42
8 th New Zealand Ocean Acidification workshop Ocean Acidification in New Zealand: present state, pHuture directions 9 12 February 2015 Ocean Acidification Research Theme University of Otago, Dunedin, NZ

NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

8th  New  Zealand  Ocean  Acidification  workshop      

Ocean  Acidification  in  New  Zealand:  

present  state,  pHuture  directions    

9  -­‐  12  February  2015  

 

 

 

 

 

 

Ocean  Acidification  Research  Theme  

University  of  Otago,  Dunedin,  NZ  

Page 2: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  2  

   

Page 3: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  3  

Central  Otago  Campus  Map  

 

Venues  

The  Castle  Lecture  Theatre  complex  is  located  at  75  Albany  St,  at  the  base  of  a  tall  white  building  set  back  from  the  road.    The  Richardson  Building  is  the  tallest  building  on  campus  and  has  a  kind  of  strange  green  fence  all  along  the  roofline.    It  is  between  Albany  St,  Castle  Street  and  Leith  Walk,  next  to  the  Castle  Lecture  Theatre  complex.    The  conference  venue  and  information  desk  are  on  the  10th  floor.    Great  views!    The  Conference  Dinner  is  being  held  at  Selwyn  College,  located  at  560  Castle  Street.        The  bus  to  Portobello  will  depart  from  a  bus  stop  located  at  289  Castle  Street.    If  you  wish  to  drive  yourself,  please  get  directions  from  Doug  Mackie.    Beware!    There  are  two  different  sections  of  Castle  Street,  connected  by  un-­‐labelled  walkways  that  are  not  roads  any  more,  and  not  all  the  bits  connect  up  as  you  might  expect.      

If  totally  lost,  call  Abby  on  027-­‐606-­‐3552.    

Map data ©2015 Google, MapData Sciences Pty Ltd, PSMA 100 m

Selwyn  College  

Bus  stop  

Castle  Lecture  Theatre  

Richardson  Building  

Page 4: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  4  

Wi-­‐Fi  

Access  to  the  University-­‐wide  UO-­‐GUEST  wifi  network  will  be  available  from  the  week  before  the  workshop  to  the  week  after.  You  will  be  provided  with  a  user  name  and  password  when  you  get  your  name  badge.      Portobello  Marine  Lab,  while  connected,  uses  a  microwave  link  and  bandwidth  is  limited.  No  big  downloads  while  you’re  out  there,  please.    Help  is  available  from  8888  on  any  University  phone  or  +64  3  479  8888  from  cell  or  external  phone.    Please  note:    The  UO-­‐GUEST  wireless  network  is  an  "open  network"  and  does  not  employ  any  form  of  encryption.  This  means  that  your  network  traffic  can  be  intercepted  and  observed  by  a  third  party.      The  University  of  Otago  advises  that  additional  encryption  and  data  security  be  used  for  sensitive  information.  For  example,  using  application  level  encryption  such  as  SSL,  by  only  visiting  secure  (HTTPS)  web  sites,  or  using  a  Virtual  Private  Network  (VPN)  client,  etc.    All  use  of  the  University  of  Otago  Guest  Network  Service  must  comply  with  the  acceptable  use  policy.  By  connecting  to  the  Otago  Guest  Network  Service  you  are  agreeing  to  the  terms  and  conditions  of  the  acceptable  use  policy.    For  further  information,  please  visit:    

https://uo-­‐guest.otago.ac.nz/sites/SITE-­‐UO-­‐GUEST/login.html  

   

Page 5: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  5  

 8th  New  Zealand  Ocean  Acidification  workshop  Ocean  Acidification  in  New  Zealand:    present  state,  pHuture  directions  

 

PROGRAMME    

   Monday  9  February  2015  

   

5:00  PM  Registration,  Meet  and  Mingle,  Drinks  

and  Nibbles  

Castle  Lecture    Theatre  Complex  

7:00  PM  

You,  Me  &  The  Sea:  let’s  talk  about  Ocean  Global  Change  Biology  

Prof.  Gretchen  Hofmann  

Castle  Theatre  1  

 

 Tuesday  10  February  2015  

 

8:00  AM   Registration  and  Set-­‐Up  10th  floor,  Richardson    

9:00  AM   Welcome   Keith  Hunter  

Moot  Court    Session  Chair:  Kate  Sparks  

9:10  AM  

Present  and  Future  Ocean  Acidification  in  New  Zealand's  EEZ  

Sara  Mikaloff  Fletcher  

9:30  AM  

Estimating  carbonate  concentrations  in  the  waters  around  Antarctica  

Helen  Bostock  

9:50  AM  

Setting  Up  a  Coastal  Ocean  Acidification  Observing  Network  in  New  Zealand  

Judith  Murdoch  

10:10  AM  

The  Effect  of  pH  on  Trace  Metal  Speciation  in  the  Marine  Environment  

Sylvia  Sander  

10:30  AM   Morning  Tea   Seminar  Room  5      

Page 6: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  6  

11:00  AM  

Antarctic  sea  ice  communities  and  ocean  acidification:  novel  in  situ  experimental  manipulations  

Vonda  Cummings  

Moot  Court    Session  Chair:  Emily  Frost  

11:20  AM  

Response  of  the  ‘rare  biosphere’  of  a  Mediterranean  bacterioplankton  community  to  acidification  and  eutrophication    

Federico  Baltar  

11:40  AM  

Natural   CO2   vents   as   potential  sites   for   ocean   acidification  research,  White  Island  Whakaari,    Aotearoa  New  Zealand   Abby  Smith  

12:00  PM  Bacterial  exoenzyme  activity  in  high  CO2  vent  waters   Cliff  Law  

12:20  PM   Lunch  and  Posters   Seminar  Room  5  

1:15  PM  

Plenary:  CO2  seeps  in  Papua  New  Guinea  as  a  natural  laboratory  to  investigate  the  effects  of  ocean  acidification  on  shallow-­‐water  marine  ecosystems  

Katharina  Fabricius  

Moot  Court  

2:00  PM  Workshop:  Vent  Research  and  White  Island  Possibilities  

Katharina  Fabricius,  Cliff  Law  

Richardson  7N10  

3:00  PM   Afternoon  tea   Seminar  Room  5  3:30  PM  

to  5:00  PM  Workshop:  Marine  Molecular  Ecology  of  OA  

Gretchen  Hofmann  

Richardson  7N10  

6:00  PM  Winetasting  and    Conference  Dinner     Selwyn  College  

                 

 Wednesday  11  February  2015  

 

9:00  AM  

Effects  of  ocean  acidification  on  early  life  history  development  of  the  yellowtail  kingfish,  Seriola  lalandi,  a  large  pelagic  fish   Neill  Barr   Moot  Court  

 Session  Chair:  Zhaleh  Adhami  

9:20  AM  

Larval  shell  growth  and  calcification  in  the  Antarctic  geoduck,  Laternula  elliptica  under  ocean  acidification  and  warming  

Christine  Bylenga  

9:40  AM  Kina,  ocean  acidification  and  sensitive  males  

Mike  Hudson  

   

Page 7: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  7  

10:00  AM  

Physiological  effects  of  long-­‐term  acclimation  to  ocean  warming  and  acidification  on  the  purple  sea  urchin,  Heliocidaris  erythrogramma  

Januar  Harianto  

 

10:20  AM  

Adaptive  capacity  of  the  sea  urchin  Heliocidaris  erythrogramma  to  ocean  change:  responses  from  fertilisation  to  the  settled  juvenile   Shawna  Foo  

10:40  AM   Morning  Tea   Seminar  Room  5  

11:00  AM  

The  effects  of  seawater  calcium  carbonate  saturation  state  upon  embryogenesis  and  larval  performance  of  Greenshell  mussels,  Perna  canaliculus  

Norman  Ragg  

Moot  Court    Session  Chair:  

Esther  Stuck  

11:20  AM  

Comparison  of  Antarctic  (Odontaster  validus)  and  New  Zealand  (Patiriella  regularis)  sea  star  larvae  response  to  ocean  acidification:  using  quantitative  genetic  techniques  to  compare  between  species  and  latitudes   Kate  Sparks  

11:40  AM  

The  long-­‐term  effects  of  climate  changed  induced  ocean  acidification  on  the  physiology  and  calcification  rate  of  adult  Southern  temperate  sea  urchin  Evechinus  chloroticus   Emily  Frost  

12:00  PM  

No  ocean  acidification  effects  on  shell  growth  and  repair  in  the  New  Zealand  brachiopod  Calloria  inconspicua  (Sowerby,  1846)  

Miles  Lamare  

12:20  PM  

A  framework  for  assessing  and  evaluating  the  socio-­‐economic  impacts  of  ocean  acidification    

Katherine  Schmutter  

12:40  PM   Lunch  and  Posters   Seminar  Room  5  

1:30  PM  

Plenary:  Responses  of  echinoderm  development  to  warming  and  acidification  and  analysis  of  the  effects  of  multiple  stressors  on  marine  embryos  and  larvae   Maria  Byrne  

Moot  Court  

2:15  PM  

Workshop:  Past,  Present  and  Future  of  the  NZ  OA  community  (that’s  us!)   Abby  Smith  

Moot  Court  

3:30  PM   Afternoon  tea   Seminar  Room  5  

Page 8: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  8  

4:00  PM   Prizegiving  and  Farewell   Miles  Lamare,  Abby  Smith   Moot  Court  

                 

  Thursday  12  February  2013  

  8:30  AM   Bus  to  Portobello  -­‐-­‐  meet  at  289  Castle  St.  9:00  AM   Arrive  at  Portobello,  meet  and  greet  

9:30  AM  

Workshop:  A  refresher  in  OA  chemistry:  what  you  have  forgotten  that  you  never  knew  

 Doug  Mackie    

10:30  AM   Morning  Tea  

11:00  AM  

Workshop:  Multiple  stressors:  lessons  from  the  past,  infrastructure  and  experimental  design  

Maria  Byrne,  Miles  Lamare,  Shawna  Foo,  Januar  Harianto    

12:30  PM   Lunch  1:30  PM  

   

Workshop:  Experimental  design  and  analysis  of  multi-­‐factor  experiments  in  ocean  acidification  studies  

Peter  Dillingham      

2:30  PM  

 

Workshop:  Making  spectrophotometric  pH  measurements  with  the  level  of  accuracy  and  precision  needed  for  ocean  acidification  experiments  

Christina  McGraw      

3:30  PM   Afternoon  tea  

4:00  PM   Bus  back  to  town  Arrive  about  4:30  at  Castle  Street  bus  stop  

             

Got  any  questions?      

