39
OCT. 27. 2011 Sung-ki Park Hynix semiconductor Inc.

OCT. 27. 2011 - · PDF fileOCT. 27. 2011 Sung-ki Park Hynix semiconductor Inc. •Prospects of Memory Market ... Challenges in DRAM Cell Transistor Cell Area [um2] Technology

  • Upload
    ngothu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

  • OCT. 27. 2011

    Sung-ki ParkHynix semiconductor Inc.

  • Prospects of Memory Market

    DRAM/NAND Technologies- DRAM hurdles- NAND hurdles- Alternatives of DRAM/NAND. TSV, 3D stacking etc

    New Memory Technologies- Future Memory Concept- PCRAM- ReRAM- STT-RAM

    Summary- New Memory positioning

    Outline

  • Prospects of Memory Market

    DRAM/NAND Technologies- DRAM hurdles- NAND hurdles- Alternatives of DRAM/NAND. TSV, 3D stacking etc

    New Memory Technologies- Future Memory Concept- PCRAM- ReRAM- STT-RAM

    Summary- New Memory positioning

    Outline

  • Sustainable Growth of Memory Market

    1st Digital Revolution 2nd Digital Revolution

    PC Mobile device

    * Source : Gartner 4Q10, Hynix Estimate

    Introduction of PC & Internet

    Spread of Internet &Increase of PC demand

    Mobile & Smart

    12

    55

    25

    61

    70

    45

    Memory Usage100

    ($B)

    80

    60

    40

    20

    55

    1990 1994 1998 2002 2006 2010 2014 2018

    Memory Market

  • 6563 63

    69

    76

    4.6%3.8% 4.2%

    7.8%7.2%

    -3% -3%

    0%

    9.5%10%

    50

    55

    60

    65

    70

    75

    80

    -6

    -3

    0

    3

    6

    9

    12

    2011 2012 2013 2014 2015

    Memory Market(B$) Semiconductor(CAGR) Memory(CAGR)

    Prospects of Memory Market (~15)

    * Source : isuppli, etnews

    CAGR (%) Market(B$)

    11 DRAM growth : -15% (because of excessive supply)

  • Memory Development History (1)

    * Source : Gartner & Intel

    No. of Tr. / Die

    1995 2000 2005 20101985 1990

    8G

    2G4G

    16G

    1G

    512M

    32G

    64G

    Year

    256K1M

    16M

    64M

    4M

    128M256M

    512M1G

    2G

    4G

    DDR1 200 ~ 400Mbps

    DDR2400 ~ 800Mbps

    DDR30.8 ~ 1.6Gbps

    SDRAM~ 133Mbps

    EDO50Mbps

  • 2010 2011 2012 20132007 2008 2009

    Year2014 2015 2016

    1.8[V]

    1.5

    1.35

    1.21.1

    1.0x[V]

    POWER

    0.8

    1.5Gbps

    1.8

    2.2

    3.2GbpsSPEED

    DENSITY

    32

    64GB

    16

    8GB

    * Source : Gartner

    Memory Development History (2)

  • DRAM Scaling & ASP Trend

    [Source : WSTS ]

    3Xnm

    2011

    Bit growth should be more than 50% for each technology generation.

    Minimum Feature Size [nm]

    [Year]

    20

    30

    40

    50

    60

    708090

    200

    * Source : ITRS

  • Prospects of Memory Market

    DRAM/NAND Technologies- DRAM hurdles- NAND hurdles- Alternatives of DRAM/NAND. TSV, 3D stacking etc

    New Memory Technologies- Future Memory Concept- PCRAM- ReRAM- STT-RAM

    Summary- New Memory positioning

    Outline

  • Cost

    Density

    Net die

    Performance

    Time toMarket

    PowerConsumption

  • 10nm

    20nm

    30nm

    40nm

    50nm

    2008 2009 2010 2011 2012 2013 2014 2015

    DRAM

    NAND

    Need to overcome the Technical Hurdles

    New Memory : PCRAM, STT-RAM, ReRAM

    High Cell Efficiency & Stacking : Multi Bit, TSV

    Cell structure : 4F2, 3D Cell

    New Material/Process : High-k, Patterning

    Hurdles

    * Source : Hynix

  • Challenges in DRAM Cell Transistor

    Cell Area[um2]

    Technology node

    25%

    33%

    0.02

    0.03

    0.01

    PlanarRCAT S-Fin

    BWL

    Pillar Gate

    100nm 80nm 60nm 40nm 20nm

    Floating Body Effect

    Retention Degradation

    Scalability

    4F2 Pillar Gate

    8F2

    6F2

    4F2

    * Source : Hynix

    DRAM Hurdles

  • Floating Body Effect- Technology Scale Down

    Pillar Leaning after BBL etch- Due to high A/R & Film stress

    BBL to WL Short & LPC to WL Short- No process margin

    BBL Rs High - Use implant junction BBL

    Technological Challenges of 4F2 Cell and Vertical Gate

    SN

    A

    A'

    WL

    Tech shrink

    Pillar

    Well

    A

    A'

    BBL

    DRAM Hurdles

  • Challenges in DRAM Cell Capacitor

    b

    H

    Aspect Ratio(A/R)of SN=H/b

    70 2060 50 40 300

    20

    40

    60

    80

    100

    Tech node (nm)

    Asp

    ect R

    atio

    of S

    tora

    ge N

    ode

    9

    8

    7

    5

    11

    * Source : S.J. Hong (Hynix), IEDM 2010

    ~3

    DRAM Hurdles

  • Tech Node [nm]30 25 2x 1x

    ZAZ (Tox~7) Ultra high-k, to be developed (Tox

  • History of NAND Technology Development

    0.01

    0.1

    1

    10

    100

    2004 2006 2008 2010 2012 2014

    Chip

    Are

    a p

    er

    Gb [

    mm

    2]

    64Gb32Gb

    16Gb

    9xnm

    ISO / Gate / BL

    SOD / CoSix / Cu

    HDP / WSix / W

    7xnm 6xnm 5xnm 4xnm 3xnm 2xnm 1xnm

    * Index :

    * Source : hynix

    128Gb

    256Gb

    NAND Hurdles

  • Vpass Vpgm Vpass

    Charge Loss

    WL LKG

    e

    e

    e

    WL to WL leakage Cell to cell interference

    Challenge of FG NAND (1)NAND Hurdles

  • Electron number decrease

    160electrons in 1Xnm,We have to manage 16 electrons.

