nerve palsy. Patients should be warned that more disabling diplopia may occur

    following strabismus surgery, as the images from each eye become perceived much

    closer together. Correction of ptosis accompanying third nerve palsy is usually easily

    accomplished but carries some risk of corneal exposure.

    FOURTH NERVE PALSYClinical Features

    Fourth nerve palsy presents with vertical diplopia and is commonly accompanied by

    compensatory contralateral head tilt.47 Identification of a fourth nerve palsy in a patient

    with vertical diplopia involves application of the Parks-Bielchowsky three-step test.

    First, hypertropia suggests weakness of the ipsilateral superior oblique, ipsilateral infe-

    rior rectus, contralateral inferior oblique, or contralateral superior rectus muscle.

    Second, increased hypertropia in contralateral gaze narrows the possibilities to the

    weakness of the ipsilateral superior oblique or contralateral superior rectus muscles.

    Third, increased hypertropia on ipsilateral head tilt further reduces the possibilities,

    ultimately identifying ipsilateral superior oblique weakness. Although the abnormal ductions may be detected by direct observation, in many

    cases,patients with vertical misalignment to have no visible impairment in ocular motility

    ( Fig. 10 ). Therefore, assessment of alignment using alternate cover or Maddox rod

    testing can be particularly useful to show the characteristic pattern of impaired motility.

    The reason that hypertropia is exacerbated in contralateral gaze is that superior

    oblique palsy causes weakness of depression in adduction (in long-standing cases,

    the hypertropia in adduction is further enhanced by overaction of the ipsilateral inferior

    oblique). The reason hypertropia is worse with ipsilateral head tilt is that the ocular

    counterroll reflex stimulates ipsilateral intorters (superior oblique and superior rectus)

    and contralateral extorters (inferior oblique and inferior rectus); when the superior obli-que is weak, this reflex causes a compensatory increase in ipsilateral superior rectus

    action, resulting in additional hypertropia (because the superior rectus is an elevator).

    Torsional diplopia, which results from ocular cyclotorsion, often accompanies

    vertical diplopia in acquired fourth nerve palsy. This condition can be quickly assessed

    by having the patient view a horizontal straight line, such as the edge of a door. A 

    patient with cyclotorsion from unilateral fourth nerve palsy will see a horizontal line

    Prasad & Volpe814

  • 8/21/2019 Oculoparesias

    13/31

    and a second tilted line above or below it, intersecting on the side of the affected eye.

    Cyclotorsion can also be evaluated with the double Maddox rod, which refracts a light

    source into one red line (seen by the right eye) and one white line (seen by the left eye).

    The degree of relative cyclotorsion is measured by rotating the filters until the subject

    reports that the lines are parallel. Cyclotorsion can also be evaluated during dilated

    Fig. 10.   A 36-year-old man with right fourth nerve palsy following resection of cerebellar he-mangioblastoma. ( A) Essentially normal ductions, with small right hypertropia in primary gazeand upgaze, increased in left gaze. (B) Simulation of patient’s view through Maddox rod ineach direction of gaze. Note greatest vertical separation in down-and-left gaze. (C ) Pre- andpostoperative gadolinium-enhanced T1-weighted MRI scans, showing fourth ventricle he-mangioblastoma. (Reprinted from   Prasad S, Volpe NJ, Tamhankar MA. Clinical reasoning:

    a 36-year-old man with vertical diplopia. Neurology 2009;72:e93–9; with permission.)

    Paralytic Strabismus   815

  • 8/21/2019 Oculoparesias

    14/31

    fundus examination, by assessing the position of the macula with respect to the optic

    disc. Excyclotorsion of the hypertropic eye suggests fourth nerve palsy because of 

    weakened intorsion; in contrast, intorsion of the hypertropic eye occurs in skew devi-

    ation, due to decreased stimulation of the inferior oblique subnucleus.

     Assessing cyclotorsion and vertical misalignment in the upright and supine posi-

    tions may be helpful in distinguishing a fourth nerve palsy from a skew deviation.48

    The misalignment remains fairly constant between these positions in fourth nerve

    palsy, whereas it is mitigated in the supine position in skew deviation, possibly

    because the utricular imbalance that causes a skew deviation becomes reduced.48

     A final clue about the cause of vertical misalignment comes from the fusional ampli-

    tude (the ability to fuse disparate images), which suggests the chronicity of stra-

    bismus. The fusional amplitude is measured by asking the patient to report double

    vision while progressively increased prisms are placed over 1 eye. A vertical fusional

    capacity greater than 8 to 10 diopters suggests the presence of higher compensatory

    mechanisms that occur with long-standing misalignment, such as a congenital lesion.

    Bilateral fourth nerve palsy, which most commonly results from trauma, is charac-

    terized by a unique constellation of findings.49 Primary position vertical alignment

    may be fairly good because of the canceling effect from bilateral palsies. Esotropia

    may be present, making the initial diagnosis difficult by potentially suggesting sixth

    nerve palsies. However, with careful examination, bilateral fourth nerve palsies are

    readily identified. First, hyperdeviation alternates such that it is contralateral to the

    direction of gaze and ipsilateral to the side of head tilt. Second, there is esotropia

    greatest in downgaze (so-called V-pattern esotropia, with >15 prism diopters differ-

    ence between upgaze and downgaze) because of weakened abduction in depression

    (the superior oblique acts as an abductor). Third, there is often a large angle of excy-clotorsion (>10 ), accompanied by prominent torsional diplopia. Rarely, bilateral

    congenital fourth nerve palsy may occur ( Fig. 11 ).