Please  see  any  member  of  the  Workshop  Organising  Committee:      Kim  Currie,  Miles  Lamare,  Cliff  Law,  Doug  Mackie,  Abby  Smith  Or  text  Abby  on  027-­‐606-­‐3552  Or  email  on  [email protected]      

Page 9: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  9  

8th  New  Zealand  Ocean  Acidification  workshop  Ocean  Acidification  in  New  Zealand:    present  state,  pHuture  directions  

 

POSTERS  (available  for  viewing  and  discussion  in  the  Seminar  Room  at  lunchtime)    

Pamela  Fernández,  Michael  Roleda,  Pablo  Leal,  Catriona  Hurd    

Effects  of  elevated  CO2  on  growth,  photosynthesis  and  nitrate  assimilation  in  the  giant  kelp  Macrocystis  pyrifera:  nitrogen  status  modulates  the  physiological  responses  to  elevated  CO2  

Malindi  Gammon,  Simon  Davy,  Di  Tracey,  Vonda  Cummings,  Peter  Marriott  

Measurements  of  intracellular  pH  in  deep  sea  coral  exposed  to  ocean  acidification  

Sonja  Hempel,  Vonda  Cummings,  Ken  Ryan  

Sub-­‐lethal  stress  response  of  the  Antarctic  bivalve  Laternula  elliptica  to  ocean  warming  and  acidification  -­‐  Preliminary  results  

Pablo  P.  Leal,  Catriona  L.  Hurd,,  Pamela  A.  Fernandez,  Michael  Y.  Roleda  

Microscopic  stages  of  the  giant  kelp  Macrocystis  pyrifera  and  the  invasive  kelp  Undaria  pinnatifida  (Laminariales,  Phaeophyceae)  grow  larger  and  faster  under  higher  CO2  indicating  adaptation  to  ocean  acidification  

Hong  D.  Nguyen,  Kennedy  Wolfe,  Sergio  T.  Gabarda,  Januar  Harianto,  Maria  Byrne  

Determination  of  thermal  and  pH/pCO2  

variability  in  the  habitat  of  shallow  subtidal  and  intertidal  marine  invertebrates  

Natalie  Manahan   Effects  of  ocean  acidification  and  ocean  warming  on  the  adult  purple  sea  urchin,  Heliocidaris  erythrogramma  

Katherine  Schmutter   A  framework  for  assessing  and  evaluating  the  socio-­‐economic  impacts  of  ocean  acidification    

Di  Tracey,  Vonda  Cummings,  Malindi  Gammon,  Peter  Marriott,  Helen  Neil,  Neill  Barr,  Graeme  Moss,  Simon  Davy  

Growth  and  functioning  of  deep  sea  coral:  assessing  potential  impacts  of  ocean  acidification  

   

Page 10: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  10  

8th  New  Zealand  Ocean  Acidification  workshop  Ocean  Acidification  in  New  Zealand:    present  state,  pHuture  directions  

 

WORKSHOPS    Vent  Research  and  White  Island  Possibilities  Volcanic  CO2  vents  represent  unique  natural  laboratories  to  predict  the  effects  of  long-­‐term  exposure  of  whole  ecosystems  to  ocean  acidification.  Vents  allow  investigating  complex  ecological  processes  such  as  species  interactions,  community  metabolism  and  resilience  in  a  high  CO2  setting,  processes  that  are  tedious  or  impossible  to  investigate  in  controlled  tank  settings.  We  will  jointly  discuss  opportunities  (yes  it  is  fun!)  and  potential  pitfalls  (yes  Murphy  is  out  there!)  of  using  sites  such  as  the  White  Island  CO2  vents  for  ocean  acidification  research.  We  will  touch  on  the  topics  of  spatial  and  temporal  variability  in  CO2  exposure,  how  to  deal  with  confounding  factors,  the  issue  of  documenting  vs  manipulating,  and  predictable  concerns  of  reviewers.  This  workshop  will  be  interactive  and  informal,  so  bring  along  your  questions  and  ideas.  If  there  is  interest  we  could  also  start  covering  practical  issues  (e.g.,  what  environmental  data  are  essential),  list  the  real-­‐low  hanging  fruit  (and/or  the  ‘don’t-­‐bother!’  questions),  and  explore  options  for  a  temperate-­‐tropical  comparison.  

Katharina  Fabricius,    Cliff  Law  

Marine  Molecular  Ecology  of  OA  In  this  session  we  will  discuss  the  marine  molecular  ecology  aspects  of  recent  OA  research.  We  will  discuss  the  use  of  transcriptomics  to  interpret  species’  response  to  OA.    In  addition,  next-­‐generation  sequencing  methods  have  opened  up  the  possibility  of  exploring  adaptation  potential  of  populations  using  Pool  Seq  methods.  These  discussions  will  focus  mostly  on  benthic  marine  invertebrates,  but  the  ideas  could  pertain  to  many  organisms.    

Gretchen  Hofmann  

Past,  Present  and  Future  of  the  NZ  OA  community  (that’s  us!)  

Abby  Smith  

Page 11: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  11  

Reports  back  from  standing  committees  Comments  from  overseas  visitors  Discussion  of  ways  forward  –  an  NZOA  Network?  A  refresher  in  OA  chemistry:  what  you  have  forgotten  that  you  never  knew  This  workshop  is  for  you  if  you  feel  you  need  a  refresher  for  your  OA  chemistry.  Things  we  could  cover  include:  ·∙            Why  is  calcification  a  source  of  CO2?  ·∙            What  is  dissolution?  How  can  it  be  measured?  ·∙            What  else  changes  when  you  change  pH?  What  

parameters  influence  other  parameters?  ·∙            What  is  the  difference  between  total  and  NBS  pH  

scales?  Does  it  matter?  

Doug  Mackie  

Multiple  stressors:  lessons  from  the  past,  infrastructure  and  experimental  design  The  workshop  will  be  an  open  forum  of  brief  presentations  and  discussions  on  the  challenges  and  how  to  undertake  multifactorial  stressor  studies.    A  team  of  researchers  currently  engaged  in  multistressor  global  change  research  will  present  on  their  approach  to  the  infrastructure  needed  –  plumbing,  pipes,  wires  and  bubbles  –  and  on  the  challenges  of  replication  for  statistical  rigor  and  understanding  conditions  the  experimental  organisms  experience,  water  chemistry  etc.    Some  consideration  of  the  real  world  is  essential  in  designing  these  experiments.    After  the  presentations  there  will  be  a  general  discussion  as  it  is  expected  that  individual  participant  will  have  many  insights  and  questions  from  their  own  research.  

Maria  Byrne,  Miles  Lamare,  Shawna  Foo,  Januar  Harianto  

Experimental  design  and  analysis  of  multi-­‐factor  experiments  in  ocean  acidification  studies  Experimental  design  is  fundamentally  linked  to  analysis,  motivated  by  scientific  questions  and  constrained  by  available  resources.    For  example,  multi-­‐stressor  OA  studies  in  culture  tanks  are  constrained  by  the  number  of  available  tanks,  making  it  difficult  or  impossible  to  perform  traditional  full  factorial  experiments  for  more  than  a  few  stressors.  In  this  workshop,  several  approaches  to  experimental  

Peter  Dillingham  

Page 12: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  12  

design  relevant  to  OA  studies  will  be  discussed.    Using  multi-­‐factor  culture  tank  OA  experiments  as  motivation,  a  number  of  design  and  analysis  choices  will  be  presented.    We  will  explore  the  trade-­‐off  between  the  number  of  replicates  and  the  number  of  factors  for  settings  where  the  number  of  experimental  units  is  constrained  (e.g.  culture  tank  experiments).    Working  in  groups,  design  and  analysis  strategies  will  then  be  developed  for  a  number  of  OA  studies.    Discussion  will  include  factorial  and  reduced  designs,  descriptive  and  graphical  statistics,  hypothesis  testing  and  power,  and  estimating  effect  sizes  and  confidence  intervals.  Making  spectrophotometric  pH  measurements  with  the  level  of  accuracy  and  precision  needed  for  ocean  acidification  experiments  When  carrying  out  ocean  acidification  experiments,  knowledge  of  the  marine  carbonate  system  requires  measurement  of  at  least  two  of  the  carbonate  chemistry  parameters  (pH,  pCO2,  dissolved  inorganic  carbon,  alkalinity).  Seawater  pH,  which  is  viewed  as  the  simplest  of  these  parameters  to  monitor,  is  the  most  common  of  these  measurements.  However,  the  measurement  of  pH  with  the  degree  of  accuracy  and  precision  needed  for  meaningful  marine  carbonate  chemistry  calculations  requires  more  care  and  planning  than  is  usually  applied.  Building  on  the  material  covered  in  A  refresher  in  OA  chemistry,  this  hands-­‐on  workshop  will  serve  as  a  practical  guide  to  making  high-­‐quality  spectrophotometric  pH  measurements.  We  will  discuss  the  common  approaches  to  spectrophotometric  pH  measurements  and  steps  you  can  take  to  ensure  high-­‐accuracy  and  high-­‐precision  results.  The  hands-­‐on  aspect  of  this  workshop  will  focus  on  the  automated  spectrophotometric  pH  system  that  is  part  of  the  trace-­‐metal  clean  culture  system  at  Portobello.  However,  the  general  considerations  (e.g.  spectrometer  accuracy,  dye  impurities,  temperature  errors)  will  also  be  discussed  in  the  context  of  measurements  done  by  hand  using  bench-­‐top  spectrometer.  

Christina  McGraw  

   

Page 13: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  13  

8th  New  Zealand  Ocean  Acidification  workshop  Ocean  Acidification  in  New  Zealand:    present  state,  pHuture  directions  

 ABSTRACTS  

 

(in  alphabetical  order  of  first  author)  

 

 

 

   

Page 14: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  14  

Baltar   TALK      Response   of   the   ‘rare   biosphere’   of   a   Mediterranean   bacterioplankton  community  to  acidification  and  eutrophication      Federico  Baltar1,2,   Joakim  Palovaara1,  Maria  Vila-­‐Costa3,  Guillem  Salazar4,  Eva  Calvo4,  Carles  Pelejero4,5,  Cèlia  Marrasé4,  Josep  M  Gasol4,  Jarone  Pinhassi1  1Department  of  Marine  Science,  University  of  Otago,  PO  Box  56,  Dunedin  9054,  New  Zealand  2Centre  for  Ecology  and  Evolution  in  Microbial  Model  Systems,  EEMiS,  Linnaeus  University,  Kalmar,  Sweden  3Limnological   Observatory   of   the   Pyrenees   (LOOP)   –   Department   of   Ecology,   University   of   Barcelona   Av.    Diagonal    643.  08028,  Barcelona    and  Department  of  Environmental  Chemistry,  Barcelona,  Catalonia,  Spain  4Departament  de  Biologia  Marina  i  Oceanografia,  Institut  de  Ciències  del  Mar  –  CSIC,  Barcelona,  Spain  5Institució  Catalana  de  Recerca  i  Estudis  Avançats,  08010  Barcelona,  Spain  

 Despite  their  large  diversity,  the  ecological  significance  of  rare  bacteria  remains  elusive.  There   is  recent  evidence  suggesting  that  both  abundant  (≥1%  relative  abundance)   and   rare   members   (≤0.1%   relative   abundance)   of   a   bacterial  community   can   respond   to   disturbances,   but   their   relative   degree   of  responsiveness   is   unknown.   We   studied   the   response   of   a   coastal  Mediterranean   bacterioplankton   community   to   two   anthropogenic  perturbations   (i.e.,   nutrient   addition   and   acidification)   in   two   mesocosm  experiments  (one  in  winter  (WIN)  and  one  in  summer  (SUM)  conditions)  by  454  pyrosequencing   of   the   16S   rRNA.   Although   nutrient   additions   had   a   stronger  effect   on   bacterial   community   structure   than   acidification,   pH   variations   also  had   important   influences   on   specific   community   taxa   (e.g.   SAR86),   indicating  that   acidification   could   also   have   implications   in   the   community   by   affecting  abundant   members.   Interestingly,   specific   synergistic   effects   were   observed  when  acidification   and  nutrient   enrichment  were   combined.   Even   though  we  expected   a   clear   dominance   of   responding   OTUs   from   the   rare   biosphere  (<0.1%  of  reads),  most  of  the  responding  OTUs  were  already  abundant  (>1%  of  reads)   or   common   (0.1-­‐1.0%   of   reads)   in   the   original   community.   The  proportion   of   rare   bacteria   becoming   abundant   was   higher   in   the   nutrient  treatment   (52  and  18%   in  SUM  and  WIN)   than   in   the  control   (20  and  12%   in  SUM   and   WIN).   These   findings   suggest   that   the   responsiveness   of   the   rare  biosphere   is   greater   upon   stronger   perturbations,   while   the   fraction   of  common  members  harbors  populations  particularly  prone  to  respond  to  milder  disturbances.      

