96
Oceanic turbulence and phytoplankton dynamics Hidekatsu Yamazaki and his team Tokyo University of Marine Science and Technology by Microorganisms in Turbulent Flows, Feb 8-12, 2016

Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Embed Size (px)

Citation preview

Page 1: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Oceanicturbulenceand

phytoplanktondynamics

HidekatsuYamazakiandhisteam

TokyoUniversityofMarineScienceandTechnology

by

MicroorganismsinTurbulentFlows,Feb8-12,2016

Page 2: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

PhytoplanktonProducHon(PrimaryProducHon)

Nutrients

Light

Requires

Page 3: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Diatom

Dinoflagellate

Page 4: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Issues

• CellismoHle

• Turbulenceandmixing

• LightadaptaHon• HowdotheydistribuHoninspace?

Page 5: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

MicrostructureProfiler

Page 6: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 7: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

TemperatureTurbulentShear

Temperaturegradient

Patchystructure

TherateofkineHcenergydissipaHon(ε)

Order10-8~10-7Wkg-1

Page 8: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Niskin

Fluorescence

Dep

th

ConvenHonalapproach

Howdotheyreallydistributeinspace?

Page 9: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

ConvenHonalsamplingvs.microstructures

Page 10: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Deployment

CTDat0.1m/s(tethered)

TurboMAPat0.6m/s(freefall)

Page 11: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

CTD/Seapoint

TurboMAP/LED

Page 12: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

1maveragevaluesofCTD(red)andTurboMAP(blue)

IsthisresoluHonsufficient?SatoandYamazaki(2007)

Page 13: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

ResoluHonislessthan2mm!

LaserChsensor

PatentNo.4904505RegistraHondate:January20,2012

Page 14: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

TurboMAP-L

Twoshearprobes

FP07

CTD

3axisAccelerometer

LEDprobe

Laserprobe

Page 15: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

FP07

P

Shearprobe

LED

Laser

C&T

Page 16: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 17: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 18: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Again,1maveragesagree!

Page 19: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

―laser―SeaPoint―LED Niskin

Fluorescence[a.u.]

Dep

th[m

]

Mean

StandarddeviaHo

n

Comparison

Page 20: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

ObservaHons

2005 2011 Ohtsuchibay�

LakeBiwa�

Setoinlet�

Sagamirivermouth�

Ararivermouth�

Tokyobay

Kuroshioextension�

SantaBarbarachannel

Page 21: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Alldata

Mean

SD

Page 22: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0 10 20 30

10

20

30

40

50

60

70

80

90

100C hlorophylllaser[µg/L ]

10 15 20

10

20

30

40

50

60

70

80

90

100

T [C o]-5 0 5

10

20

30

40

50

60

70

80

90

100

S hear1[s-1]0 10 20 30C hlorophyllL E D[µg/L ]

24 25 26σθ

33 34 35S alinity[psu]

-12 -10 -8 -6ε

0 10 20 30C hlorophyllL E D[µg/L ]

33 34 35S alinity[psu]

24 25 26σθ

-12 -10 -8 -6ε

0 10 20 30

10

20

30

40

50

60

70

80

90

100

Dep

th[m

]

C hlorophyllL aser[µg/L ]

Page 23: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

10-1

100

101

10210

-5

10-4

10-3

10-2

10-1

100

101

cpm

power

powerspectrum

laserLE Dk-5/3

1m<

1m>

k-5/3

Spectra

White!

Page 24: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Fluorescencesignalpdf LED Laser

0 10 20 30

10

20

30

40

50

60

70

80

90

100

Dep

th[m

]

C hlorophyllL aser[µg/L ]

Laser and LED show different pdf.

Page 25: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

fluorescence:lognormalpdf

KS test at5 Laser× LED

Sato&Yamazaki,2008

Page 26: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Laserfluorescence:Gumbelpdf

⎥⎦

⎤⎢⎣

⎭⎬⎫

⎩⎨⎧

⎟⎠

⎞⎜⎝

⎛ −−−

⎭⎬⎫

⎩⎨⎧

⎟⎠

⎞⎜⎝

⎛ −−=

θµ

θµ

θxx

xf expexpexp1

)(

KStest5Laser

Page 27: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

PatchdistribuHon

0 10 20 30 40 50

23

23.05

23.1

23.15

23.2

C hlorophyllprofile

C hlorophyll[µg/l]

