442
NX Nastran Verication Manual

NX Nastran Verification Manual

Embed Size (px)

Citation preview

Page 1: NX Nastran Verification Manual

NX Nastran Verification Manual

Page 2: NX Nastran Verification Manual

Proprietary & Restricted Rights Notice

© 2007 UGS Corp. All Rights Reserved. This software and related documentation are proprietaryto UGS Corp.

NASTRAN is a registered trademark of the National Aeronautics and Space Administration. NXNastran is an enhanced proprietary version developed and maintained by UGS Corp.

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and MSC.Patranare trademarks of MSC.Software Corporation.

All other trademarks are the property of their respective owners.

2 NX Nastran Verification Manual

Page 3: NX Nastran Verification Manual

Contents

Part I: Introduction

Overview of the Verification Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Running the Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Part II: Linear Statics Verification Using Theoretical Solutions

Overview of Linear Statics Verification Using Theoretical Solutions . . . . . . . . . . . 3-1

Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1Understanding Comparisons with Theoretical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 3-2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Point Load on a Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1Axial Distributed Load on a Linear Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3Distributed Loads on a Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5Moment Load on a Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7Edge Pressure on Beam Element - Torque Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9Thermal Strain, Displacement, and Stress on Heated Beam . . . . . . . . . . . . . . . . . . . . . . 4-11Uniformly Distributed Load on Linear Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13Membrane Loads on a Linear Quadrilateral Thin Shell Element . . . . . . . . . . . . . . . . . . . 4-15Axial Loading on Rod Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17Stress on a Beam as It Expands and Closes a Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19Thin Wall Cylinder in Pure Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21Thin Shell Beam Wall in Pure Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23Strain Energy of a Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25

Part III: Linear Statics Verification Using Standard NAFEMS Benchmarks

Overview of Linear Statics Verification Using Standard NAFEMS Benchmarks . . . 5-1

Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Elliptic Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1Cylindrical Shell Patch Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6Hemisphere-Point Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10Z-Section Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13Skew Plate Normal Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15Axisymmetric Cylinder/Sphere — Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17Axisymmetric Shell Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21Thick Plate Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25Solid Cylinder/Taper/Sphere — Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30

NX Nastran Verification Manual 3

Page 4: NX Nastran Verification Manual

Contents

Part IV: Normal Mode Dynamics Verification

Overview of Normal Mode Dynamics Verification Using Theoretical Solutions . . . 7-1

Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1Understanding Comparisons with Theoretical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

Natural Frequency of Circular Ring with Axisymmetric Model . . . . . . . . . . . . . . . . . . . . . 8-1Undamped Free Vibration — Single Degree of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3Two Degrees of Freedom Undamped Free Vibration — Principle Modes . . . . . . . . . . . . . . . 8-5Three Degrees of Freedom Torsional System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7Two Degrees of Freedom Vehicle Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8Two Degrees of Freedom Vehicle Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10Cantilever Beam Undamped Free Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12Natural Frequency of a Cantilevered Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14

Part V: Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks

Overview of Normal Mode Dynamics Verification Using Standard NAFEMSBenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Beam Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

Pin-ended Cross — In-plane Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1Pin-ended Double Cross - In-plane Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4Free Square Frame - In-plane Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7Cantilever with Off-center Point Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9Deep Simply-Supported Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11Circular Ring — In-plane and Out-of-plane Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14Cantilevered Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16

Shell Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Thin Square Cantilevered Plate — Symmetric Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1Thin Square Cantilevered Plate — Anti-symmetric Modes . . . . . . . . . . . . . . . . . . . . . . . 11-4Free Thin Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7Simply Supported Thin Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10Simply Supported Thin Annular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13Clamped Thin Rhombic Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16Cantilevered Thin Square Plate with Distorted Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19Simply Supported Thick Square Plate, Test A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24Simply Supported Thick Square Plate, Test B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27Clamped Thick Rhombic Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30Simply Supported Thick Annular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33Cantilevered Square Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-36Cantilevered Tapered Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-39Free Annular Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-42Cantilevered Thin Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-45

4 NX Nastran Verification Manual

Page 5: NX Nastran Verification Manual

Contents

Axisymmetric Solid and Solid Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

Free Cylinder — Axisymmetric Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1Thick Hollow Sphere — Uniform Radial Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4Simply Supported Annular Plate — Axisymmetric Vibration . . . . . . . . . . . . . . . . . . . . . . 12-7Deep Simply Supported "Solid" Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10Simply Supported "Solid" Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13Simply Supported "Solid" Annular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16Cantilevered Solid Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19

Part VI: Verification Test Cases from the Societe Francaise des Mecaniciens

Overview of Verification Test Cases Provided by the Societe Francaise desMecaniciens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