Page 15: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  15  

Bostock   TALK      Estimating   carbonate   concentrations   in   the   waters   around  Antarctica      Helen  Bostock1,  Mike  Williams1,  Sara  Mikaloff  Fletcher1,  Silvia  Sandrini2  1National  Institute  of  Water  and  Atmospheric  Research,  Wellington,  New  Zealand  2Istituto  ISAC  -­‐  C.N.R.,  Bologna,  Italy  

 A  major  gap   in  our  ability   to  understand   the  present   state  of  ocean  acidification   in  the   Southern   Ocean   and   around   Antarctica   has   been   the   limited   number   of  observations   of   carbonate   species   in   these   regions.   This   project   aims   to   produce  more  detailed  maps  of  carbonate  parameters  for  the  region  south  of  the  Polar  Front  (PF)  and  specifically  within  the  Ross  Sea  region.    We   use   the   limited   alkalinity   and   Dissolved   Inorganic   Carbon   (DIC)   samples   to  develop   multiple   linear   regressions   (MLR)   to   estimate   alkalinity   and   DIC   from   the  common   hydrographic   parameters;   temperature,   salinity,   depth/pressure   and  oxygen.   This   approach   was   initially   applied   to   the   Southern   Ocean   (south   of   25°S;  Bostock  et  al.,  2013).  However  there  were  consistently  larger  errors  in  the  estimates  south  of  the  PF,  so  we  have  applied  the  same  approach  to   look  more  specifically  at  the  region  south  of  the  Polar  Front  (approximated  at  60°S),  where  the  strong  role  of  upwelling,  productivity  and  sea  ice  is  likely  to  lead  to  different  relationships  between  hydrographic  parameters  and  carbonate  species.        The  new  MLR  algorithms  provides  a  new  estimate  for  the  ASH  south  of  the  PF  which  is   shallower,   e.g.   ~900  m   (compared   to   ~1150  m   from   the  original   algorithm).   This  new  algorithm  was   then   tested  on  hydrographic  and  carbonate  data   from  the  Ross  Sea.   There   is   poor   agreement   between   the   measured   and   estimated   DIC   and  alkalinity   values.   Therefore   we   have   developed   new   algorithms   specifically   for   the  Ross  Sea  shelf  region.  DIC  is  strongly  controlled  by  biological  productivity  during  the  summer,  which  also  affects  oxygen.  In  contrast  oxygen  appears  to  play  a  very  minor  role  in  the  Ross  Sea  algorithm  for  alkalinity,  indicating  that  the  local  processes  of  sea-­‐ice   formation   and  melt,   which   control   salinity   and   temperature,   are   the   dominant  factors.    The  new  maps,  developed  using  these  algorithms,  will  be  compared  with  present  day  outputs   from   several   CMIP5   global   climate  models   to   test   how  well   these  models  estimate   the   current   ocean   chemistry.   These   will   then   be   used   to   look   at   future  predictions  of  the  ASH  south  of  the  PF  and  in  the  Ross  Sea.          

Page 16: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  16  

Brinkman   TALK      Effect  of  climate  change  on  crustose  coralline  algae  at  a  temperate  vent  site,  White  Island,  New  Zealand    T.  Joanna  Brinkman,  Abigail  M.  Smith  Department  of  Marine  Science,  University  of  Otago,  P.O.  Box  56,  Dunedin,  9054,  New  Zealand  

 Natural   CO2   vents   allow   study   of   the   effects   of   climate   change   on   marine  organisms   on   a   different   scale   from   laboratory-­‐based   studies.   This   study  outlines   a   preliminary   investigation   into   the   suitability   of   natural   CO2   vents  near  White   Island,   Bay   of   Plenty,   New   Zealand   (37°31.19’S,   117°10.85’E)   for  climate  change  research  by  characterising  water  chemistry  from  two  vent  and  three  control   locations  on  a   seasonal  basis,  as  well  as  examining   their  effects  on  skeletons  of  the  local  calcifying  crustose  coralline  algae.  pH  measurements  at  vent  sites,  calculated  from  dissolved  inorganic  carbon  and  alkalinity,  showed  reduced  mean  pH  levels  (7.49  and  7.85)  relative  to  background  levels  of  8.06,  while   mean   temperatures   were   between   0.0   and   0.4°C   above   control.  Increases   in   sulfur   and   mercury   at   sites   near   White   Island   were   probably   a  result   of   volcanic   unrest.     Crustose   coralline   algae   did   not   show   significant  variability   in   skeletal  Mg-­‐calcite   geochemistry,   but   qualitative   comparisons  of  calcite  skeletons  under  scanning  electron  microscopy  saw  greater  deformation  and  dissolution   in   coralline  algae  calcite   crystals   from  vent   sites   compared   to  controls.   While   additional   monitoring   of   pH   fluctuations   and   hydrogen  sulphides   is   still  needed,   the   low  pH  and   increased   temperatures   from  White  Island’s   vents   indicate   the   potential   for   studying   multi-­‐stressor   effects   of  projected  climate  changes  in  a  natural  environment  with  acclimated  organisms  particularly  micro-­‐scale  studies.        

Page 17: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  17  

Bylenga   TALK      Larval   shell   growth   and   calcification   in   the   Antarctic   geoduck,  Laternula  elliptica  under  ocean  acidification  and  warming    Christine  Bylenga1,  Vonda  Cummings2,  Ken  Ryan1  1Victoria  University  of  Wellington  2NIWA,  Private  Bag  14-­‐901,  Wellington  

 Larvae  of  calcifying  marine  species  are  susceptible  to  pH  change,  often  showing  increases   in   abnormalities   and  mortalities   as  well   as   reduced   larval   sizes   and  calcification.  Larvae  of  the  Antarctic  geoduck,  Laternula  elliptica,  have  delayed  development  to  the  D-­‐larvae  stage  of  development  under  reduced  pH,  with  no  impact   on   mortality   or   abnormalities.   The   effects   of   ocean   acidification   on  larval  shell  formation  in  L.  elliptica  have  not  been  previously  examined.  The  D-­‐larvae   stage   of   development   is   the   point   of   shell   formation   in   bivalves,   the  observed  developmental  delays  are  possibly  a  result  of  increased  difficulties  in  calcifying   and   maintaining   shell   integrity.   Larval   shell   development   occurs   in  two   stages.   During   the   first   stage,   the   entire   larvae   is   covered   in   a   shell,  forming   prodissoconch   I.   After   this   point,   shell   development   continues   along  the  existing  shell  edge,  forming  prodissoconch  II.  Larvae  were  raised  to  the  D-­‐larvae   stage   under   ambient   temperature   and   pH   (-­‐1.6°C   and   pH   7.98)   and  conditions   representative  of   projections   through   to   the  end  of   the   century   (-­‐0.5°C   to   +0.4°C   and   pH   7.80   to   7.65).   After   90   hours   at   the   D-­‐larvae   stage,  measurements  of  length  and  width  of  prodissoconch  I  were  made  to  compare  larval   size   upon   initiation   of   calcification.   Additionally,   measurements   of   the  width   of   prodissoconch   II   were   made   to   determine   shell   growth   under   pH  stress.   Shells   were   also   examined   for   evidence   of   dissolution   or   reduced  integrity.   Preliminary   results   indicate   reduced   shell   integrity   occurs   with  reduced  pH,  however,   the  effects   are   ameliorated  by  elevated   temperatures.  These  results,  plus  preliminary  shell  length  analysis  will  be  presented.        

Page 18: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  18  

Byrne   PLENARY      Responses   of   echinoderm   development   to   warming   and  acidification   and   analysis   of   the   effects   of   multiple   stressors   on  marine  embryos  and  larvae    Maria  Byrne  Schools  of  Medical  and  Biological  Sciences,  University  of  Sydney  

 Early   life   stages   of   marine   invertebrates   are   vulnerable   to   the   stressors  associated  with  global  change,  but  identifying  general  patterns  across  response  variables  is  challenging.  A  meta-­‐analysis  of  multi-­‐stressor  studies  on  the  effects  of   temperature,   salinity   and   acidification   on   invertebrate   development  indicated  that:  1)  Synergistic  interactions  were  more  common  than  additive  or  antagonistic   interactions,   2)   Larvae   were   generally   more   vulnerable   than  embryos,   3)   Interaction   types   varied   among   stressors,   stages,   and   biological  responses,   and   4)  Ocean   acidification   is   a   greater   stressor   for   calcifying   than  non-­‐calcifying  larvae.  The  analysis  identified  taxa  that  may  be  more  vulnerable  (e.g.  molluscs,  echinoderms)  or  robust  (e.g.  arthropods)  to  these  stressors.  For  sea   urchins,   the   effect   of   acidification   on   development   was   determined   in   a  global   synthesis  of  data   from  15  species   from  tropical   to  polar  environments.  The   arm   growth   response   in   echinoplutei   was   used   as   a   proxy   of   larval  calcification   in   response   to   increased   seawater   acidity/pCO2   and   decreased  carbonate  mineral   saturation.   Phylogenetic   relatedness   did   not   influence   the  observed   patterns.   Regardless   of   habitat   or   latitude,   acidification   impedes  larval  growth  with  a  negative   relationship  between  arm   length  and   increased  acidity/pCO2   and   decreased   carbonate   mineral   saturation.   In   multiple   linear  regression   models   incorporating   these   highly   correlated   parameters,   pCO2  exerted  the  greatest   influence  on  decreased  arm  growth.    For   tropical  species  decreased   carbonate   mineral   saturation   was   most   important.   Levels   of  acidification   causing   a   significant   reduction   in   arm   growth   varied   between  species.  In  13  species,  reduction  in  length  of  skeletal  rods,  was  evident  in  near  future   (pCO2   800+   µatm)   conditions   while   greater   acidification   (pCO2   1000+  µatm),  reduced  growth  in  all  species.        Although   multistressor   studies   are   few,   when   temperature   is   added   to   the  stressor   mix,   near   future   warming   can   reduce   the   negative   effect   of  acidification  on  larval  growth.  Overall,  larvae  from  across  world  regions  showed  similar   trends.   Larval   success  may  be   the  bottleneck   for   species   success  with  flow  on  effects  for  sea  urchin  populations  and  marine  ecosystems.        