Dep

th[m

]

LaserLE DMean

Page 28: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Threshold 10μg/

0 10 20 30 40 50 60

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

C hlorophyllprofile

C hlorophyll[µg/l]

Dep

th[m

]

LaserLE DP eak

#ofPatch 169

λ mean 29.6mm

Page 29: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0 50 100 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance(k)[mm]

P(X≤k)c

df

C DF P eaktoP eakD istancelaser&P oisson

LaserC hlorophyllP oissonprocess

#ofpatch 169

λ mean 29.6mm

Page 30: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Threshold 5μg/

0 10 20 30 40 50 60

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

C hlorophyllprofile

C hlorophyll[µg/l]

Dep

th[m

]

LaserLE DP eak

#ofpatch 272

λ mean 18.4mm

Page 31: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

PatchdistribuHonISNOTPoisson!

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance(k)[mm]

P(X≤k)c

df

C DF P eaktoP eakD istancelaser&P oisson

LaserC hlorophyllP oissonprocess

#ofpatch 272

Λ mean 18.4mm

42mm

33mm

Page 32: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Amini-camerasystem

Doubelletal.(2009)

Page 33: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

DigitalSHllLogger

119mm22mm

LEDfluorescencesensor

DSL

TurboMAP-L

(DSLcamera)

Lightsource LED

Max.depth 190m(m)

Samplingrate 5(Hz)

Samplingvolume 32(μL)

ResoluBon 59(μm)

EffecBvepixels 1024*1280(pixels)

Bio-loggingScience,TheUniv.ofTokyo

2cm

2cm

2cm

Page 34: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

CameraDataProcessing

1.  340×340pixelcropping(area:2×2cm2)2.  BluechannelextracHon3.  Adjustmentofnon-uniformilluminaHon

4.  BinaryimageproducHon

Whitearea>5pixels(ESDca.>120μm)

-SuspendedparHcleextracHon-ParHclepropertydeterminaHon

EquivalentdiameterMajoraxislengthMinoraxislengthNo.ofparHclesetc.

Method

Page 35: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Med.PatchIntensityDepth∼10.4m

High.PatchIntensityDepth∼11.1m

LowPatchIntensityDepth∼11.6m

depth(m

)TurboMAP:LED

chl-a(µg/l)∼1cm

∼1cm

∼1cm

Page 36: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

TurboMAP-Lprofile

ε ParHclesize

Page 37: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

SecJon1:TurbulenceandaggregaJon

ObservaBonfields

Obs.field Region Year #ofimage

Kuroshio09 Openwater 2009 21772

Kuroshio13 Openwater 2013 4187

Oshima Openwater 2013 2289

Miyake Openwater 2012 13238

Tokyobay Coast 2008 4860

Joga Coast 2011 5944

Tokyobay Coast 2012 18455

Otsuchi Coast 2013 4187

Tateyama Coast 2014 2491

Biwa Lake 2010 8466

1 2

7

10

43

5,6,8,9

Page 38: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0 10 20 30

10

20

30

40

50

60

70

80

90

100C hlorophylllaser[µg/L ]

10 15 20

10

20

30

40

50

60

70

80

90

100

T [C o]-5 0 5

10

20

30

40

50

60

70

80

90

100

S hear1[s-1]0 10 20 30C hlorophyllL E D[µg/L ]

24 25 26σθ

33 34 35S alinity[psu]

-12 -10 -8 -6ε

0 10 20 30C hlorophyllL E D[µg/L ]

33 34 35S alinity[psu]

24 25 26σθ

-12 -10 -8 -6ε

0 10 20 30

10

20

30

40

50

60

70

80

90

100

Dep

th[m

]

C hlorophyllL aser[µg/L ]

Page 39: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Laserprobe

SecJon1:TurbulenceandaggregaJon

Results–BiologicalpropertyofparBcles

Threshold

Resolvedaggregates?(Doubelletal.,2009)

Integratetheredarea

Integratedlaserfluorescenceintensity

Page 40: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Holographiccamera(HOLO)

DiatomchainAfewaggregatesetc.

ThecontentsofDSLimagedparHclesbackedupbyHOLObutnotenoughtoverifytheconsistencybetweenHOLO&DSL

WhataretheparHclesinthepics?