    Identifying fourth nerve palsy in the setting of concomitant third nerve palsy can be

    difficult, because the failure of adduction prevents complete testing of superior obli-

    que function. In this setting, the superior oblique can be evaluated by assessing its

    Fig. 11.   A 7-year-old girl with bilateral congenital fourth nerve palsy. Brain MRI was normal.( A) Normal alignment in primary gaze. (B) Left hypertropia in right gaze, with left inferioroblique overaction. (C ) Right hypertropia in left gaze, with right inferior oblique overaction.

    Prasad & Volpe816

  • 8/21/2019 Oculoparesias

    15/31

    secondary function: intorsion of the abducted eye on attempted downgaze. The

    torsional movement that indicates intact superior oblique function is best appreciated

    by observing a conjunctival vessel ( Fig. 12 ).

    Differential Diagnosis

    The most common cause of acquired fourth nerve palsy is trauma.31,49,50 The troch-

    lear nerve is the longest and thinnest of all the cranial nerves, coursing along the

    free edge of the tentorium through the prepontine cistern, where it is vulnerable

    to crush or shearing injury. Fracture of the base of the skull is an alternative cause.

    In cases of bilateral traumatic fourth nerve palsies, both nerves are often injured at

    the anterior medullary vellum, where they decussate.49 Traumatic fourth nerve

    palsies may occur after minor head injuries without loss of consciousness or skull

    fractures.

    Decompensated congenital fourth nerve palsy is also common and may present in

    adulthood. There is often a long-standing head tilt, which may be observed on inspec-tion of prior photographs, and an insidious onset of intermittent vertical diplopia. Char-

    acteristic features of congenital fourth nerve palsy include inferior oblique overaction,

    large vertical fusional amplitude, and minimal torsional diplopia. The precise cause of 

    congenital fourth nerve palsy is unclear but may include hypoplasia of the nucleus,

    birth trauma, anomalous muscle insertion, muscle fibrosis, structural abnormalities

    of the tendon, or inferior oblique muscle abnormalities.51 Decompensation later in

    life probably relates to breakdown of vertical fusion leading to symptomatic diplopia,

    rather than progressive superior oblique dysfunction.52

    Microvascular ischemia may cause fourth nerve palsy, typically in patients more

    than 50 years of age with vascular risk factors. There is often periorbital aching painon presentation, which can be severe. There is an excellent chance of spontaneous

    recovery within several months.

    Fig. 12.  A 75-year-old man (also shown in Fig. 20) with right third nerve palsy from pituitaryapoplexy with spared superior oblique function. ( A) A conjunctival vessel is observed (arrow )in primary gaze. (B) On attempted downgaze, the conjunctival vessel is observed to movefrom the 2 o’clock position to the 3 o’clock position ( arrow ), showing intorsion of the eyeby an intact superior oblique muscle.

    Paralytic Strabismus   817

  • 8/21/2019 Oculoparesias

    16/31

    Superior oblique myokymia is a microtremor that causes characteristic episodes of 

    monocular tortional oscillopsia or transient diplopia.53 It may occur in the primary posi-

    tion or with movements opposite the superior oblique direction of action. It may follow

    superior oblique palsy or occur spontaneously. Some cases may be due to compres-

    sion of the fourth nerve by an overlying blood vessel.

    Less-frequent causes of fourth nerve palsy include midbrain hemorrhage, infarction,

    or demyelination.54,55 Given the proximity to other structures in the midbrain, a lesion

    of the fourth nerve nucleus or proximal fascicle may cause contralateral superior obli-

    que weakness in association with ipsilateral Horner syndrome,56 ipsilateral internu-

    clear ophthalmoplegia,57 or contralateral relative afferent pupillary defect without

    visual loss (by affecting the brachium of the superior colliculus).58

    Other causes of fourth nerve palsy include schwannoma, aneurysmal compression,

    meningitis, hydrocephalus, and herpes zoster ophthalmicus. Inflammatory, infectious,

    and neoplastic processes that may affect the fourth nerve in the subarachnoid space

    often cause multiple cranial nerve deficits and are discussed later. When ancillary

    testing fails to support a definitive cause, a diagnosis of idiopathic acquired fourth

    nerve palsy can be made.

    Management 

    There are several treatment options for the patient with fourth nerve palsy. Occlusion of 

    the affected eye (or, if diplopia occurs only in down-and-contralateral gaze, occlusion of 

    the lower half of the lens over the affected eye) can serve as a temporary measure when

    spontaneous recovery is expected. Alternatively, base-down prism over the affected,

    Fig. 13.   15-year-old boy with right sixth nerve palsy due to increased intracranial pressure(54 cm H2O) in association with an arachnoid cyst. ( A) Primary position. (B) Right gaze,showing right abduction deficit. (C ) Normal left gaze. (D) T2-weighted MRI revealinga left middle temporal fossa arachnoid cyst (arrow ). (E ) Two months after surgical decom-pression of the arachnoid cyst, the right sixth nerve palsy had improved considerably,with a slight residual abduction deficit.

    Prasad & Volpe818

  • 8/21/2019 Oculoparesias

    17/31

    hypertropic eye may be effective. Prisms are generally effective for patients with

    congenital palsies because they have large fusional amplitudes. However, torsional

    diplopia cannot be corrected by prisms, and may limit the patient’s satisfaction.

    Surgery may be necessary for persistent symptomatic fourth nerve palsy when

    conservative measures fail, as long as the misalignment has been stable for several

    months. Patients with decompensated congenital fourth nerve palsy generally have

    a better prognosis after surgery than patients with acquired fourth nerve palsy,

    because they often have increased vertical fusional amplitude that reduces the likeli-

    hood of postoperative diplopia.59 Selection of the optimal surgical strategy depends

    Fig. 14.   ( A) A 29-year-old woman with left sixth nerve palsy due to pseudotumor cerebrifollowing pregnancy. Brain MRI, MR venogram, and CSF constituents were normal. Openingpressure was 35 cm H20. ( A) Esotropia in primary gaze. (B) Normal right gaze. (C ) Left abduc-tion deficit with intact right adduction.