Page 19: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  19  

Cross   TALK      No  ocean  acidification  effects  on  shell  growth  and  repair  in  the  New  Zealand  brachiopod  Calloria  inconspicua  (Sowerby,  1846)    Emma  L.  Cross1,2*,  Lloyd  S.  Peck1,  Elizabeth  M.  Harper2,  Miles  D.  Lamare3  1  British  Antarctic  Survey,  Natural  Environment  Research  Council,  High  Cross,  Madingley  Road,  Cambridge,  UK;    2  Department  of  Earth  Sciences,  University  of  Cambridge,  Downing  Street,  Cambridge,  UK  3Department  of  Marine  Science,  University  of  Otago,  Dunedin  New  Zealand  

 Marine  calcifiers  are  considered  to  be  the  most  vulnerable  organisms  to  ocean  acidification  due   to   the   reduction   in  availability  of   carbonate   ions   for   shell  or  skeletal   production.   Rhychonelliform   brachiopods   are   potentially   one   of   the  most  calcium  carbonate  dependent  groups  of  marine  organisms,  however,  little  is   known  about   the   effects   of   lowered  pH  on   these   taxa.  A   CO2   perturbation  experiment   was   performed   on   the   New   Zealand   terebratulide   brachiopod  Calloria   inconspicua   to   investigate   the   effects   of   pH   conditions   predicted   for  2050  and  2100  on  the  growth  rate  and  ability  to  repair  shell.  Three  treatments  were  used:  a  pH  control  (pH8.16),  a  mid  century  scenario  (pH7.79)  and  an  end  century   scenario   (pH7.62).   The   ability   to   repair   shell   was   not   affected   by  acidified   conditions  with   >80%   of   all   damaged   individuals   at   the   start   of   the  experiment  completing  shell  repair  after  12  weeks.  Growth  rates  in  undamaged  individuals   >3mm   in   length  were   also   not   affected   by   lowered   pH   conditions  whereas  undamaged  individuals  <3mm  grew  faster  at  pH7.62  than  the  control.  The   capability   of  Calloria   inconspicua   to   continue   shell   production   and   repair  under  acidified   conditions   suggests   this   species  has  a   robust   control  over   the  calcification  process  where  suitable  conditions  at  the  site  of  calcification  can  be  generated  across  a  wide  range  of  pH  conditions.      

Page 20: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  20  

Cummings   TALK      Antarctic  sea  ice  communities  and  ocean  acidification:  novel  in  situ  experimental  manipulations    Cummings,   V.1,   Lohrer,   D.  2,   Barr,   N.  1,  Marriott,   P.  1,   Budd,   R.  2,   Notman,   P.  1,  Bremner,  D.  2,  Edhouse,  S.  2  1NIWA,  Private  Bag  14-­‐901,  Wellington  2NIWA,  PO  Box  11-­‐115,  Hamilton  

   Sea-­‐ice  flora  and  fauna,  and  particularly  sea  ice  algae,  form  a  vital  component  of  the  Antarctic  marine  food  web.  Ocean  acidification  is  an  imminent  threat  in  Antarctica   and   poses   a   complex   set   of   challenges   for   these   under-­‐ice  communities   and   the   seafloor   animals   that   rely   on   them   for   food.   We  investigate   how   the   functioning   and   dynamics   of   intact   coastal   sea   ice  ecosystems   might   respond   in   a   modified   environment,   through   experiments  conducted   in  situ   in  McMurdo  Sound,  Ross  Sea,  Antarctica  in  the  early  austral  summers   of   2013   and   2014.   We   installed   purpose   built   under-­‐ice   isolation  chambers   (each   140   litre   volume)   on   the   underside   of   first   year   sea   ice,   and  used   an   above-­‐ice   manipulation   system   to   alter   the   conditions   of   natural  seawater.   Using   a   fully   replicated   experimental   design,   and   pCO2   conditions  predicted  to  occur   in  the  following  decades,  we  assessed  the  effects  of  ocean  acidification   on   intact,   natural   sea   ice   communities.   Preliminary   results,  including  effects  on  primary  productivity  and  nutrient  utilisation,  composition  and  characteristics  of  the  sea  ice  communities  will  be  presented  and  discussed  in  light  of  potential  implications  to  future  coastal  ecosystems.        

Page 21: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  21  

Fabricius   PLENARY      CO2   seeps   in   Papua   New   Guinea   as   a   natural   laboratory   to  investigate   the   effects   of   ocean   acidification   on   shallow-­‐water  marine  ecosystems    Katharina  Fabricius  Australian  Institute  of  Marine  Science,  PMB  3,  Townsville  Q4810,  Australia    

 Predicting  the  physiological  and  ecological  consequences  of  rising  atmospheric  CO2   for   marine   communities   remains   a   key   knowledge   gap   in   the   rapidly  expanding  field  of  ocean  acidification  research.  We  are  using  shallow  volcanic  carbon   dioxide   seeps   in   Papua   New   Guinea   as   natural   laboratories,   where  streams   of   CO2have   been   bubbling   out   of   the   sea   floor   for   at   least   80   years  (possibly  much   longer).  At   these   seeps,  benthic   taxa  are  exposed   to  elevated  CO2throughout  their  post-­‐settlement  lives.  Along  CO2  gradients  away  from  the  seeps  we  study  changes   in   the  physiology  and  ecology  of  a   suite  of  hard  and  soft   bottom   organisms   and   communities,   including   corals,   crustose   coralline  algae,   seagrass,   foraminifera,   macro-­‐invertebrates   and   fishes.   We   also  investigate  physiological  acclimatization  mechanisms  (or  the  lack  thereof),  with  the  aim   to   improve  predictions  about   likely  effects  of  ocean  acidification   in  a  future  high  CO2  world.  I  will  provide  an  overview  of  some  of  the  key  results  and  recent   (and   still   unpublished)   findings   from   this   collaborative   project.   I   will  demonstrate  major  direct  physiological  effects  of  high  CO2,  but  will  also  show  that   profound   ecological   changes   will   contribute   to   determine   the   future   of  shallow-­‐water  tropical  marine  communities  in  a  high  CO2  world.            

Page 22: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  22  

Fernandez   POSTER      Effects   of   elevated   CO2   on   growth,   photosynthesis   and   nitrate  assimilation   in   the  giant  kelp  Macrocystis  pyrifera:  nitrogen   status  modulates  the  physiological  responses  to  elevated  CO2  

 Fernández,  PA1,  Roleda,  MY1,  2,  Leal,  P1  and  Hurd,  CL1,  3  1  University  of  Otago,  Department  of  Botany,  464  Great  King  Street,  Dunedin,  9016,  New  Zealand.  2  Bioforsk  Norwegian  Institute  for  Agricultural  and  Environmental  Research,  Kudalsveien  4,  8049  Bodø,  Norway  3  Institute  for  Marine  and  Antarctic  Studies  (IMAS),  University  of  Tasmania,  Private  Bag  129,  Sandy  Bay,  Hobart,  TAS  7001,  Australia  

 The   combined   effects   of   elevated   CO2   (aq)   and   nitrate   (NO3

–)   supply   on   the  carbon  and  the  nitrogen  physiology  of  Macrocystis  pyrifera  were  investigated.  We  hypothesized  that:  (1)  NO3

–  assimilation,  the  size  of  the  internal  NO3–  pool,  

and  total  tissue  N,  depend  on  NO3–  supply  and  (2)  higher  CO2  concentration  will  

increase  photosynthesis  and  growth  of  M.  pyrifera,  coupled  with  an  increase  in  NO3

–  uptake  and  assimilation.  M.  pyrifera  discs  were  first  grown  under   low  (5  µM)  and  high  (100  µM)  NO3

–  concentrations  so  that   internal  NO3–  pools  were  

either   nitrate   deplete   or   replete.   The   discs   were   subsequently   grown   under  current  (400  µatm;  pH  8.05)  and  high  (1200  µatm;  pH  7.6)  CO2  concentrations,  at   ambient   NO3

–   (20   µM).   After   3   days,   the   total   tissue   N   content,   nitrate  reductase   (NR)  activity,  NO3

–  uptake,  and   internal  NO3–  pool  were  completely  

modulated   by   the   NO3–  concentration   in   seawater.   NR   activity,   internal   NO3

pool  and  total   tissue  N  content  were  reduced   in  discs  grown  under   low  NO3–.  

An   additional   3   day   incubation   under   CO2   treatments   showed   no   effect   of  elevated  CO2  on  photosynthetic  rates,  growth  rate,  and  NO3

–  uptake  in  all  discs,  irrespective   of   the   size   of   the   internal   NO3

–   pool.   Higher   NR   activity   was  observed  under  elevated  CO2,  but  only  in  discs  with  higher  internal  NO3

–  pool.  Our   findings   showed   that   NO3

–   assimilation   is   mainly   regulated   by   NO3–  

availability   and   increased   CO2   did   not   enhance   NO3–   uptake   as   postulated.  

Higher   CO2,   however,   did   stimulate   NR   activity   in   NO3––replete   discs.   The  

mechanisms  underpinning  these  physiological  responses  are  discussed.        

Page 23: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  23  

Foo   TALK      Adaptive  capacity  of  the  sea  urchin  Heliocidaris  erythrogramma   to  ocean  change:  responses  from  fertilisation  to  the  settled  juvenile    Shawna  A.  Foo1,  Symon  A.  Dworjanyn2,  Alistair  G.  B.  Poore3,  Maria  Byrne4  1  School  of  Medical  Sciences,  The  University  of  Sydney  and  Sydney   Institute  of  Marine  Science,  Sydney,  New  South  Wales,  Australia.    2  National  Marine  Science  Centre,  Southern  Cross  University,  Coffs  Harbour,  New  South  Wales,  Australia.    3  Evolution  and  Ecology  Research  Centre,  School  of  Biological,  Earth  and  Environmental  Sciences,  University  of  New  South  Wales,  Sydney,  New  South  Wales,  Australia.  4  Schools  of  Medical  and  Biological  Sciences,  The  University  of  Sydney,  Sydney,  New  South  Wales,  Australia.      

 To   predict   the   impacts   of   ocean   acidification   and   warming   on   marine  populations,   it   is   important   to   measure   the   effects   of   these   stressors   on  performance   and   potential   for   adaptation.   To   adapt   to   changing   conditions,  animals  require  heritable  genetic  variance  for  stress  tolerance  to  be  present  in  their  populations.  We  determined  the  effects  of  near-­‐future  ocean  conditions  on  fertilisation  and  on  larval  and  juvenile  success  in  the  sea  urchin  Heliocidaris  erythrogramma.   Genetic   variation   in   tolerance   of   warming   (+3°C)   and  acidification   (-­‐0.3-­‐0.5   pH   units)   was   quantified   for   the   larval   and   juvenile  stages.   Increased   temperature   significantly   decreased   the   percentage   of  embryos   fertilised   while   decreased   pH   reduced   the   percentage   of   normal  larvae.   By   settlement   however,   no   significant   effects   of   either   stressor   was  found.   The   effects   of   pH   and   temperature   on   embryos   were   influenced   by  parentage  with   the   embryos   of   some   sire   and   dam  pairs  more   affected   than  others.  Treatments  also  affected  the  number  of  adult  and  juvenile  spines  found  on  juvenile  sea  urchins  with  increasing  asymmetry  in  spine  development  in  the  more   extreme   treatments.   The   presence   of   significant   sire   by   environment  interactions   indicated   the   presence   of   heritable   variation   in   tolerance   of  stressors  and  thus  the  potential  for  selection  of  resistant  genotypes.    This  may  enhance  population  persistence  of  H.  erythrogramma  in  a  changing  ocean.  It  is  interesting  to  note  the  different  influences  of  stressors  across  life  history  stages  and  of  sire  and  dam  from  fertilisation  to  settlement.          