AnotherinstrumentinOshima

No.ofparHcles[cellsL-1]

Dep

th[m

]

MSS-HOLO LISST-HOLO DSLcamera

PlymouthUniv.HP.

Page 41: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Method

MSS-HOLO LISST-HOLO DSL

ImageresoluBon[µm] 11.5 25 120

Samplevolume[mm3] 451 780 8000

Fieldview[mm×mm] 5.2×3.5 7.0×5.3 20×20

Cameradepth[mm] 25 29 20

Samplingspeed[Hz] 5 1 5

MSSHOLO LISSTHOLO DSL

Commercialproduct

Page 42: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Method

Deploymentcontrolledbywinch Freefallmode

MSSHOLO LISSTHOLO DSL

Page 43: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

2.ComparaHvestudies–HOLOandDSL

Results–parBcleabundance

Aggregateabundance(#/m3)

MSS-HOLO LISST-HOLO DSL

21.8 108.3 145.8

≈1.5×LISST-HOLO≈7×MSS-HOLO

DSL

MSSHOLO LISSTHOLO DSL

HigherresoluBons LowerresoluBon

Page 44: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

DSLresultsexplained…

AggregaBon DisaggregaBon

Slope≈-2 Slope≈-4

Kolmogorovscale

Page 45: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

―laser―SeaPoint―LED Niskin

Fluorescence[a.u.]

Dep

th[m

]

Mean

StandarddiviaHo

n

Comparison

Whatwegoaboutthisreality?

Page 46: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Conventional NP ecosystem model State variables

N: Nutrients P: Phytoplankton

Transfer functions Phytoplanktonresponsetolight

Phytoplanktonnutrientuptake

Lossrateduetodeath

Model equations

46

Page 47: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

47

Choice of transfer functions f (I ) =C

g(N ) = NK + N

i(P) = D

Model equations

N + P = Constant�

Page 48: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Inreality,observedvariablesarehighlyintermihentNNNPPP

ʹ+=

ʹ+=

0

0

48

NPclosuremodel

With,

'""

of mean and fluctuating component of P and N variables using closure approach, which is widely used in study of ocean dynamics.

Closure model

Putting (7) and (8) into equations (4-5) and applying the Reynolds averaging method in space (details are described in the Appendix A) we get the following set of equations for temporal variation of , , , and" (

(9)

(10)

(11)

(12)

(13)

In the formulation of these equations it is assumed that N and P variables follow joint lognormal probability distribution functions, which forces the third and all higher odd order fluctuating terms to vanish. We also ignored the fourth and higher order terms in this analysis to achieve simple closure. Here, the first two equations give the time evolution of mean terms, the next two equations give the time evolution of variance terms, and the last equation represents the evolution of the covariance term.

It is worth noting that whiles the sum of remains constant, in this case and both are temporally conserved quantities. Therefore, defining and the above 5 equations can be reduced to 3 equations as follows:

(14)

(15)

0P 0N >!< 2P >!< 2N >!!< PN

030

20

200

000

)()(PD

NKNPK

NKPNK

NKPNC

dtdP

!""#

$%%&

'

+

>(<!

+

>((<+

+=

030

20

200

000

)()(PD

NKNPK

NKPNK

NKPNC

dtdN

+!!"

#$$%

&

+

>'<(

+

>''<+

+(=

>!<"##$

%&&'

(

+

>!!<+

+

>!<=

>!< 22

0

0

0

20

2

2)(

2 PDNKPNPK

NKPNC

dtPd

>!!<+""#

$%%&

'

+

>!<+

+

>!!<(=

>!< PNDNKNPK

NKPNNC

dtNd 2

)(2 2

0

20

0

02

)(

)()()(

2

20

20

0

20

>!!<">!<+

##$

%&&'

(

+

>!!<">!<+

+

>!<">!!<=

>!!<

PNPD

NKPNNPK

NKPPNNC

dtPNd

PN + 00 PN +

>!!<+>!<+>!< PNPN 222

APN =+ 00 BPNPN =>!!<+>!<+>!< 222

030

20

20

22

0

000

)}({)}({2)(

)()( PD

PAKNPK

PAKPNBK

PAKPPAC

dtdP

!""#

$%%&

'

!+

>(<!