    Paralytic Strabismus   819

  • 8/21/2019 Oculoparesias

    18/31

    on the amplitude of deviation and the presence of associated features such as inferior

    oblique overaction, superior rectus contracture, or superior oblique tendon laxity.60 In

    a patient with less than 10 diopters of deviation, recession of 1 muscle may be suffi-

    cient. If the inferior oblique shows overaction, it should be selected. However, if the

    deviation is greater than 15 diopters, then a second muscle should also be recessed.

    For this purpose, the contralateral inferior rectus or the ipsilateral superior rectus may

    be selected.60 Unless superior rectus contracture needs to be addressed, recession of 

    the contralateral inferior rectus may be the superior procedure because it can be per-

    formed with adjustable sutures.46

    The approach outlined earlier can be effective at reducing vertical diplopia. Surgery

    directly on the superior oblique should generally be avoided in this situation because it

    carries the risk of iatrogenic Brown syndrome (superior oblique tendon sheath insuf-

    ficiency). However, with bilateral palsies, or with unilateral palsy causing significant

    torsional diplopia, the Harado-Ito procedure may be required, in which the anterior

    portion of the superior oblique is advanced toward the lateral rectus.

    SIXTH NERVE PALSY

    Clinical Features

    Weakness of the lateral rectus due to sixth nerve palsy leads to horizontal diplopia,

    worse to the affected side and at distance. Often, the abnormal duction is easily

    observed, but in subtle cases, an incomitant esotropia must be shown by testing

    binocular alignment.

    Differential Diagnosis

    Nuclear sixth nerve palsy affects the ipsilateral sixth nerve as well as the interneurons

    destined for the contralateral medial rectus subnucleus. This lesion causes an

    Fig. 15.  A 70-year-old man with horizontal binocular diplopia and periorbital aching paindue to microvasculopathic right sixth nerve palsy. Brain MRI and erythrocyte sedimentationrate were normal. ( A) Slight esotropia in primary gaze. The pupils were pharmacologicallydilated. (B) Right abduction deficit. (C ) Normal left gaze. The abduction deficit resolvedwithin 2 months.

    Prasad & Volpe820

  • 8/21/2019 Oculoparesias

    19/31

    abduction deficit of the ipisilateral eye as well as an adduction deficit of the contralat-

    eral eye; together, this is a conjugate gaze palsy. In contrast, a lesion affecting the

    sixth nerve fascicle or nerve will produce an ipsilateral abduction deficit but spareadduction of the contralateral eye. Because of the proximity between the seventh

    nerve fascicle and the sixth nerve nucleus (within the facial colliculus), a single lesion

    at that location will typically produce ipsilateral gaze palsy and upper and lower facial

    weakness. A lesion more ventral in the pons may affect the sixth nerve fascicle and the

    descending corticospinal tract, producing an ipsilateral abduction deficit with contra-

    lateral hemiparesis or in isolation. These pontine lesions are commonly ischemic, due

    to occlusion of a paramedian penetrating branch from the basilar artery, but the differ-

    ential diagnosis also includes a vascular malformation, demyelination, or neoplasm.61

     At the base of the skull, as the sixth nerve rises along the clivus over the petrous liga-

    ment into Dorello’s canal, it is vulnerable to injury from downward mass effect due to

    Fig. 16.   A 5-year-old girl with right Duane syndrome, type 1. ( A) Normal alignment inprimary position. (B) Severe right abduction deficit. (C ) Full ductions on left gaze, withretraction of the right globe and narrowing of the palpebral fissure.

    Fig. 17.   A 4-year-old girl with bilateral gaze paresis and facial diplegia. ( A) Upper and lowerfacial weakness, worse on the left than the right. (B) Partial right gaze palsy. (C ) Marked leftgaze palsy.

    Paralytic Strabismus   821

  • 8/21/2019 Oculoparesias

    20/31

    increased intracranial pressure. Therefore, unilateral or bilateral sixth nerve palsies

    may occur in the setting of a supratentorial mass ( Fig. 13 ), sinus venous thrombosis,62

    hydrocephalus, or pseudotumor cerebri ( Fig. 14 ). Conversely, a sixth nerve palsy can

    also arise in cases of low intracranial pressure, as may occur with a CSF leak.63 Sixth

    nerve palsies in these situations tend to improve soon after normal intracranial pres-

    sure is restored. Masses growing at the base of the skull, such as meningiomas or

    chordomas, are also capable of injuring the sixth nerve. These tumors  occasionally

    present with a sixth nerve palsy that has shown spontaneous resolution.64

    Microvascular ischemia is another common cause of sixth nerve palsies, especially

    in an elderly patient with vascular risk factors ( Fig. 15 ). Similar to other microvasculo-

    pathic palsies, these may present with substantial periorbital aching pain. Progression

    of the abduction deficit in the first week is not uncommon.65 There is an excellent

    prognosis for recovery within 3 months.

    Severe head trauma is another cause of sixth nerve palsy, which may occur due to

    shearing forces or fracture of the base of the skull or orbital bones.31 Gradenigo

    syndrome refers to sixth nerve palsy in combination with ipsilateral hearing loss and

    facial pain, which occurs when infectious mastoiditis involves the structures of the

    Fig. 18.   A 15-year-old boy with multiple idiopathic cranial neuropathies who presented

    with 3 days of diplopia and facial weakness. There was hyporeflexia and mild ataxia inthe arms. Brain MRI was normal and spinal fluid revealed 1 leukocyte and normal protein(55 mg/dL). Anti-GQ1b antibody was negative. ( A) Bilateral ptosis and facial weakness. (B)Upper and lower facial weakness, left greater than right. (C ) Slight exotropia in primarygaze. (D) Severely reduced right abduction and left adduction on attempted right gaze.(E ) Reduced left abduction and right adduction on attempted left gaze. (F ) Severely reducedelevation bilaterally on attempted upgaze. (G) Reduced depression, left greater than right,on attempted downgaze. Complete resolution occurred within 2 months.