Page 24: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  24  

Frost   TALK      The   long-­‐term   effects   of   climate   changed   induced   ocean  acidification   on   the   physiology   and   calcification   rate  of   adult  Southern  temperate  sea  urchin  Evechinus  chloroticus    Emily  J.  Frost,  Dr  Mary  Sewell  and  Dr  Richard  Taylor  School  of  Biological  Sciences,  The  University  of  Auckland  

 Anthropogenic   carbon  emissions  have   increased  exponentially   from  280  ppm  since   the   pre-­‐industrial   era   (circa   1750)   to   around   400   ppm   of   atmospheric  carbon  dioxide  (CO2)  presently  detected.  Over  the  past  decade,  the  annual  rate  of  increase  of  atmospheric  CO2  is  2.07  ppm;  this  is  more  than  double  that  from  the   1960s.   The   projected   changes   in   oceanic   water   carbonate   chemistry   will  have   enormous   impacts   on   an   array   of   physiological   processes,   such   as  calcification,  growth,   reproduction,  metabolism  and  the  overall   functioning  of  marine   invertebrates   and   their   respected   ecosystems.   Research   conducted  within   the   past   decade   suggests   that   the   effects   of   ocean   acidification   vary  based   on   ontogeny,   life-­‐history,   environment   and   physiology,   with   calcifying  organisms   (particularly   those  which   secrete  aragonite  exoskeletons)   the  most  vulnerable.     Two  major   questions   are   evident   from   this;   1)   How   does   ocean  acidifcation   affect   calcifying   marine   invertebrates;   2)   What   mechanisms   are  employed  by  these  organisms  in  order  to  compensate  changes  in  seawater  pH  and  pCO2?  This  presentation  will  focus  on  the  preliminary  results  from  the  first  section  of  my  PhD  project  which  evaluates  the  effects  of  long-­‐term  exposure  to  elevated  pCO2  on  the  calcification,  growth,  energetics  and  ion-­‐  and  acid/base-­‐regulation  of  adult  Southern  temperature  sea  urchin  Evechinus  chloroticus.  Specifically,   I  am   assessing   the   relative   sensitivity   and   vulnerability   of   E.chloroticus   by  changes   in   exoskeleton   bio-­‐mineralization   signatures,   coelomic   Mg2+,   Ca2+,  ammonium,   pH   and   cCO2,   biometrics,   oxygen   consumption,   GSI,   gonadal  structure  and  mRNA  transcript  abundance  of  Na+/K+-­‐ATPase  (α-­‐subunit),  Na+/H+  exchanger   (NHE-­‐2),     Na+/HCO3

-­‐   co-­‐transporter   (AE-­‐2)   and   carbonic   anhydrase  (CA-­‐2).        

Page 25: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  25  

Gammon   POSTER      Measurements   of   intracellular   pH   in   deep   sea   coral   exposed   to  ocean  acidification    Malindi  Gammon1,  Simon  Davy1,  Di  Tracey2,  Vonda  Cummings2,  Peter  Marriott2  1Victoria  University  of  Wellington,  Wellington  2NIWA,  Private  Bag  14-­‐901,  Wellington  

 Calcifying  corals  provide  important  habitat  complexity  in  the  deep  sea  and  are  consistently  associated  with  a  biodiversity  of  fish  and  other  invertebrates.  Little  is  understood  about  how  deep  sea  corals  may  respond  to  the  future  predicted  environmental   conditions   of   ocean   acidification   (ocean   acidification),   but   any  predicted   changes   will   have   wider   impacts   on   the   ecosystem.   Due   to   the  difficulties   associated   with   keeping   deep   sea   corals   alive   in   aquaria,   the  literature   is   currently   limited   to   short-­‐term   experiments   and   a   poor  understanding   as   to   whether   there   is   any   capacity   for   acclimation.   Recent  research  suggests  that  some  species  may   increase  their   intracellular  pH  when  exposed   to   acidified   conditions.   This   serves   as   an   adaptive   response   by  increasing  the  internal  carbonate  saturation  state  and  alleviating  the  effect  of  a  reduction  in  the  availability  of  carbonate.    Solenosmilia   variabilis   is   a   species   of   deep   sea   coral   found   in   the   waters  surrounding  New  Zealand  and  previous  feasibility  experiments  have  shown  that  it  is  a  robust  species  for  in-­‐aquaria  studies.    A  live  coral  experiment  is  currently  underway   to   identify   the   long-­‐term   response   of   intracellular   pH   to   acidified  conditions.  Colonies  are  being  subjected  to  a  pH  of  either  7.8  or  7.65,  designed  to  reflect  current  pH  conditions  and  future  acidification  scenarios,  respectively.  Measurements   of   intracellular   pH   will   be   taken   during   early   and   late-­‐2015  using  the  fluorescent  pH-­‐dependent  probe  SNARF-­‐1  and  live  confocal  imagery.  This   study   will   help   inform   our   understanding   of   future   predictions   on   OA  impacts.            

Page 26: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  26  

Harianto   TALK      Physiological   effects   of   long-­‐term   acclimation   to   ocean   warming  and   acidification   on   the   purple   sea   urchin,   Heliocidaris  erythrogramma    Harianto,  Januar1,2;  Nguyen,  Hong  Dao1;  Holmes,  Sebastian2;  Byrne,  Maria1  1Discipline  of  Anatomy  &  Histology,  Faculty  of  Medicine,  The  University  of  Sydney  2Sydney  Institute  of  Marine  Science,  Mosman  NSW,  Australia  3Water  and  Wildlife  Ecology  Group   (WWEG),   School  of   Science  &  Health,   The  University  of  Western  Sydney,  Australia  

 The  long-­‐term  effects  of  ocean  warming  and  acidification  on  the  physiology  of  the   purple   sea   urchin   (Heliocidaris   erythrogramma),   endemic   to   Sydney  Harbour,   Australia   —   a   well-­‐known   climate   change   hotspot   —   was  investigated.  Urchins  collected  during  winter  were  acclimated  over  6  weeks  to  gradual  warming   (+  0.5   °C/wk)   and  decreasing  pH   (-­‐0.1  pHtotal  units/week),   to  three   temperature   treatments   (control:   +0,   +   2,   and   +   3   °C)   and   two   pHtotal  levels   (control   pH:   8.0,   -­‐0.4   pH:   7.6).   Temperatures  were   adjusted  weekly   to  correspond   to   the   temperature   history   of   the   harbour   while   pH   was   kept  constant  to  match  their  subtidal  habitats  where  pH  flux  was  minimal.  Urchins  were  acclimated  over  an  experimental  period  that  coincided  with  the  period  of  gonad  development.  After  3  months   in  treatments  respiratory  physiology  was  monitored  every  2  weeks   for  a  period  of  2  months.   Immune  response,  gonad  development,  feeding  rate  and  other  stress  markers  were  also  measured.  The  response   of   H.   erythrogramma   to   increased   ocean   temperatures   and  acidification   are   discussed   in   context   to   the   rapid   ocean   warming   currently  predicted  for  south-­‐eastern  Australia.        

Page 27: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  27  

Hempel   POSTER      Sub-­‐lethal   stress   response   of   the   Antarctic   bivalve   Laternula  elliptica  to  ocean  warming  and  acidification  -­‐  Preliminary  results    Sonja  Hempel1,  Vonda  Cummings2,  Ken  Ryan1  1Victoria  University  of  Wellington  2NIWA,  Private  Bag  14-­‐901,  Wellington  

 Antarctic   bivalves   are   under   threat   from   future   climate   change   and   ocean  acidification   scenarios,   which   may   hit   cold-­‐adapted   Southern   Ocean   fauna  earlier   and   harder   than   fauna   elsewhere   in   the   world.   Laternula   elliptica,   a  common   and   important   infaunal   bivalve   species   in   Antarctic   coastal   regions,  becomes   stressed  under   reduced  pH   conditions,   increasing   its   rate  of  oxygen  consumption   and   the   production   of   heat   shock   protein   70   (HSP70).   The  response   of   L.   elliptica   to   environmental   stress   is   important   as   the   species   is  dominant   in   the  Antarctic   benthos   and  provides   bentho-­‐pelagic   coupling   and  water   filtration.   Sub-­‐lethal   stress,   which   does   not   kill   an   organism   but   still  affects  its  function,  is  of  interest  because  a  stressed  organism  working  to  keep  its   metabolic   rate   stable   may   divert   its   energy   budget   towards   maintaining  metabolic   equilibrium,   and   would   consequently   have   fewer   energy   reserves  available   for   reproduction.   To   address   this,   the   response   of   L.   elliptica,  specifically   changes   in   HSP70   production,   respiration   rate,   and   physiological  condition,   to   end-­‐of-­‐the-­‐century   predictions   in   pH,   temperature,   and   a  combined  high  temperate/high  acidity  treatment  is  being  studied  over  a  four-­‐month  experiment.  This  poster  presents  work  being  undertaken  currently  for  a  Master¹s   thesis,   and  will   detail   preliminary   results   from  midway   through   the  experiment.        

Page 28: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  28  

Hudson   TALK      Kina,  ocean  acidification  and  sensitive  males    Mike  Hudson  University  of  Auckland  

 Marine   environments   are   experiencing   large-­‐scale   change   through   increasing  levels  of   atmospheric  CO2  driving  both   increasing   seawater   temperatures  and  ocean   acidification   (OA).   The   resulting   changes   to   carbon   chemistry   and  seawater   pH   have   direct   implications   for   marine   life   with   varied   and  contrasting   outcomes.   In   general,   species   are   suggested   to   be   optimally  adapted   to   the   environmental   conditions   they   are   exposed   to   over  evolutionary  time,  and  as  a  result  have  limited  capacity  to  tolerate  change.  As  the   early   life   stages   are   reportedly   the   most   sensitive   to   environmental  perturbations,  the  critical  first  step  of  fertilisation  success  (FS)  of  the  broadcast  spawning  sea  urchin,  kina  (Evechinus  chloroticus),  was  examined  here  across  a  CO2  gradient   from   present   day   to   IPCC   predicted   future   levels   (380   to   1800  ppm).   The   results   show   kina   to   be   resilient   to   near   future   OA   (1000   ppm)  followed   by   a   population   level   decline   in   FS   towards   50%   as   atmospheric  CO2  increases   to   levels   predicted   for   the   year   2300   (1800   ppm).   Closer  investigation  shows  that   tolerances  at   the   individual   level   (single  male:female  crosses)   are   highly   variable,   with   evidence   of   differential   male/female  sensitivities   to   environmental   CO2.   At   1800   ppm   inter-­‐male   variability   and  sperm   performance   characteristics,   not   eggs,   drive   lower   FS   levels.   This  research   expands   our   limited   understanding   of   the   vulnerability   of   New  Zealand  rocky  reef  species  to  OA  by  describing  levels  and  sources  of  sensitivity  in  kina;  an  ecologically,  recreationally  and  culturally  important  species.      