!+

>(<!>(<!+

!+

!=

>!<"##$

%&&'

(

"+

>!<">!<"+

"+

>!<"=

>!< 22

0

220

0

20

2

2)}({2

)()(

)(2 PD

PAKPNBPK

PAKPPAC

dtPd

0D—ClosureequaBons

N0 +P0 = A< !N 2 > + < !P 2 > +2 < !N !P > = B

β =BA2

Page 49: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

49

Equations with dimensionless variables and parameters

)""

(16)

The above equations lie in five dimensional parameter spaces. By appropriately rescaling the equations with A and B, this dependency is reduced to three dimensionless parameters. The scaling factors and dimensionless parameters are given in Table 1, and the scaled equations can be written as follows:

(17)

(18)

(19)

With and .

The values of the scaled variables n0 and p0, corresponding to the variables N0 and P0 respectively lie between 0 and 1. Similarly, the values of x, y lies between 0 and 1 if the term z, which is associated with the covariance of the fluctuating components-, is positive. For negative covariance, the values of x, y can exceed 1. Now we define the normalized sum of variance and covariance as followed:

(20)

where, B is the variance of sum of and , and therefore, " value actually reflects the overall strength of the fluctuating components and modifies the model dynamics. Other dimensionless variables and parameters of the model equations (17-19) are described in table1. Similarly, the non-closure equation (6) can be reduced to the following form:

(21)

It is to be noted that for " = 0, equation (17) of the closure model reduces to equation (21), which corresponds to the non-closure model.

Table 1. Definition of different quantities used in the model and their dimensions.

Quantity Definition Dimension Scaling factor Dimensionless quantity

A Sum of Nitrate (approximately total nutrient)

µg N l-1 - -

)(

)}({)}({2)()(

2

22

20

20

0

220

2

>!<">!<"+

##$

%&&'

(

"+

>!<+

"+

>!<">!<"""=

>!<

PNBD

PAKNPK

PAKPNBPAC

dtNd

030

02

00

000

)}1({)}1({2)1(

)1()1(

ppkypk

pkyxk

pkpp

ddp

!""

#$

$+$

$+

$$+

$+

$=

xpkyxpk

pkxp

ddx

!"

2)}1({)1(

)1()1(

2 20

0

0

0 ##+

##+

#+

#=

)1()}1({

2)}1({)1()1(

20

0

0

0 yxpkypk

pkyxp

ddy

!!+!+

!!+

!!!!= "

#

100 =+ pn 12 =++ zyx

>!!< PN

222222 //)(/)2( ABAPNAPNPN =>!+!<=>!!<+>!<+>!<="

N ! P!

ppkpp

ddp

!"

##+

#=

)1()1(

)""

(16)

The above equations lie in five dimensional parameter spaces. By appropriately rescaling the equations with A and B, this dependency is reduced to three dimensionless parameters. The scaling factors and dimensionless parameters are given in Table 1, and the scaled equations can be written as follows:

(17)

(18)

(19)

With and .

The values of the scaled variables n0 and p0, corresponding to the variables N0 and P0 respectively lie between 0 and 1. Similarly, the values of x, y lies between 0 and 1 if the term z, which is associated with the covariance of the fluctuating components-, is positive. For negative covariance, the values of x, y can exceed 1. Now we define the normalized sum of variance and covariance as followed:

(20)

where, B is the variance of sum of and , and therefore, " value actually reflects the overall strength of the fluctuating components and modifies the model dynamics. Other dimensionless variables and parameters of the model equations (17-19) are described in table1. Similarly, the non-closure equation (6) can be reduced to the following form:

(21)

It is to be noted that for " = 0, equation (17) of the closure model reduces to equation (21), which corresponds to the non-closure model.

Table 1. Definition of different quantities used in the model and their dimensions.

Quantity Definition Dimension Scaling factor Dimensionless quantity

A Sum of Nitrate (approximately total nutrient)

µg N l-1 - -

)(

)}({)}({2)()(

2

22

20

20

0

220

2

>!<">!<"+

##$

%&&'

(

"+

>!<+

"+

>!<">!<"""=

>!<

PNBD

PAKNPK

PAKPNBPAC

dtNd

030

02

00

000

)}1({)}1({2)1(

)1()1(

ppkypk

pkyxk

pkpp

ddp

!""

#$

$+$

$+

$$+

$+

$=

xpkyxpk

pkxp

ddx

!"