    Prasad & Volpe822

  • 8/21/2019 Oculoparesias

    21/31

    petrous apex.66 In children, a benign, recurring form of idiopathic sixth nerve palsy

    may occur, in which esotropia lasts for days to months.67,68 The diagnostic workup

    in these cases, including MRI and CSF analysis, is unrevealing.

    Congenital abnormalities of the sixth nerve include Duane retraction syndrome and

    Mobius syndrome. There are 3 varieties of Duane syndrome, which have in common

    a paradoxic co-contraction of the lateral and medial rectus muscles ( Fig. 16 ). This

    condition causes a visible retraction of the globe and narrowing of the palpebral

    fissure on attempted adduction. In Duane type 1, abduction is impaired with essen-

    tially full adduction; in type 2, adduction is impaired with normal abduction; in type

    3, adduction and abduction are reduced.69 The abduction deficit in types 1 and 3

    cause the patient to be esotropic on lateral gaze to the affected side, but these

    patients can be distinguished from those with acquired abduction deficits because

    they have normal alignment (rather than esotropia) in primary gaze. Pathologic studies

    of patients with Duane syndrome show hypoplasia of the sixth nerve nucleus and

    abnormalities of the fascicle, with branches of the third nerve supplying the lateral

    rectus muscle.70,71 Most cases of Duane syndrome are sporadic but, in rare familial

    cases, defects of the CHN1 gene on chromosome 2 have been identified.72 Surgical

    treatment is not necessary for most patients with Duane syndrome, but it can be help-

    ful in rare cases such as those with misalignment in primary position, abnormal head

    turn, or significant up- or downshoots.73

    Fig. 19.  A 49-year-old man with 1 month of left periorbital swelling and vertical diplopia inupgaze. ( A) Normal alignment in the primary position, with 5 mm proptosis of the leftglobe. (B) Limited elevation of the left eye in upgaze. (C ,   D) T2-weighted MRI revealinga large mass arising from the left facial sinuses and invading the left orbit supralaterally(arrow ). Pathologic analysis revealed a highly infiltrating, poorly differentiated epithelialtumor with neuroendocrine features.

    Paralytic Strabismus   823

  • 8/21/2019 Oculoparesias

    22/31

    Fig. 20.  A 75-year-old man with right third, right sixth, and left sixth palsy due to pituitaryapoplexy. ( A) Complete right ptosis. (B) Dilated right pupil and right abduction deficit. (C )

    Complete left abduction deficit and right adduction deficit on attempted left gaze. (D)Right elevation deficit. (E ) Right depression deficit. (F ) Sagittal postcontrast T1-weightedMRI reveals a heterogeneous mass in the pituitary sella, suggesting pituitary macroadenomaand apoplexy (arrow ).

    Fig. 21.  A 70-year-old woman with headache and left eye redness due to a low-flow (indi-rect) CCF. ( A) Left proptosis, periorbital edema, and arteriolization of episcleral vessels. Thepupils are pharmacologically dilated. (B) Corkscrew arteriolization of episcleral vessels ex-tending to the limbus.

    Prasad & Volpe824

  • 8/21/2019 Oculoparesias

    23/31

    Mobius syndrome describes congenital facial diplegia that is frequently associated

    with sixth nerve palsy ( Fig. 17 ).74 Conjugate gaze paresis may be present, typically in

    cases with more severe abduction deficit. Other abnormalities such as complete

    external ophthalmoplegia, third nerve palsy, or ptosis occur less frequently. The cause

    of these deficits is believed to be hypoplasia of the relevant brainstem structures.

    Other inflammatory, infectious, and neoplastic processes that may affect the sixth

    nerve in the subarachnoid space are the same as those that can cause third and fourth

    nerve palsies and other cranial nerve deficits, and are discussed later.

    Diagnostic Testing

    Many patients with acute sixth nerve palsy require MRI to exclude structural, inflam-

    matory, or neoplastic causes. All children and young adults with sixth nerve palsy

    should undergo imaging because of a higher prevalence of tumors and demyelinating

    Fig. 22.  A 75-year-old man with right CCF who presented with several months of left retro-

    orbital headache and 2 days of horizontal binocular diplopia. ( A) Slight esotropia in primarygaze. (B) Normal right gaze. (C ) Limited left abduction. (D) CT angiogram revealed dilationand tortuosity of the right superior ophthalmic vein (arrow ). Catheter angiography revealeda cavernous sinus dural arteriovenousfistula (type D indirectCCF)supplied by bilateralinternaland external carotid artery branches (arrow ) with dominant venous drainage through theright superior ophthalmic vein. The right external carotid supply (via an accessory meningealartery) was successfully embolized with Onyx 18. Other supplying branches were notamenable to embolization.

    Paralytic Strabismus   825

  • 8/21/2019 Oculoparesias

    24/31

    lesions.43,75 However, in a patient in whom a microvasculopathic cause is strongly

    considered, observation for spontaneous improvement over several weeks may

    prevent the need for imaging. Additional workup in selected patients with sixth nerve

    palsy may include serologies and CSF analysis.