Page 29: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  29  

Law   TALK      Bacterial  exoenzyme  activity  in  high  CO2  vent  waters    Law,  Cliff1,2,  Burrell,  Tim1,  3,  Sander,  Sylvia2,  Maas,  Els1  1  National  Institute  of  Water  and  Atmospheric  Research  Ltd,  Greta  Point,  Wellington.  New  Zealand.  2  Department  of  Chemistry,  University  of  Otago,  Dunedin,  New  Zealand.  3  Victoria  University  of  Wellington,  School  of  Biological  Sciences,  Wellington,  New  Zealand.  

 Recent   research   indicates   that   bacterial   exoenzyme   activity   is   sensitive   to  ocean   acidification,   with   potential   implications   for   the   cycling   and   fate   of  organic  matter.  Natural  CO2  vent  systems  represent  potential  analogues  of  the  future  ocean  with  higher  CO2,  and  so  offer  a  complimentary  approach  to  small-­‐scale  perturbation  experiments  for  examining  ecosystem  impacts.  We  assessed  this  potential,  at  CO2  vents  in  the  Bay  of  Plenty  (North  Island,  New  Zealand),  by  comparing  bacteria  and  exoenzyme  activity   in  water  overlying   the  vents  with  upstream  control  waters,  and  also  control  water  adjusted  to  the  pH  of  the  vent  water.   This   allowed   us   to   determine   whether   elevated   CO2  was   the   primary  driver  of  change  in  aminopeptidase  and  glucosidase  activity,  or  whether  other  factors  in  vent  water  influenced  the  response.  The  results  will  be  considered  in  the   context   of   water   column   chemistry   in   the   Bay   of   Plenty,   and   bacterial  exoenzyme   response   to   ocean   acidification   in   the   open   ocean   around   New  Zealand.        

Page 30: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  30  

Leal   POSTER      Microscopic   stages   of   the   giant   kelp  Macrocystis   pyrifera   and   the  invasive   kelp   Undaria   pinnatifida   (Laminariales,   Phaeophyceae)  grow   larger   and   faster   under   higher   CO2   indicating   adaptation   to  ocean  acidification    Pablo   P.   Leal1,   Catriona   L.   Hurd1,   2,   Pamela   A.   Fernandez1   and   Michael   Y.  Roleda1,  3  1  Department  of  Botany,  University  of  Otago,  P.O.  Box  56,  Dunedin  9054,  New  Zealand  2  Institute  for  Marine  and  Antarctic  Studies,  University  of  Tasmania,  Hobart  7001,  Australia  3  Bioforsk  Norwegian  Institute  for  Agricultural  and  Environmental  Research,  Kudalsveien  6,  8049  Bodø,  Norway  

 Ocean  uptake  of  anthropogenic  CO2  is  projected  to  decrease  surface  seawater  pH   (8.10)   by   0.30-­‐0.32   units   by   2100,   termed   ocean   acidification   (OA).  However,  pH   inside  kelp  canopies  can  naturally  vary  between  7.65-­‐8.86  daily,  and  pH  near  the  benthos  varies  from  7.00  to  8.30.  The  giant  kelp  Macrocystis  pyrifera   and   the   invasive   kelp   Undaria   pinnatifida   release   biflagellated  meiospores   from   sori   on   sporophylls.   Meiospores   settle   and   develop   into  microscopic  gametophytes.  Meiospores  are  exposed   to  a   range  of  pHs  within  the   water   column   and   in   micro-­‐environments   at   the   rock   surface,   that   are  greater   than   those  predicted   for  OA.  We  hypothesized   that  meiospores  of  U.  pinnatifida   will   develop   faster,   and   the   gametophytes   grow   larger,   under  experimental   simulation  of  OA  than  those  of  M.  pyrifera.  Meiospores  of  both  kelps   were   separately   grown   in   four   pHT   treatments   (7.20,   7.65,   8.00,   and  8.40).  The  culture  medium  was  renewed  every  2  days.  Meiospore  germination,  germling  size,  gametophyte  size  and  sex  ratio  were  determined  over  15  days.  Germination   (day  5)   ranged   from  85%   to  93%  and  no  difference  between  pH  treatment  and  species  was  observed.  On  day  11,  germlings  were  larger   in  the  lower  pH  treatments   (7.20  and  7.65).  On  day  13,  male  gametophytes  of  both  species  were  bigger   than   female   gametophytes.   The   size   of   germlings   and  of  male   and   female   gametophytes   decreased   with   increasing   pH.   Results   show  that   higher   dissolved   CO2   is   beneficial   for   the   growth   and   development   of  meiospores  of  both  kelp  species,  and  that  the  micro-­‐stages  of  these  species  are  adapted  to  future  OA.      

Page 31: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  31  

Manahan   POSTER      Effects   of   ocean   acidification   and   ocean   warming   on   the   adult  purple  sea  urchin,  Heliocidaris  erythrogramma    Natalie  Manahan  RMIT  University  

 In   coastal   environments,   sea   urchins   are   a   well-­‐studied   and   important   marine  taxonomic  group.  The  purple  sea  urchin,  Heliocidaris  erythrogramma,   is  endemic  to  the   southern   states   of   Australia,   and   plays   a   key   role   in   the   marine   intertidal  environment  as  herbivorous  grazers  and  food  for  fishes.  How  reef  species  such  as  the  sea   urchin   will   respond   to   the   imminent   environmental   changes   due   to   climate  change   is   not   well   understood.   The   effect   of   ocean   acidification   and   warming   on  echinoderms   are   species-­‐specific,   and   physiological   responses   can   vary   widely  between   species.   This   uncertainty   in   predicting   a   response   for   a   specific   species,  when  faced  with  the  stresses  from  climate  change,  creates  difficulty  when  adapting  management   strategies   for   future   scenarios.   The   demise   of   this   ecologically  important  marine  species  would  see  a  dramatic  shift  in  marine  intertidal  ecosystems,  as   well   as   an   economic   impact   on   a   young   but   burgeoning   Australian   sea   urchin  fishery.  My   research   aims   to   investigate   the   physiological   responses   of   the   adult   H.  erythrogramma  to  predicted  future  climate  change  conditions,  and  how  an  increase  in   ocean   temperature   and   acidity   will   effect   urchin   sensitivity   to  metal   pollutants.  Specifically,   I’ll   be   asking   the   questions:   What   effect   an   increase   in   temperature  and/or  a  decrease  in  pH  will  have  on  H.  erythrogramma  feeding  rate,  respiration  rate,  scope   for  growth  and  calcification  and/or  dissolution  of   the  urchin   test  and  spines?  What   effect   an   increase   in   temperature   and/or   a   decrease   in   pH  will   have   on   the  uptake  of  copper  by  H.  erythrogramma?  And,  does  copper  exposure  under  conditions  of   ocean   acidification   and   warming   have   follow-­‐on   effects   for   urchin   feeding,  respiration  and  calcification  and/or  dissolution  of  urchin  test  and  spines?    Australia   is   a   climate   change   hot   spot   where   due   to   changes   in   ocean   circulation  disproportionate   warming   has   occurred   over   the   past   60   years   (+2.3°C),   with  projection   for   a   further   +2-­‐3°C   increase   in   sea   surface   temperature   by   2070.  Understanding   urchin   vulnerabilities   to   ocean   acidification   and   warming   are   of  particular   importance   as   these   stressors   may   be   the   bottleneck   for   species  persistence  and  ecological  success  in  a  changing  ocean.        

Page 32: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  32  

Mikaloff  Fletcher   TALK      Present  and  Future  Ocean  Acidification  in  New  Zealand's  EEZ      Sara  E.  Mikaloff  Fletcher,  Helen  Bostock,  Mike  Williams,  Graham  Rickard  NIWA,  Private  Bag  14-­‐901,  Wellington  

 Until  recently,  the  aragonite  and  calcite  saturation  states  in  New  Zealand's  EEZ  have  been  poorly  characterised  due  to  a   limited  number  of  measurements  of  carbonate  species   in  this  region.     In  order  to  address  this,  we  have  developed  algorithms  to  estimate  the  dissolved  inorganic  carbon  (DIC)  and  alkalinity  from  three  parameters  that  are  measured  much  more  widely:  temperature,  salinity  and  oxygen.    These  algorithms  were  developed  using  measurements  of  all  five  species  from  the  GLODAP,  CARINA,  and  PACIFICA  voyages,  and  then  combined  with  the  CARS  temperature,  salinity  and  oxygen  data  to  map  DIC,  Alkalinity,  to  calculate   the   calcite  and  aragonite   saturation  horizons   (CSH  and  ASH)   for   the  New  Zealand  EEZ.        Our  data-­‐based  estimates  of  the  ASH  and  CSH  were  then  used  to  evaluate  the  Earth  System  Models  that  contributed  to  the  Coupled  model   Intercomparison  Project  Phase  5  (CMIP5)  and  determine  which  models  best  represent  the  New  Zealand  region.    These  findings  are  compared  with  analogous  work  to  evaluate  the  CMIP5  models  against  satellite  temperature  and  chlorophyll  data,  and  we  explore  what   this  model   evaluation  means   for   future   ASH   and   CSH   values   in  New  Zealand's  EEZ.                

Page 33: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  33  

Munday   TALK      Effects   of   ocean   acidification   on   early   life   history   development   of  the  yellowtail  kingfish,  Seriola  lalandi,  a  large  pelagic  fish    Munday   PL1,  Watson   S1,   Parsons  D2,   King  A3,   Barr  N4,  McLeod   I1,   Allan   BJM1,  Pether  S3  1ARC  Centre  of  Excellence  for  Coral  Reef  Studies,  College  of  Marine  and  Environmental  Sciences,  James  Cook  University,  Townsville,  Queensland  4811,  Australia  2NIWA  Auckland,  Newmarket,  Auckland  1149  3NIWA  Bream  Bay,  Ruakaka  0116  4NIWA  Greta  Point,  Kilbirnie,  Wellington,  6241  

 An   increasing   number   of   studies   have   examined   the   effects   of   elevated   carbon  dioxide  (CO2)  and  ocean  acidification  on  marine  fishes,  yet   little   is  known  about  the  effects  on  large  pelagic  fishes.  We  tested  the  effects  of  elevated  CO2  on  the  early  life-­‐history   development   and   behaviour   of   yellowtail   kingfish,   Seriola   lalandi.   Eggs   and  larvae   were   reared   in   current-­‐day   control   (450   µatm)   and   two   elevated   CO2  treatments   until   3   days   post   hatching   (dph).   Elevated   CO2   treatments   matched  projections   for   the   open  ocean  by   year   2100  under   RCP   8.5   (880  µatm  CO2)   and   a  higher  level  (1700  µatm  CO2)  relevant  to  upwelling  zones  where  pelagic  fishes  often  spawn.  There  was  no  effect  of  elevated  CO2  on  survival  to  hatching  or  3  dph.  Larvae  were   longer   in   the   880   µatm   CO2   treatment,   but   not   the   1700   µatm   treatment,  compared   with   controls.   Yolk   depth   increased   and   oil   globule   diameter   decreased  with   increasing   CO2   level,   indicating   potential   effects   of   elevated   CO2   on   energy  efficiency  of  newly  hatched   larvae.  Other  morphometric   traits  did  not  differ  among  treatments.  Contrary  to  expectations  there  were  no  effects  of  elevated  CO2  on  larval  behaviour.  Activity  level  and  startle  response  did  not  differ  among  treatments.  There  was  a  trend  toward  increased  phototaxis  at  higher  CO2,  but  this  was  not  statistically  significant.  Our   results  contrast  with   findings   for   reef   fishes,  where  a  wide  range  of  sensory   and   behavioural   effects   have   been   reported.   We   hypothesize   that   the  absence   of   behavioural   effects   in   3dph   yellowtail   kingfish   is   due   to   the   early  developmental  state  of  newly  hatched  pelagic  fishes.  Behavioural  effects  of  high  CO2  may  not  occur  until   larvae  commence  branchial   acid-­‐base   regulation  when   the  gills  develop;  however  further  studies  are  required  to  test  this  hypothesis.  Nevertheless,  our   results   suggest   that   growth   and   energy   allocation   of   larval   kingfish   could   be  affected  by  ocean  acidification,  with  potential  implications  for  recruitment  success.      