2)}1({)1(

)1()1(

2 20

0

0

0 ##+

##+

#+

#=

)1()}1({

2)}1({)1()1(

20

0

0

0 yxpkypk

pkyxp

ddy

!!+!+

!!+

!!!!= "

#

100 =+ pn 12 =++ zyx

>!!< PN

222222 //)(/)2( ABAPNAPNPN =>!+!<=>!!<+>!<+>!<="

N ! P!

ppkpp

ddp

!"

##+

#=

)1()1(

No. of variables: 3 No. of parameters: 3

Page 50: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

6 steady state solutions

We need the following conditions: 1) The solution is not at the boundary. 2) The solution has to be stable.

50

Only one such solution exists!

Page 51: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

(k=0.6,ε=0.4)

PlotofBmevariaBonof‘phytoplankton’forboththemodelsatdifferentβ values(in0-D)

ThereexistsacriBcalvalueofβ(sayβ*)abovewhichpandp0aredifferent!

51

Page 52: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

52

Same location at different seasons

Page 53: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Mean and SD of phytoplankton at different depths from model simulation

53

#,""

justifiable as we see the similar behaviour in small-scale observation of phytoplankton data as depicted in Figure 8.

In real observations we see the coefficient of variation to vary from less than one to greater than one (Figure 8). Here, in Figure 10, the diagonal line characterizes the points where the mean and standard deviation are equal, indicating that the coefficient of variation is equal to one along this line. From our model results we also see the coefficient of variation to vary on both sides of the diagonal line depending on the value of the parameter ". From this figure we are also observing that as " increases the coefficient of variation increases. If the total nutrient of the system- A is conserved then the change of " implies the change of fluctuating components of the system. Because " = B/A2, and B represents the variance of overall fluctuating components. Therefore, from our analysis we can say that as the variance of the overall fluctuating components of the system increases, the coefficient of variation increases. Figure 10. Plot of mean versus standard deviation (SD) of phytoplankton at different depths (each point corresponds to a particular depth) for 8 different " values. Both axes are normalized by the value of A (=2 µg N l-1). Here the depth profile is obtained by changing the parameter value C, which decreases as depth increases and other two parameters K and D are kept constant at 1.2 µg N l-1 and 0.135 day-1.

We have also observed that the parameter " is more sensitive to the coefficient of variation when the total nutrient (A) of the system is high. These mathematical observations imply that in a particular area of ocean with high total nutrient, spatial variation will be low for low " value and therefore, the coefficient of variation will be low. This may be the reason for low coefficient of variation at the mouth of the Ara River (figure 8 c). With the change of season

Page 54: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

N0 +P0 = A< !N 2 > + < !P 2 > +2 < !N !P > = B β =

BA2

hemostimportantparameter:

Page 55: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

GOTMandNPclosure

Page 56: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 57: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 58: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 59: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 60: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Mean and SD of phytoplankton at different depths from model simulation

#,""

justifiable as we see the similar behaviour in small-scale observation of phytoplankton data as depicted in Figure 8.

In real observations we see the coefficient of variation to vary from less than one to greater than one (Figure 8). Here, in Figure 10, the diagonal line characterizes the points where the mean and standard deviation are equal, indicating that the coefficient of variation is equal to one along this line. From our model results we also see the coefficient of variation to vary on both sides of the diagonal line depending on the value of the parameter ". From this figure we are also observing that as " increases the coefficient of variation increases. If the total nutrient of the system- A is conserved then the change of " implies the change of fluctuating components of the system. Because " = B/A2, and B represents the variance of overall fluctuating components. Therefore, from our analysis we can say that as the variance of the overall fluctuating components of the system increases, the coefficient of variation increases. Figure 10. Plot of mean versus standard deviation (SD) of phytoplankton at different depths (each point corresponds to a particular depth) for 8 different " values. Both axes are normalized by the value of A (=2 µg N l-1). Here the depth profile is obtained by changing the parameter value C, which decreases as depth increases and other two parameters K and D are kept constant at 1.2 µg N l-1 and 0.135 day-1.