    Fig. 23.  A 3-year-old boy with ptosis and impaired eye movements, with a family history ofsimilar abnormalities. Sequence analysis of the CFEOM1/KIF21A gene revealed a heterozy-gous, missense mutation 2821C>T in exon 21, which is a pathogenic mutation associatedwith congenital fibrosis of the extraocular muscles. He had received prior ptosis surgery.( A) Bilateral ptosis, esotropia, and head tilt in primary position. (B) Right gaze, revealingright abduction deficit. (C ) Left gaze, revealing left abduction deficit. (D) Severe impairmentbilaterally on attempted upgaze. (E ) Downgaze. (F ) The patient’s father, who had also hadsurgery for ptosis, in primary gaze with a mild right hypertropia and exotropia. (G) Right

    gaze, showing reduced abduction and adduction. (H ) Left gaze, showing slight impairmentsof abduction and adduction. (I ) Severe bilateral impairments on attempted upgaze. ( J )Severe bilateral impairments on attempted downgaze. (K ) The patient’s grandfather, withcomplete right ptosis. (L) Right gaze, showing left hypertropia and reduced left adduction.(M) Left gaze, showing right hypertropia and mild right adduction deficit. (N ) Attemptedupgaze, revealing severe bilateral impairments with left hypertropia. (O) Attempted down-gaze, revealing left hypertropia with reduced left infraduction. (P ) The family tree of thepatient (arrow ) reveals an autosomal dominant inheritance pattern through 5 generations.

    Prasad & Volpe826

  • 8/21/2019 Oculoparesias

    25/31

    Treatment 

     As with any type of binocular diplopia, the horizontal diplopia resulting from acute sixth

    nerve palsy may be managed with occlusion or prism. Prism may be helpful to alleviate

    the compensatory head turn to the affected side. Ultimately, once the amount of eso-

    deviation has been stable for 6 to 12 months, surgical correction can be considered.

    Treatment of partial sixth nerve palsy may include a combined medial rectus recession

    and lateral rectus resection on the affected side. In addition, surgery on the contralateral

    horizontal rectus muscles may further expand the field of binocular single vision. In

    cases of complete sixth nerve palsy, the affected lateral rectus is typically left intact

    to preserve anterior segment circulation. Restoration of abduction on the affectedside may be attempted by transposition procedures that aim to move the vertically

    acting rectus muscles into the horizontal plane. Of these, a full tendon transposition

    with posterior fixation suture seems to be the most effective, durable procedure.

    COMBINED THIRD, FOURTH, AND SIXTH NERVE PALSY

     As mentioned earlier, diseases of the subarachnoid space that may affect multiple

    cranial nerves include infectious, inflammatory, and neoplastic processes. Infectious

    processes include viral,76 fungal, or bacterial infection (including tuberculosis, syphilis,and Lyme disease). Inflammatory diseases include sarcoidosis and idiopathic pachy-

    meningitis. Neoplastic processes include carcinomatous and lymphomatous menin-

    gitis. Peripheral demyelinating disorders including Guillain-Barre syndrome, the

    Miller Fisher variant, chronic inflammatory demyelinating polyneuropathy, and idio-

    pathic cranial neuropathies ( Fig. 18 ) are other considerations when multiple ocular

    motor nerves are involved. Patients with myasthenia gravis may present with complex

    Fig. 23.   (continued )

    Paralytic Strabismus   827

  • 8/21/2019 Oculoparesias

    26/31

    patterns of limited eye movements that closely mimic cranial nerve dysfunction, but

    these patients are often distinguished by the presence of normal pupillary responses.

    Expanding masses at the base of the skull can cause compression of multiple ocular

    motor nerves. One consideration is meningioma of the sphenoid wing (causing oph-

    thalmoplegia, proptosis, and hyperostosis of the temporal bone) or clivus. Other

    rare possibilities are chordoma, which may arise in the region of the clivus from

    remnants of the embryologic notochord, or chondrosarcoma, which arises from carti-

    lage in bone.

     A process involving the cavernous sinus may affect any combination of the third,

    fourth, or sixth nerves and cause dysfunction of the first and second divisions of the

    trigeminal nerve. The differential diagnosis of a superior orbital fissure process and

    a cavernous sinus process is similar, with the main clinical distinction that the second

    division of the trigeminal nerve is spared in the former. The differential diagnosis for

    these syndromes includes neoplastic, infectious, inflammatory, and vascular

    diseases.77

    Neoplastic considerations include meningiomas, lymphoma, pituitary adenoma,

    metastases,trigeminalneuromas,chordomas,chondrosarcomas, and nasopharyngeal

    carcinomas( Fig.19 ). Although the slow growth of a pituitary adenoma makes it less likely

    to involve the ocular motor nerves, the rapid onset of headache and ophthalmoplegia

    strongly suggests pituitary apoplexy ( Fig. 20 ).78 The third nerve is the most commonly

    affected by apoplexy, followed by the sixth nerve and lastly the fourth nerve.79

    Infectious considerations include herpes zoster ophthalmicus, may lead to ophthal-

    moplegia on the basis of secondary vasculitis or direct inflammation of the ocular

    motor nerves.80 Mucormycosis or aspergillosis may spread from the sinuses into

    the cavernous sinus or orbit, particularly in immunocompromised patients. Tolosa-Hunt is an idiopathic inflammation of the cavernous sinus or superior orbital fissure

    that causes painful ophthalmoplegia.81

    Vascular lesions of the cavernous sinus include aneurysms and carotid cavernous

    fistulas (CCF). Carotid aneurysms may present with pain and diplopia due to involve-

    ment of any of the ocular motor nerves, most frequently the sixth nerve. CCFs are

    characterized as being high flow (direct) or low flow (indirect) based on the source

    of the feeder vessel and the rate of flow. Most high-flow CCFs result from severe

    head trauma, but, less frequently, these may arise spontaneously. In some cases,

    a spontaneous high-flow CCF arises from rupture of a preexisting aneurysm in the

    cavernous sinus, and in other cases it may occur in the setting of a systemic connec-tive tissue disorder. Patients with a high-flow CCF present with headache, diplopia,

    proptosis, and severe chemosis. The episcleral veins become dilated and tortuous,

    extending to the limbus. A bruit may be detected by auscultating over a closed eyelid

    or, if the CCF drains posteriorly, over the mastoid. Diplopia may occur in these patients

    because of ocular motor palsy, restrictive myopathy secondary to congestion, or both.