Page 34: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  34  

Murdoch   TALK      Setting  Up  a  Coastal  Ocean  Acidification  Observing  Network  in  New  Zealand    Judith  Murdoch1,  Kim  Currie2,  Andrew  Marriner2,  Cliff  Law2  

1University  of  Otago,  Dunedin  2NIWA,  Dunedin  

 Long  –term  monitoring  of  ocean  carbon  chemistry  in  the  surface  waters  of  the  SW  Pacific  Ocean  near  New  Zealand  (the  Munida  time  series)    has  shown  that  the   pHT   has   decreased   at   a   rate   of   0.0013   pH   units   per   year   for   the   period  1998-­‐2012  (Bates  et  al.,  2014).  Short-­‐term  measurement  campaigns  at  various  other   New   Zealand   coastal   sites   indicate   that   the   carbon   chemistry   is   highly  variable,   however   there   is   little   baseline   data   against   which   to  measure   any  future  change.  We  have  set  up  a  coastal  ocean  acidification  observing  network  (NZOA-­‐ON)   consisting   of   14   sites   around   the   country,   in   partnership   with  aquaculture  industry  representatives,  regional  councils,  conservation  and  other  institutes.  The  observing  network  consists  of  fortnightly  bottle  samples  for  DIC  and   alkalinity   analyses,   plus   SeaFET   pH   sensors   collecting   data   every   30  minutes.  Such  a  low-­‐cost  framework  can  easily  be  adapted  for  other  locations  and   environments.   This   presentation   will   describe   the   logistics   involved   in  setting  up  and  operating  the  NZOA-­‐ON.    Bates,  N.R.,  et  al.  Oceanography  27  (1),  126-­‐141.          

Page 35: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  35  

Nguyen   POSTER      Determination  of  thermal  and  pH/pCO2  variability   in  the  habitat  of  shallow  subtidal  and  intertidal  marine  invertebrates    Hong  D.  Nguyen1,  Kennedy  Wolfe1,  Sergio  T.  Gabarda1,  Januar  Harianto1,  Maria  Byrne1,2  1  School  of  Medical  Sciences,  The  University  of  Sydney,  NSW,  Australia  2  School  of  Biological  Sciences,  The  University  of  Sydney,  NSW,  Australia  

 Rocky   shore   invertebrates   occupying   the   shallow   subtidal   and   intertidal   tide  pools   experience   highly   fluctuating   temperature   and   pH   environments   on   a  daily   basis.   To   understand   how   these   organisms   will   fare   with   near-­‐future  ocean   warming   and   acidification,   it   is   imperative   to   document   the   level   of  environmental   variability   organisms   currently   experience.   For   5   years  (December  2008  -­‐  November  2013),   in  situ  monitoring  was  used  to  document  the  thermal  conditions  experienced  by  species  occupying  the  shallow  subtidal,  and  low-­‐  and  mid-­‐intertidal  tide  pool  habitats  at  Little  Bay,  Sydney.  In  addition,  Total  Alkalinity  (TA)  and  Dissolved  Inorganic  Carbon  (DIC)  were  also  determined  from  discrete  water  samples  collected  on  20  spring  low  tides  before  dawn  and  dusk   over   3   years   to   gain   a   comprehensive   understanding   of   the   carbonate  chemistry  environment  experienced  by  the  animals  using  CO2SYS.  The  greatest  daily   fluctuations   in   temperature   were   7°C,   9.5°C   and   16°C   in   the   shallow  subtidal  site,   low-­‐intertidal  pool  and  mid-­‐intertidal  pool  respectively  and  were  recorded  during  extreme  spring   low  tides   (<  0.2  m)  occurring  at  midday  or   in  the   afternoon   in   summer.   The  pHT   of   the   shallow   subtidal,   the   low   intertidal  pool  and  the  mid  intertidal  pool  ranged  from  pHT  7.88-­‐8.29,  pHT  7.86-­‐8.30  and  pHT   7.54-­‐8.87   respectively.   For  pCO2,   levels   ranged   from  300-­‐446  µatm,   202-­‐614   µatm   and   25-­‐1571   µatm   in   the   shallow   subtidal,   low   intertidal   pool   and  mid-­‐intertidal  pool  respectively.  The  bay  water  at  high  tide  approximated  open  ocean  conditions,  pHT  8.00-­‐8.14  and  pCO2  levels  between  290-­‐450  µatm.  These  data  show  that  shore-­‐level  measurements  are  crucial  to  detect  the  fine  level  of  variation   in  warming   and   acidification   experienced   at   the   level   of   the   animal  and   with   respect   to   projected   change   in   conditions.   They   are   key   to   place  climate  change  experiments  in  an  ecologically  relevant  context.      

Page 36: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  36  

Ragg   TALK      The   effects   of   seawater   calcium   carbonate   saturation   state   upon  embryogenesis   and   larval   performance   of   Greenshell   mussels,  Perna  canaliculus    Norman   L.   C.   Ragg1,   Samantha   Gale1,   Nicola   Hawes2,   Le   Viet   Dung1,3,   Ellie  Watts1,  Jolene  Taylor1,  Hannah  Mae1,  Nick  King1  1.Cawthron  Institute,  Nelson,  New  Zealand  2.SPaTNZ  Ltd.,  Nelson,  New  Zealand  3.Auckland  University  of  Technology,  New  Zealand  

 The  Greenshell  mussel,  Perna  canaliculus,  represents  a  key  component  of  the  benthic  ecosystem  and  supports  New  Zealand’s   largest  aquaculture   industry.  The  Cawthron  Institute  has  sought  to  add  value  and  security  to  this  industry  by  developing  intensive  hatchery   technology,  which   is   now  being   commercialised   by   SPaTNZ   Ltd.   Access   to  reliable  hatchery  systems  has  facilitated  trials  examining  the  effects  of  manipulation  of   aragonite   saturation   state   upon   the   earliest,   and   arguably  most   vulnerable,   life  stages.   Recently   fertilized   eggs  were   added   at   50   eggs  mL-­‐1   to   lightly-­‐aerated   150L  conical  tanks  contained  1µm-­‐filtered  16.5°C  seawater  and  4µM  EDTA.  Triplicate  tanks  had   been   pre-­‐established   as   either   Controls   (ΩAragonite   1.87,   pHT   7.9),   near-­‐future  ocean  acidification  scenarios  (Ω  =  0.77,  pHT  7.5  and  Ω  0.52,  pHT  7.3),  created  by  CO2  enrichment  of  tank  aeration,  or  elevated  Ω  (ΩAra  2.86,    pHT  8.0  and  ΩAra  ~7,  pH  ~8.9)  by  addition  of  concentrated  sodium  carbonate  solution.  Treatment  had  no  immediate  effect  on  mortality,  with  net  survival  over  a  43h  incubation  period  exceeding  75%  in  all  tanks.  However  development  was  severely  arrested  in  reduced  Ω  treatments,  with  mussels   failing   to   advance  beyond   trochophore   stage  at  Ω  0.52  or   tending   to   form  misshapen,   under-­‐size   veligers   at   Ω   0.77,   ultimately   resulting   in   100%   mortality.  Controls  and  Ω  2.86  yielded  70.6  -­‐  72.8%  healthy  veliger  larvae,  rising  to  82.6%  at  Ω  4.52.   Larvae   in   the  Ω  ~7   treatment   tended   to  be   grossly   over-­‐calcified,   resulting   in  only   12.7%   healthy   larvae;   these   larvae   subsequently   displayed   elevated   mortality  when   placed   in   an   unmodified   rearing   system.   An   indication   of   general   oxidative  stress   in   43h-­‐old   larvae   was   determined   using   2’,7’-­‐dichlorodihydroflourescein  diacetate   (‘D399’),   which   indicated   ~100%   increase   in   reactive   oxygen   species  present   in   the   reduced   Ω   treatments.   The   very   early   life   stages   of   P.   canaliculus  therefore  appear  to  be  highly  susceptible  to  OA,  with  near-­‐future  conditions  resulting  in   100%   mortality.   Encouragingly,   Ω   manipulation   appears   to   provide   a   tool   for  enhancing  hatchery  production,  with  the  current  study  successfully  increasing  veliger,  and  subsequently  metamorphosing  pediveliger,  yield  by  13%.    

Page 37: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  37  

Sander   TALK      The   Effect   of   pH   on   Trace   Metal   Speciation   in   the   Marine  Environment    Sylvia  Sander  Marine   and   Freshwater   Chemistry   and   NIWA/University   of   Otago   Research   Centre   for   Oceanography,  Department  of  Chemistry,  University  of  Otago,  New  Zealand    

 Trace   metals   play   an   important   role   as   micronutrients   and   toxicants   in   the  marine  environment.  However,   it   is   not   the   total   dissolved   trace   metal   concentration   that   is  determining   the   uptake   and   thus   biological   effect   for   the   organisms,   but  specific   chemical   forms   of   the   metal.   This   can   either   be   the   free   ion   (e.g.  Fe2+/3+Cu2+),   the   inorganic   or   organic   complexes   (e.g.,   Fe(OH)3,   CuCO3,   Fe-­‐siderophore,   Cu-­‐cysteine).   For  many   bioactive   trace  metals   such   as   iron,   the  solubility   is   very   dependent   on   pH,   too.   However   at   the   same   time   the  conditional   stability   constants   of   organic   Fe-­‐binding   ligands   are   expected   to  become  weaker  at  more  acidic  conditions  due  to  the  competition  with  protons.  Additionally,   iron   laden   aerosol   supply   to   iron   deficient   surface   ocean   areas,  including   the   Southern  Ocean   is   forecast   to   increase   in   a   changing   and  more  arid  climate.    The  exact  consequences  of   these  cumulative  effects  on  the   iron  speciation  and  bioavailability,  as  well  as  that  of  other  bioactive  trace  metals,  is  still  much  of  a  mystery.      Here   I  will  present  model  predictions  of   iron  and  Cu  speciation   as   a   function   of   pH.   I   will   further   compare   these   theoretical  predictions   with   published   bioassay   experiments   at   different   pCO2-­‐concentrations  and  pHs.  Finally  I  will  present  some  yet-­‐unpublished  data  from  ocean  acidification  experiments.        