We have also observed that the parameter " is more sensitive to the coefficient of variation when the total nutrient (A) of the system is high. These mathematical observations imply that in a particular area of ocean with high total nutrient, spatial variation will be low for low " value and therefore, the coefficient of variation will be low. This may be the reason for low coefficient of variation at the mouth of the Ara River (figure 8 c). With the change of season

Page 61: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

At beta=0.1�

Page 62: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

At beta=0.5�

Page 63: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

At beta=1.0�

Page 64: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Same season at different locations

Page 65: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

SimpleNPZModel

Z

NP

65

f (I ) = vmax

g(N ) = NK + N

i(P) =Mh(z) = R Pj(z) =G

ModelequaBons

dNdT

= −vmaxN

K + NP +M P +γ R PZ +G Z

dPdT

= vmaxN

K + NP −M P − R PZ

dZdT

= (1−γ ) R PZ −G Z

N +P + Z = A

Page 66: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Inreality,observedvariablesarehighlyintermihent

P = P0 (s, t)+ !P (s, t)N = N0 (s, t)+ !N (s, t)Z = Z0 (s, t)+ !Z (s, t)

66

Variable=Mean+FluctuaBngpart

WithassumpHon < P(s)>= P0 (s)

< N(s)>= N0 (s)< Z(s)>= Z0 (s)

< !P (s)>=< !N (s)>=< !Z (s)>= 0

Page 67: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

ClosureEquaHons

67

dN0

dT= −vmax[

N0

K + N0

P0 −KP0

(K + N0 )3 < "N 2 > +

K(K + N0 )

2 < "N "P >]

+M P0 +γR [P0Z0+ < "P "Z >]+G Z0dP0dT

= vmax[N0

K + N0

P0 −KP0

(K + N0 )3 < "N 2 > +

K(K + N0 )

2 < "N "P >]

−M P0 − R [P0Z0+ < "P "Z >]dZ0dT

= (1−γ ) R [P0Z0+ < "P "Z >]−G Z0

P0 + Z0 + N0 = constant

Page 68: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Variance

68

12d < !N 2 >

dT= −vmax[

KP0(K + N0 )

2 < !N 2 > +N0

K + N0

< !N !P >]+M < !N !P >

+γR [Z0 < !N !P > +P0 < !N !Z >]+G < !N !Z >

12d < !P 2 >dT

= vmax[KP0

(K + N0 )2 < !N !P > +

N0

K + N0

< !P 2 >]

−M < !P 2 > −R [Z0 < !P 2 > +P0 < !P !Z >]12d < !Z 2 >dT

= (1−γ )R [Z0 < !P !Z > +P0 < !Z 2 >]−G < !Z 2 >

Page 69: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Co-variance

69

< !P 2 > + < !Z 2 > + < !N 2 > +2(< !N !P > + < !P !Z > + < !N !Z >) = constant

d < !N !P >dT

= vmax[KP0

(K + N0 )2 (< !N 2 > − < !N !P >)+ N0

K + N0

(< !N !P > − < !P 2 >)]

−M (< !N !P > − < !P 2 >)+G < !P !Z >

+ R [Z0 (γ < !P 2 > − < !N !P >)+P0 (γ < !P !Z > − < !N !Z >)]d < !P !Z >

dT= vmax[

KP0(K + N0 )

2 < !N !Z > +N0

K + N0

< !P !Z >]−M < !P !Z > −G < !P !Z >

+ R [Z0 ((1−γ )< !P 2 > − < !P !Z >)+P0 ((1−γ )< !P !Z > − < !Z 2 >)]d < !N !Z >

dT= −vmax[

KP0(K + N0 )

2 < !N !Z > +N0

k + N0

< !P !Z >]+M < !P !Z > +G(< !Z 2 > − < !N !Z >)

+ R [Z0 ((1−γ )< !N !P > +γ < !P !Z >)+P0 ((1−γ )< !N !Z > +γ < !Z 2 >)]

Page 70: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 71: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

2 4 50

3

6

Non−closure model

Parameter r

Parameter k

Stability Region

Page 72: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0

2

4

6

k

r

k

r

0 1 2 3 4 50

2

4

6

k

r 0 1 2 3 4 5 k

r

Stability regionwhen β =1.0

Stabilityregionwhen β =2.5

Stability regionwhen β =3.0

Stability regionwhen β =2.0

Page 73: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0 2 4 6 8 100.5

1

1.5

2

2.5

3

3.5

4

Variability β

CV

CV for Phytoplankton

m=0.1

m=0.2

m=0.3

m=0.4

m=0.5

m=0.55

m=0.6

m=0.7

Page 74: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

74

dNdt

= −vmaxN

k + NP +mP +γr P

kp +PZ + gZ

dPdt

= vmaxN

k + NP −mP − r P

kp +PZ

dZdt

= (1−γ )r Pkp +P

Z − gZ

HollingtypeIIZ-grazingrateinConvenBonalNPZmodel

dpdt=

(1− p− z)(k +1− p− z)