     An isolated abduction deficit is common, perhaps because the sixth nerve floats freely

    within the cavernous sinus, near the carotid artery. Other ocular motor palsies may

    result from direct compression by the expanding fistula or by ischemia due to altered

    hemodynamics.

    In contrast, low-flow CCFs (or dural arteriovenous malformations) are abnormalconnections between the cavernous sinus and arteries supplying the dura mater.

    They are more frequent in elderly women or in association with pregnancy, hyperten-

    sion, connective tissue disease, or head trauma. The symptoms they produce depend

    on the route of venous drainage, but are often similar to those produced by a high-flow

    CCF, including diplopia, proptosis, and chemosis ( Figs. 21 and 22 ).However, in a low-

    flow CCF, these symptoms often have a more insidious onset.

    Prasad & Volpe828

  • 8/21/2019 Oculoparesias

    27/31

    Congenital fibrosis syndromes present with ptosis and a complex pattern of restric-

    tive ophthalmoparesis ( Fig. 23 ). Autosomal dominant inheritance is typical and the

    different clinical forms of congenital fibrosis of the extraocular muscles have recently

    been linked to specific gene mutations.82 Surgery can be useful to correct abnormal

    head position. However, corrective ptosis surgery may lead to corneal exposure,

    and this risk must be weighed carefully.

    SUMMARY

    This article discusses the important clinical features that help to distinguish third,

    fourth, and sixth nerve palsies. These lesions occur in isolation and among other defi-

    cits in a host of neurologic disorders. Detailed observations help to ascertain whether

    a given ocular motor nerve is partially or completely involved, and to determine the

    topical localization and chronicity of a lesion. These principles guide the formation

    of an appropriate differential diagnosis, rational clinical decision making, and, ulti-mately, effective therapies for this group of patients.

    ACKNOWLEDGMENTS

    The authors are grateful to the patients described in this article and to their

    colleagues, Drs Steven Galetta, Grant Liu, Laura Balcer, and Robert Avery, by

    whom many of these patients were seen.

    REFERENCES

    1. Kwon JH, Kwon SU, Ahn HS, et al. Isolated superior rectus palsy due to contra-

    lateral midbrain infarction. Arch Neurol 2003;60:1633–5.

    2. Saeki N, Yamaura A, Sunami K. Bilateral ptosis with pupil sparing because of

    a discrete midbrain lesion: magnetic resonance imaging evidence of topo-

    graphic arrangement within the oculomotor nerve. J Neuroophthalmol 2000;20:

    130–4.

    3. Uz A, Tekdemir I. Relationship between the posterior cerebral artery and the

    cisternal segment of the oculomotor nerve. J Clin Neurosci 2006;13:1019–22.

    4. Krisht A, Barnett DW, Barrow DL, et al. The blood supply of the intracavernous

    cranial nerves: an anatomic study. Neurosurgery 1994;34:275–9 [discussion:279].

    5. Asbury AK, Aldredge H, Hershberg R, et al. Oculomotor palsy in diabetes melli-

    tus: a clinico-pathological study. Brain 1970;93:555–66.

    6. Bogousslavsky J, Maeder P, Regli F, et al. Pure midbrain infarction: clinical

    syndromes, MRI, and etiologic patterns. Neurology 1994;44:2032–40.

    7. Kim JS, Kim J. Pure midbrain infarction: clinical, radiologic, and pathophysiologic

    findings. Neurology 2005;64:1227–32.

    8. Chen L, Maclaurin W, Gerraty RP. Isolated unilateral ptosis and mydriasis from

    ventral midbrain infarction. J Neurol 2009;256:1164–5.

    9. Ksiazek SM, Slamovits TL, Rosen CE, et al. Fascicular arrangement in partialoculomotor paresis. Am J Ophthalmol 1994;118:97–103.

    10. Castro O, Johnson LN, Mamourian AC. Isolated inferior oblique paresis from

    brain-stem infarction. Perspective on oculomotor fascicular organization in the

    ventral midbrain tegmentum. Arch Neurol 1990;47:235–7.

    11. Liu GT, Crenner CW, Logigian EL, et al. Midbrain syndromes of Benedikt, Claude,

    and Nothnagel: setting the record straight. Neurology 1992;42:1820–2.

    Paralytic Strabismus   829

  • 8/21/2019 Oculoparesias

    28/31

    12. Celebisoy N, Celebisoy M, Tokucoglu F, et al. Superior division paresis of the

    oculomotor nerve: Report of four cases. Eur Neurol 2006;56:50–3.

    13. Bhatti MT, Eisenschenk S, Roper SN, et al. Superior divisional third cranial nerve

    paresis: clinical and anatomical observations of 2 unique cases. Arch Neurol

    2006;63:771–6.

    14. Ksiazek SM, Repka MX, Maguire A, et al. Divisional oculomotor nerve paresis

    caused by intrinsic brainstem disease. Ann Neurol 1989;26:714–8.

    15. Guy JR, Day AL. Intracranial aneurysms with superior division paresis of the

    oculomotor nerve. Ophthalmology 1989;96:1071–6.

    16. Chotmongkol V, Sawanyawisuth K, Limpawattana P, et al. Superior divisional

    oculomotor nerve palsy caused by midbrain neurocysticercosis. Parasitol Int

    2006;55:223–5.

    17. Shuttleworth GN, Steel DH, Silverman BW, et al. Patterns of III nerve synkinesis.

    Strabismus 1998;6:181–90.