Page 38: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  38  

Schmutter   TALK  &  POSTER      A   framework   for   assessing   and   evaluating   the   socio-­‐economic  impacts  of  ocean  acidification      Katherine  Schmutter  Australian  National  University  

 The  aim  of  this  presentation  is  to  alert  the  audience  of  the  need  to  consider  the  potential   socio-­‐economic   impacts   of   ocean   acidification   for   coastal  communities  in  order  to  capture  opportunities  and  to  moderate  or  avoid  harm.  The   world’s   oceans   are   becoming   increasingly   acidic   largely   as   a   result   of  anthropogenic  carbon  dioxide  emissions  being  absorbed  by  seawater  at  a  rate  not   previously   seen   in   the   Earth’s   history.   In   a   business   as   usual   emissions  scenario   as   described   by   the   Intergovernmental   Panel   on   Climate   Change  (2013),  this  will  continue  to  increase  rapidly.  The  climatic,  ecological,  chemical  and  physical  responses  to  ocean  acidification  are  complex,  will  vary   from  location  to   location,   from  species  to  species   from  ecological  system  to  ecological  system,  and  will  change  through  time.  Some  of  these   responses   have   already   been   detected   and   cases   have   been   reported  where   environmental   changes   were   rapid.   The   action   of   other   stressors  resulting   from   climate   change   and   increasing   human   population   are   also  increasing  the  complexity  and  severity  of  these  responses.    In  order  to  develop  effective  responses  to  these  changes  we  need  to  consider  the   impacts   these   are   likely   to   have   on   our   socio-­‐economic   systems.   A  framework  to  assess  and  evaluate  where  these  impacts  are  likely  to  impact  can  provide   a   useful   tool   for   coastal   communities   in   understanding   their  preparedness   for  change  and  to  consider  whether  the  actions  they  are  taking  are   leading   them   in   the   right   directions   for   the   best   outcomes   for   their  community.    While   these  changes  are  complex   it   is   clear   that   they  pose  a  very   real   risk   to  global  citizens  as  well  as  to  our  environment.  Choosing  not  to  prepare  or  taking  ineffective  actions  could  leave  us  unready  to  face  this  emerging  challenge.        

Page 39: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  39  

Sparks   TALK      Comparison   of   Antarctic   (Odontaster   validus)   and   New   Zealand  (Patiriella  regularis)  sea  star  larvae  response  to  ocean  acidification:  Using  quantitative  genetic  techniques  to  compare  between  species  and  latitudes    Kate  Sparks  Department  of  Marine  Science,  University  of  Otago,  PO  Box  56,  Dunedin  9054,  New  Zealand  

 One  major   focus  of   the  marine  biological   research  community   in  recent  years  has  been  to  quantify   the  reactions  of  Antarctic   larvae  to  climate  change.  This  research   aims   to   show   whether   Antarctic   echinoderm   species'   individual  reactions   to   climate   change   can   be   used   as   a   'bellwether'  for   New   Zealand  species'  responses.    Odontaster   validus,  the   Antarctic   cushion   star,  has   been   named   a   ‘keystone’  species   in  shallow  Antarctic  benthic  habitats  due  to   its  ubiquitous  distribution  and   important   role   in   community   composition   on   the   Antarctic  shelf.  O.validus  may   be   particularly   vulnerable   to   the   effects   of   ocean  acidification  and  warming   during   its   pelagic   larval   development   phase,  which  has  been  described  as  a  ‘bottleneck  of  mortality’    for  many  species.  P.regularis,  the   New   Zealand   cushion   star,   has   pelagic   larvae   which  are  known  to  be  robust  to  ocean  acidification  and  warming  at  the  population  level,  but   individual   responses   are   unquantified.   Due   to   this   species'   wide  geographic  range,   and  ability   to   tolerate   large  environmental   changes,   it  may  have  the  capacity  to  adapt  to  near-­‐future  ocean  conditions.        Using   quantitative   genetics,  examine   the   capacity  in  O  validus  and  P.regularis  larvae  for  adaptation  to  warmer  temperatures  and  reduced  seawater  pH.  Intra-­‐brood  variation  in  parental  gamete  phenotypes  are  known  to  act  as  selection  pressures   in  dynamic  or  unpredicted  environments.  The  presence  of  a  range  of  tolerant  phenotypes  will  indicate  that  these  species  can   adapt   and   survive   in   an   environment  modelled   on   the   IPCC   ‘business   as  usual’  scenario.          

Page 40: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  40  

Tracey   POSTER      Growth   and   functioning   of   deep   sea   coral:   assessing   potential  impacts  of  ocean  acidification    Tracey,   D.1,   Cummings,   V.1,   Gammon,   M.2,   Marriott,   P.1,   Neil,   H.1,   Barr,   N.1,  Moss,  G.1,  Davy,  S2.    1NIWA,  Private  Bag  14-­‐901,  Wellington.  2School  of  Biological  Sciences,  Victoria  University  of  Wellington,  PO  Box  600,  Wellington.  

 The   reef-­‐forming   scleractinian   stony   coral   (Solenosmilia   variabilis)   is   one   of  New   Zealand's   most   common   deep   sea   coral   species.   It   has   a   wide   spatial  distribution   and   thrives   at   depths   of   800   -­‐   1200   m.   Such   deep,   cold-­‐water  environments  are  predicted  to  be  affected  by  ocean  acidification  much  sooner  than  more   temperate   environments.   Previous  work  on  Solenosmilia   variabilis  has  shown  it  to  be  a  robust  species  for   in  aquaria  studies.  With  several  newly  sampled   colonies   from   the   Kermadec   Arc   region,   we   have   initiated   an  experiment   to   improve   our   knowledge   of   its   growth   patterns,   both   under  ambient   conditions   and   in   response   to   elevated   pCO2,   the   latter   in   order   to  assess   its   potential   resilience   to   levels   of   ocean   acidification.   As  Solenosmilia  variabilis  is  a  very  long-­‐lived  species,  this  experiment  will  run  for  several  years.  Periodically   over   this   time,   growth   and   intracellular   functioning   of   individual  colonies  will  be  assessed.  At  the  end  of  the  experiment,  radiocarbon  dating  will  be   carried   out   to   determine   colony   ages.   It   is   hoped   that   this   study,   on   a  species   that   provides   important   habitat   and   refuge   for   many   deep   sea  invertebrates   and   fish,   will   help   inform   predictions   of   how   such   deep-­‐sea  ecosystems  might  be  impacted  by  ocean  acidification.    

   

Page 41: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  41  

8th  New  Zealand  Ocean  Acidification  workshop  Ocean  Acidification  in  New  Zealand:    present  state,  pHuture  directions  

 

PARTICIPANTS    

Zhaleh  Adhami   Chemistry,  University  of  Otago   [email protected]  

Evelyn  Armstrong   Chemistry,  University  of  Otago   [email protected]  

Federico  Baltar  Marine  Science,  University  of  Otago   [email protected]  

Neill  Barr   NIWA,  Greta  Point,  Wellington   [email protected]  

Helen  Bostock   NIWA,  Greta  Point,  Wellington   [email protected]  Miriam  Bulach   University  of  Auckland   [email protected]  

Christine  Bylenga  Victoria  University  of  Wellington   [email protected]  

Maria  Byrne   University  of  Sydney   [email protected]  

Mark  Camara   Cawthron  Institute,  Nelson     [email protected]  

Anna  Crosbie   MPI,  Nelson   [email protected]  

Vonda  Cummings   NIWA,  Greta  Point,  Wellington   [email protected]  

Kim  Currie  NIWA,  Chemistry,  University  of  Otago   [email protected]  

Simon  Davy  Victoria  University  of  Wellington   [email protected]  

Peter  Dillingham  University  of  New  England,  Armidale,  NSW   [email protected]  

Jess  Ericson   Nelson   [email protected]  

Katharina  Fabricius  Australian  Institute  of  Marine  Science,  Townsville   [email protected]  

Pamela  Fernandez  Subiabre   Botany,  University  of  Otago   [email protected]  Shawna  Foo   University  of  Sydney   [email protected]  

Emily  Frost   University  of  Auckland   [email protected]  

Samantha  Gale   Cawthron  Institute,  Nelson     [email protected]  

Malindi  Gammon  Victoria  University  of  Wellingto   [email protected]  

Januar  Harianto   University  of  Sydney   [email protected]  

Nicola  Hawes   Glenhavan  Aquaculture  Park   [email protected]  

Sonja  Hempel  Victoria  University  of  Wellington   [email protected]  

Linn  Hoffmann   Botany,  University  of  Otago   [email protected]  

Gretchen  Hofmann  University  of  California,  Santa  Barbara   [email protected]  

Mike  Hudson   University  of  Auckland   [email protected]  

Keith  Hunter   Sciences,  University  of  Otago   [email protected]  

Miles  Lamare  Marine  Science,  University  of  Otago   [email protected]  

Page 42: NZOAR P&A booklet 2015 TOTALLY FINAL 3Feb15 · "7" 10:00"AM" Physiological"effects"of"long#term" acclimation"to"ocean"warming" and"acidification"on"the"purple" sea"urchin,"Heliocidaris$

  42  

Cliff  Law   NIWA,  Greta  Point,  Wellington   [email protected]  

Pablo  Leal   Botany,  University  of  Otago   [email protected]  

Mary  Livingston   MPI,  Wellington   [email protected]  Natalie  Manahan   RMIT  University,  Melbourne   [email protected]  

Christina  McGraw  University  of  New  England,  Armidale,  NSW   [email protected]  

Victoria  Metcalfe   Christchurch   [email protected]  

Sara  Mikaloff-­‐Fletcher   NIWA,  Greta  Point,  Wellington   Sara.Mikaloff-­‐[email protected]  Judith  Murdoch   Chemistry,  University  of  Otago   [email protected]  

Tyler  Northern  Marine  Science,  University  of  Otago   [email protected]  

Darren  Parsons   NIWA,  Greta  Point,  Wellington   [email protected]  

Bryce  Peebles  Marine  Science,  University  of  Otago   [email protected]  

Norman  Ragg   Cawthron  Institute,  Nelson     [email protected]  

Sylvia  Sander   Chemistry,  University  of  Otago   [email protected]  Katherine  Schmutter   Australian  National  University   [email protected]  

Abby  Smith  Marine  Science,  University  of  Otago   [email protected]  

Kate  Sparks  Marine  Science,  University  of  Otago   [email protected]  

Esther  Stuck  Marine  Science,  University  of  Otago   [email protected]  

Tim  Suhrhoff   Oldenburg,  Germany   [email protected]  

Di  Tracey   NIWA  Wellington   [email protected]  

Rebecca  Zitoun  Marine  Science,  University  of  Otago   [email protected]  

   

THANKS!!  The  organising  committee  of  the  NZ  OA  workshop  would  like  to  acknowledge  funding  from  the  University  of  Otago  OA  Research  Theme,  whose  funding  comes  from  the  University  of  Otago  Research  Committee.    We  also  thank  the  University  of  Otago  for  providing  venues  free-­‐of-­‐charge.    We  gratefully  thank  Professor  Hamish  Spencer  for  sharing  his  wine  expertise  with  us,  and  our  student  assistants  for  their  support.    See  you  next  year!  Abby,  Kim,  Miles,  Cliff  and  Doug