p− m p− r p(kp + p)

z

dz0dt

= (1−γ ) r p(kp + p)

z− g z

ConvenBonalNPZmodel:HollingtypeIIgrazingrate

Page 75: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

75

dp0dt

=(1− p0 − z0 )(k +1− p0 − z0 )

p0 +k

(k +1− p0 − z0 )2β u− kp0

(k +1− p0 − z0 )3β x

− m p0 − r(p0

(kp + p0 )z0 +

kp(kp + p0 )

2β v−

kpz0(kp + p0 )

3β y)

dz0dt

= (1−γ ) r( p0(kp + p0 )

z0 +kp

(kp + p0 )2β v−

kpz0(kp + p0 )

3β y)− g z0

dxdt= 2(− (1− p0 − z0 )

(k +1− p0 − z0 )u− k p0(k +1− p0 − z0 )

2x + g2(1− x − y− z− 2u− 2v)

+ mu+ γ r[kp z0

(kp + p0 )2u+ p0(kp + p0 )

12(1− x − y− z− 2u− 2v)])

dydt= 2( (1− p0 − z0 )

(k +1− p0 − z0 )y+ k p0(k +1− p0 − z0 )

2u− m y− r(

kp z0(kp + p0 )

2y+ p0(kp + p0 )

v))

dzdt= 2((1−γ ) r (

kpz0(kp + p0 )

2v+ p0(kp + p0 )

z)− g z)

dudt=

(1− p0 − z0 )(k +1− p0 − z0 )

(u− y)+ kp0(k +1− p0 − z0 )

2(x −u)+ m (y−u)+ g v

+ r[kp z0

(kp + p0 )2(γ y−u)+ p0

(kp + p0 )(γ v− 1

2(1− x − y− z− 2u− 2v))]

dvdt=

(1− p0 − z0 )(k +1− p0 − z0 )

v+ kp0(k +1− p0 − z0 )

2

12(1− x − y− z− 2u− 2v)

− (m+ g)v+ r[kp z0

(kp + p0 )2{(1−γ ) y− v)}+ p0

(kp + p0 ){(1−γ )v− z}]

DimensionlessNPZClosuremodel:HollingtypeIIgrazingrate

MeanEqns

VarianceEqns

CovarianceEqns

Page 76: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

r = 0.5,m = 0.3,k = 0.5,g = 0.15,kp =1.0,γ = 0.3

CoefficientofVariaBonofphytoplankton(CV)

CVwithvaryingbetavalueoveraparameter

Page 77: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

77

NPZLinear

0 1 2 3 4 50

2

4

6k

Conventional NPZ

r 0 1 2 3 4 5

k

NPZ Closure (β = 1.0)

r

0 1 2 3 4 50

2

4

6

k

NPZ Closure (β = 2.0)

r 0 1 2 3 4 5 k

r

NPZ Closure (β = 3.0)

a b

c d

Page 78: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

78

0 1 2 3 4 5012345

k

Conventional NPZ

r 0 1 2 3 4 50

1

2

3

4

5

k

Closure (β=1.0)

r

0 1 2 3 4 5012345

k

Closure (β=2.0)

r 0 1 2 3 4 5012345

k

r

Closure (β=3.0)

NPZHollingtypeII

Page 79: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

79

0 1 2 3 4 50

1

2

3

k

Conventional NPZ

r0 1 2 3 4 50

1

2

3

k

Closure (β = 0.5)

r

0 1 2 3 4 50

1

2

3

k

Closure (β = 1.0)

r0 1 2 3 4 50

1

2

3 k

r

Closure (β = 2.0)

a b

c d

NPZHollingtypeIII

Page 80: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Joint Environmental Data Integration System: JEDI System

JEDISystemHOMEPAGEhyp://www2.kaiyodai.ac.jp/~hide/JEDI/index.html

Page 81: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Oshima Coastal Environmental data Acquisition Network System (OCEANS)