    18. Boghen D, Chartrand JP, Laflamme P, et al. Primary aberrant third nerve regen-

    eration. Ann Neurol 1979;6:415–8.

    19. Lepore FE, Glaser JS. Misdirection revisited. A critical appraisal of acquired

    oculomotor nerve synkinesis. Arch Ophthalmol 1980;98:2206–9.

    20. Grunwald L, Sund NJ, Volpe NJ. Pupillary sparing and aberrant regeneration in

    chronic third nerve palsy secondary to a posterior communicating artery aneu-

    rysm. Br J Ophthalmol 2008;92:715–6.

    21. Locksley HB. Natural history of subarachnoid hemorrhage, intracranial aneu-

    rysms and arteriovenous malformations. J Neurosurg 1966;25:321–68.

    22. Okawara SH. Warning signs prior to rupture of an intracranial aneurysm.

    J Neurosurg 1973;38:575–80.23. Kissel JT, Burde RM,Klingele TG, et al.Pupil-sparing oculomotor palsies with internal

    carotid-posterior communicating artery aneurysms. Ann Neurol 1983;13:149–54.

    24. Nadeau SE, Trobe JD. Pupil sparing in oculomotor palsy: a brief review. Ann Neu-

    rol 1983;13:143–8.

    25. Chen PR, Amin-Hanjani S, Albuquerque FC, et al. Outcome of oculomotor nerve

    palsy from posterior communicating artery aneurysms: comparison of clipping

    and coiling. Neurosurgery 2006;58:1040–6 [discussion: 1040–6].

    26. Weber RB, Daroff RB, Mackey EA. Pathology of oculomotor nerve palsy in dia-

    betics. Neurology 1970;20:835–8.

    27. Jacobson DM. Pupil involvement in patients with diabetes-associated oculomotornerve palsy. Arch Ophthalmol 1998;116:723–7.

    28. Bortolami R, D’Alessandro R, Manni E. The origin of pain in ‘ischemic-diabetic’

    third-nerve palsy. Arch Neurol 1993;50:795.

    29. Capo H, Warren F, Kupersmith MJ. Evolution of oculomotor nerve palsies. J Clin

    Neuroophthalmol 1992;12:21–5.

    30. Lepore FE. Disorders of ocular motility following head trauma. Arch Neurol 1995;

    52:924–6.

    31. Baker RS, Epstein AD. Ocular motor abnormalities from head trauma. Surv Oph-

    thalmol 1991;35:245–67.

    32. Walter KA, Newman NJ, Lessell S. Oculomotor palsy from minor head trauma:initial sign of intracranial aneurysm. Neurology 1994;44:148–50.

    33. Eyster EF, Hoyt WF, Wilson CB. Oculomotor palsy from minor head trauma. An

    initial sign of basal intracranial tumor. JAMA 1972;220:1083–6.

    34. Tanriover N, Kemerdere R, Kafadar AM, et al. Oculomotor nerve schwannoma

    located in the oculomotor cistern. Surg Neurol 2007;67:83–8 [discussion: 88].

    Prasad & Volpe830

  • 8/21/2019 Oculoparesias

    29/31

    35. Kozic D, Nagulic M, Ostojic J, et al. Malignant peripheral nerve sheath tumor of

    the oculomotor nerve. Acta Radiol 2006;47:595–8.

    36. Friedman AP, Harter DH, Merritt HH. Ophthalmoplegic migraine. Arch Neurol

    1962;7:320–7.

    37. Vanpelt W. On the early onset of ophthalmoplegic migraine. Am J Dis Child 1964;

    107:628–31.

    38. Walsh JP, O’Doherty DS. A possible explanation of the mechanism of ophthalmo-

    plegic migraine. Neurology 1960;10:1079–84.

    39. Miller NR. Solitary oculomotor nerve palsy in childhood. Am J Ophthalmol 1977;

    83:106–11.

    40. Prats JM, Monzon MJ, Zuazo E, et al. Congenital nuclear syndrome of oculomotor

    nerve. Pediatr Neurol 1993;9:476–8.

    41. Friedman DI, Wright KW, Sadun AA. Oculomotor palsy with cyclic spasms.

    Neurology 1989;39:1263–4.

    42. Schultz KL, Lee AG. Diagnostic yield of the evaluation of isolated third nerve

    palsy in adults. Can J Ophthalmol 2007;42:110–5.

    43. Chou KL, Galetta SL, Liu GT, et al. Acute ocular motor mononeuropathies:

    prospective study of the roles of neuroimaging and clinical assessment.

    J Neurol Sci 2004;219:35–9.

    44. Vaphiades MS, Cure J, Kline L. Management of intracranial aneurysm causing

    a third cranial nerve palsy: MRA, CTA or DSA? Semin Ophthalmol 2008;23:

    143–50.

    45. Noonan CP, O’Connor M. Surgical management of third nerve palsy. Br J Oph-

    thalmol 1995;79:431–4.

    46. Jampolsky A. Current techniques of adjustable strabismus surgery. Am J Oph-thalmol 1979;88:406–18.

    47. Prasad S, Volpe NJ, Tamhankar MA. Clinical reasoning: a 36-year-old man with

    vertical diplopia. Neurology 2009;72:e93–9.

    48. Parulekar MV, Dai S, Buncic JR, et al. Head position-dependent changes in

    ocular torsion and vertical misalignment in skew deviation. Arch Ophthalmol

    2008;126:899–905.

    49. von Noorden GK, Murray E, Wong SY. Superior oblique paralysis. A review of 270

    cases. Arch Ophthalmol 1986;104:1771–6.

    50. Dhaliwal A, West AL, Trobe JD, et al. Third, fourth, and sixth cranial nerve palsies

    following closed head injury. J Neuroophthalmol 2006;26:4–10.51. Helveston EM, Krach D, Plager DA, et al. A new classification of superior oblique

    palsy based on congenital variations in the tendon. Ophthalmology 1992;99:

    1609–15.