    IPD LKG High

    Cell Vt

    IPD LKG Low

    PGM Bias

    e

    e

    ee

    e

    e

    Thin IPD also results in bad Retention. Scaling limit ~ 100

    IPD Scaling

    Challenge of FG NAND (2)NAND Hurdles

  • p-BiCS (Toshiba) TCAT (Samsung) 3D FG (Hynix) VG-NAND

    Structure

    R. Katsumata, SOVT2009 J. Jang, SOVT2009 S. Whang, IEDM2010 W. Kim, SOVT2009

    Key

    Features

    - Gate first

    - GAA structure

    - P+ SONOS Cell

    - Gate-last

    - GAA structure

    - TANOS Cell

    - Gate first

    - GAA structure

    - Floating Gate

    - Gate-last

    - Double Gate

    - TANOS Cell

    Key Issue- Large Cell Size

    - Reliability

    - Large Cell Size

    - SL Resistance

    - Process of bit

    separation

    - Disturbance

    - BL address

    coding

    - Retention

    3D NANDs encounter new challenges, which had never met before.

    Challenge of 3D NAND NAND Hurdles

  • * Source: Lam Research

    3D DRAM TSV

    3D IC technology will be used for boosting both DRAMpackaging densities and performances

    Alternatives of DRAM/NAND

  • Cost Comparison [DDP vs. TSV]

    DDP TSV

    FAB

    Assy

    FAB

    AssyTest

    Test

    4%

    100%

    60%

    22% Dual Die Package

    Through Silicon Via

    TSV Cost 22% higher than DDP

    Alternatives of DRAM/NAND

  • 3D DRAM - Wafer Stacking

    Metal bonding Issue

    Low Thermal Budget Process

    Floating Body Effect

    Acceptor Wafer

    1st Donor Wafer

    2nd Donor Wafer

    S/A, SWD & Peri.

    Memory

    Memory

    Alternatives of DRAM/NAND

  • Prospects of Memory Market

    DRAM/NAND Technologies- DRAM hurdles- NAND hurdles- Alternatives of DRAM/NAND. TSV, 3D stacking etc

    New Memory Technologies- Future Memory Concept- PCRAM- ReRAM- STT-RAM

    Summary- New Memory positioning

    Outline

  • Future Memory Concept [Capacitor Resistor]

    B/L

    1T1CDRAM

    Voltage Sensing

    WL

    Substrate

    WL

    Capacito

    r

    Bit Line

    Capacito

    r

    1T(D)1RPCRAM

    STT-RAMReRAM

    B/L

    Current Sensing

    WL

    Substrate

    WL

    Bit Line

    Source

    Lin

    e

    R R

  • PCRAM Cell Operation

    BE (Heater)

    PCM

    Amorphous Crystalline

    BE (Heater)

    Programming[Write]

    State 1[SET] State 0[RESET]

    State 1 State 0

    Phase Change Material

    Current Sensing

    PCRAM

  • 4F2 based Cell Integration

    MLC: Cell & Driver Technology

    . . . . . .

    n th cell layer

    1st cell layer

    . . . . . .

    . . . . . .

    . . . . . .

    . . . . . . . . . . .

    GST

    TE

    BE

    I_reset reduction

    I_disturbance

    -Confined type )

    BECGST

    TE & B/L

    W

    W

    Cu

    Al

    WL

    BL

    WL

    diode

    SilicideBE

    GST

    TE

    2F2F

    Cross-point based diode scheme on metal W/L

    Confined type based Cell to Cell Isolation Smart PNV, S/A resolution, Drift Control

    GeSbTe friendly thermal process, high Ion/Ioff, Core to cell interconnection

    2X = n states

    ref_1 ref_2 ref_n

    1st 2nd n-1 th n th

    ref_n-1

    Access device element

    Storage cell element

    . . .

    MLS (Stackable Access Device)

    Cell Scaling: Physical & Electrical

    PCRAM Technical ChallengesPCRAM

  • Year /

    Density~ 2008 2009 2010 2011 2012 2013 > 2014

    > 4Gb

    (4Gb ~

    128Gb)

    1Gb

    < 512Mb

    Min. feature size

    NOR

    90nm

    54nm

    45nmNOR and/or LPDDR2 NVM

    2xnm

    1xnmHighly Scalable & Cost Effective ?

    DRAM-like and/or Storage-like

    Development status and Challenges

    Planar T-Cell(Ring-type Heater)

    Planar T-Cell(Pillar-type Heater)

    Partially Confined Cell(Pore-type)

    Fully Confined Cell(Pillar type)

    Fully Confined Cell(Ring type)

    42nm

    65nm

    * Source : hynix

    PCRAM

  • ReRAM - Device Operation

    Binary oxide (NiO, TiO2, CuOx, etc)

    Diode as access device

    : Simple structure, Cost effective

    Compliance current problem

    Cr:SrZrO3, Pr0.7Ca0.3MnO3, etc.

    Tr as access device

    Stable switching characteristics

    RESET

    SET

    LRS