Moving Platform MEMO-pen�

Page 82: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 83: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 84: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 85: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 86: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 87: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 88: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Openwebsite:hyp://www2.kaiyodai.ac.jp/~hide/JEDI

Page 89: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

ConHnuousPlanktonImagingandClassificaHonSystem(CPICS)

Page 90: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Method� Get image

Resolution� 2,750 x 2,200 pixels Field of view� 11.0 x 15.0 x 2.0 mm Frame rate� 6 frames per second (Image volume: 7.12 L h-1) Particle size: Larger than ca. 50 µm

CPICS take particle images living or non-living and save it as ROI (Region Of Interest) image automatically. We sorted 50,578 images into 39 categories including 29 plankton categories. These 29 planktonic categories were pooled per day. And we calculated the Bray-Curtis dissimilarity index from 40 days data and did the cluster analysis. We calculated Shannon-Wiener’s diversity index.

1.6 m�

CPICS�

LED� CAMERA�

CPICS�

Page 91: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are
Page 92: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

1. Trichodesmium spp.

4. Chaetoceros spp.

5. Eucampia spp.

6. Rhizosolenia robusta�7. Rhizosolenia spp.8. Other Diatoms

9. Calanoida

10. Cyclopoida11. Harpacticoida

2. Ceratium spp.

3. Noctiluca scintillans�

15. Copepoda Nauplius

18. Cumacea19. Isopoda

13. Poecilostomatoida14. Unidentified Copepoda

23. Other Crustacean

20. Ostracoda

Phytoplankton Zooplankton

27. Hydrozoa

28. Larvacea

29. Polychaeta

30.Benthic Algae31. Polyp

32. Fish33. Air bubble34. Unkown

37. Barnacle exuviae

38. Other crustacean exuviae

35. Marine snow

36. Fecal pellet

39. Mineral grain24. Aulosphaera ��trigonopa�

Benthic species

Others

Particles

12. Monstrilloida

16. Decapoda

17. Amphipoda

26. Chaetognatha

25. Other Radiolaria

21. Mysida

22. Cypris Larva

Page 93: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

1 2 3 4 5 7Term 6

Fig. 5. Significant wave height (m) and seven terms set in the present study.

0 1 2 3 4 5 6 7

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

Sign

ifica

nt w

ave

heig

ht (m

)

30

T1418 T1419Low pressure

Page 94: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

Phytoplankton 4,148, 9%

Zooplankton 5,254, 12%

Benthic Species 237, 0%

Fish 3,075, 7% Particle

31,385, 69%

Air bubble 249, 1%

Unkown 1,423, 3%

Marine snow, 20,538, 66% Fecal pellet,

1,875, 6%

Barnacle exuviae, 136, 0%

Other crustacean

exuviae, 1,041, 3%

Mineral grain, 7,795,

25%

Composition of ParticleTrichodesmiu

m spp., 119, 3%

Ceratium spp., 60, 1%

Noctiluca scintillans, 239, 6% Chaetoceros

spp., 366, 9%

Eucampia spp., 1,035,

25%

Rhizosolenia robusta, 257, 6%

Rhizosolenia spp., 293, 7%

Other Diatoms,

1,779, 43%

Composition of Phytoplankton

Composition of all categories

Fig. 2. Composition of ROI images obtained with CPICS in the present study.�

Page 95: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0

100

200

300

400

500

600

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

Cou

nts p

er h

our

Fig. 6. Temporal change in the number of obtained ROI images per hour for phytoplankton (a), zooplankton (b) and particles (c).�

c

b

a

30

T1418 T1419 Phytoplankton

Zooplankton

Particle

Low pressure

Page 96: Oceanic turbulence and phytoplankton dynamics · Digital SHll Logger 119mm 22mm ... MSS-HOLO LISST-HOLO DSL camera Plymouth Univ. HP. Method ... space (details are

0

2

4

6

8

10

12

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

0

100

200

300

400

500

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

0

2

4

6

8

10

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

0

100

200

300

400

500

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

0

10

20

30

40

50

60

21 22 23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sep Oct

3635

30 30

Cou

nts p

er h

our 37 38

39

T1418 T1419 T1418 T1419

30 30

30

Marine snow

Other crustacean exuviae

Barnacle exuviae

Fecal pellet

Mineral grain

Fig. 9. Temporal change in the number of obtained ROI images per hour for each non-living particle.�

Low pressure Low pressure