    52. Mansour AM, Reinecke RD. Central trochlear palsy. Surv Ophthalmol 1986;30:

    279–97.

    53. Brazis PW, Miller NR, Henderer JD, et al. The natural history and results of treat-

    ment of superior oblique myokymia. Arch Ophthalmol 1994;112:1063–7.

    54. Keane JR. Trochlear nerve pareses with brainstem lesions. J Clin Neuroophthal-

    mol 1986;6:242–6.

    55. Keane JR. Tectal fourth nerve palsy due to infarction. Arch Neurol 2004;61:280.

    56. Muri RM, Baumgartner RW. Horner’s syndrome and contralateral trochlear nerve

    palsy. Neuroophthalmology 1995;15:161.

    57. Vanooteghem P, Dehaene I, Van Zandycke M, et al. Combined trochlear nerve

    palsy and internuclear ophthalmoplegia. Arch Neurol 1992;49:108–9.

    Paralytic Strabismus   831

  • 8/21/2019 Oculoparesias

    30/31

    58. Elliot D, Cunningham JE Jr, Miller NR. Fourth nerve paresis and ipsilateral relative

    afferent pupillary defect without visual sensory disturbance: a sign of contralat-

    eral dorsal midbrain disease. J Clin Neuroophthalmol 1991;11:169–72.

    59. Maruo T, Iwashige H, Kubota N, et al. Long-term results of surgery for superior

    oblique palsy. Jpn J Ophthalmol 1996;40:235–8.

    60. Plager DA. Superior oblique palsy and superior oblique myokymia. In:

    Rosenbaum AL, Santiago AP, editors. Clinical strabismus management: princi-

    ples and surgical techniques. Philadelphia: WB Saunders; 1999. p. 219–29.

    61. Thomke F. Isolated abducens palsies due to pontine lesions. Neuroophthalmol-

    ogy 1998;20:91–100.

    62. Prasad S, Liu GT, Abend NS, et al. Images in paediatrics: sinovenous thrombosis

    due to mastoiditis. Arch Dis Child 2007;92:749.

    63. Thomke F, Mika-Gruttner A, Visbeck A, et al. The risk of abducens palsy after

    diagnostic lumbar puncture. Neurology 2000;54:768–9.

    64. Volpe NJ, Lessell S. Remitting sixth nerve palsy in skull base tumors. Arch Oph-

    thalmol 1993;111:1391–5.

    65. Jacobson DM. Progressive ophthalmoplegia with acute ischemic abducens

    nerve palsies. Am J Ophthalmol 1996;122:278–9.

    66. Dave AV, Diaz-Marchan PJ, Lee AG. Clinical and magnetic resonance imaging

    features of Gradenigo syndrome. Am J Ophthalmol 1997;124:568–70.

    67. Afifi AK, Bell WE, Bale JF, et al. Recurrent lateral rectus palsy in childhood. Pe-

    diatr Neurol 1990;6:315–8.

    68. Mahoney NR, Liu GT. Benign recurrent sixth (abducens) nerve palsies in children.

    Arch Dis Child 2009;94:394–6.

    69. Duane A. Congenital deficiency of abduction, associated with impairment ofadduction, retraction movements, contraction of the palpebral fissure and obli-

    que movements of the eye. 1905. Arch Ophthalmol 1996;114:1255–6 [discussion:

    1257].

    70. Hotchkiss MG, Miller NR, Clark AW, et al. Bilateral Duane’s retraction syndrome. A

    clinical-pathologic case report. Arch Ophthalmol 1980;98:870–4.

    71. Miller NR, Kiel SM, Green WR, et al. Unilateral Duane’s retraction syndrome (type

    1). Arch Ophthalmol 1982;100:1468–72.

    72. Miyake N, Chilton J, Psatha M, et al. Human CHN1 mutations hyperactivate

    alpha2-chimaerin and cause Duane’s retraction syndrome. Science 2008;321:

    839–43.73. Pressman SH, Scott WE. Surgical treatment of Duane’s syndrome. Ophthal-

    mology 1986;93:29–38.

    74. Ghabrial R, Versace P, Kourt G, et al. Mobius’ syndrome: features and etiology.

    J Pediatr Ophthalmol Strabismus 1998;35:304–11 [quiz: 327–8].

    75. Moster ML, Savino PJ, Sergott RC, et al. Isolated sixth-nerve palsies in younger

    adults. Arch Ophthalmol 1984;102:1328–30.

    76. Prasad S, Brown MJ, Galetta SL. Transient downbeat nystagmus from West Nile

    virus encephalomyelitis. Neurology 2006;66:1599–600.

    77. Keane JR. Cavernous sinus syndrome. Analysis of 151 cases. Arch Neurol 1996;

    53:967–71.78. Reid RL, Quigley ME, Yen SS. Pituitary apoplexy. A review. Arch Neurol 1985;42:

    712–9.

    79. Seyer H, Erbguth F, Kompf D, et al. [Acute hemorrhage and ischemic necroses in

    hypophyseal tumors: hypophyseal apoplexy]. Fortschr Neurol Psychiatr 1989;57:

    474–88 [in German].

    Prasad & Volpe832

  • 8/21/2019 Oculoparesias

    31/31

    80. Marsh RJ, Dulley B, Kelly V. External ocular motor palsies in ophthalmic zoster:

    a review. Br J Ophthalmol 1977;61:677–82.

    81. Kline LB. The Tolosa-Hunt syndrome. Surv Ophthalmol 1982;27:79–95.

    82. Nakano M, Yamada K, Fain J, et al. Homozygous mutations in ARIX(PHOX2A)

    result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 2001;

    29:315–20.

    Paralytic Strabismus   833