Understanding the Test Case Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements . . 14-1

Short Beam on Two Articulated Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1Clamped Beams Linked by a Rigid Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3Transverse Bending of a Curved Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5Plane Bending Load on a Thin Arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8Grid Point Load on an Articulated CONROD Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11Articulated Plane Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14Beam on an Elastic Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-18

Mechanical Structures — Linear Statics Analysis with Shell Elements . . . . . . . . . 15-1

Plane Shear and Bending Load on a Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1Infinite Plate with a Circular Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4Uniformly Distributed Load on a Circular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7Torque Loading on a Square Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-10Cylindrical Shell with Internal Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-13Uniform Axial Load on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17Hydrostatic Pressure on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-21Gravity Loading on a Thin Wall Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-25Pinched Cylindrical Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-29Spherical Shell with a Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-32Bending Load on a Cylindrical Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-35Uniformly Distributed Load on a Simply-Supported Rectangular Plate . . . . . . . . . . . . . 15-38Uniformly Distributed Load on a Simply-Supported Rhomboid Plate . . . . . . . . . . . . . . . 15-42Shear Loading on a Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-45

Mechanical Structures — Linear Statics Analysis with Solid Elements . . . . . . . . . 16-1

Solid Cylinder in Pure Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1Internal Pressure on a Thick-Walled Spherical Container . . . . . . . . . . . . . . . . . . . . . . . . 16-7Internal Pressure on a Thick-Walled Infinite Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 16-11Prismatic Rod in Pure Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-15Thick Plate Clamped at Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-19

Mechanical Structures — Normal Mode Dynamics Analysis . . . . . . . . . . . . . . . . . 17-1

Lumped Mass-Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1Short Beam on Simple Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4

NX Nastran Verification Manual 5

Page 6: NX Nastran Verification Manual

Contents

Axial Loading on a Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8Cantilever Beam with a Variable Rectangular Section . . . . . . . . . . . . . . . . . . . . . . . . . 17-10Thin Circular Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-13Thin Circular Ring Clamped at Two Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-16Vibration Modes of a Thin Pipe Elbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19Cantilever Beam with Eccentric Lumped Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23Thin Square Plate (Clamped or Free) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-26Simply-Supported Rectangular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-29Thin Ring Plate Clamped on a Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-32Vane of a Compressor - Clamped-free Thin Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-35Bending of a Symmetric Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-38Hovgaard’s Problem — Pipes with Flexible Elbows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-41Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-44

Mechanical Structures — Normal Mode Dynamics Analysis and ModelResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

Transient Response of a Spring-Mass System with Acceleration Loading . . . . . . . . . . . . . 18-1Transient Response of a Clamped-free Post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-5

Stationary Thermal Tests — Heat Transfer Analysis . . . . . . . . . . . . . . . . . . . . . . . 19-1

Hollow Cylinder - Fixed Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2Hollow Cylinder - Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5Cylindrical Rod - Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-7Hollow Cylinder with Two Materials - Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-10Wall-Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-13Wall-Fixed Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-16L-Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-18Orthotropic Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-21Hollow Sphere - Fixed Temperatures, Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-25Hollow Sphere with Two Materials - Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-28

Thermo-mechanical Tests — Linear Statics Analysis . . . . . . . . . . . . . . . . . . . . . . . 20-1

Orthotropic Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1Thermal Gradient on a Thin Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-5Simply-Supported Arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-8

Part VII: Material Nonlinear (Plasticity) Verification Using Standard NAFEMSBenchmarks

Overview of the Material Nonlinear (Plasticity) Verification Using NAFEMS TestCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

Understanding the Verification Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

Plane Strain Elements - Perfect Plasticity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1Plane Strain Elements - Isotropic Hardening Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-6Plane Stress Elements - Perfect Plasticity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-11Plane Stress Elements - Isotropic Hardening Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-16Solid Element - Perfect Plasticity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-21Solid Element - Isotropic Hardening Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-27

6 NX Nastran Verification Manual

Page 7: NX Nastran Verification Manual

Contents

Part VIII: Geometric Nonlinear Verification Using Standard NAFEMS Benchmarks

Overview of the Geometric Nonlinear Verification Using NAFEMS Test Cases . . . 23-1

Understanding the Verification Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

Straight Cantilever with End Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1Straight Cantilever with Axial End Point Load - Brick Elements . . . . . . . . . . . . . . . . . . . 24-6Straight Cantilever with Axial End Point Load - BEAM Elements . . . . . . . . . . . . . . . . . 24-10Lee’s Frame Buckling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-15Large Displacement Elastic Response of a Hinged Spherical Shell Under Uniform PressureLoading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-18Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-20Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-20

NX Nastran Verification Manual 7

Page 8: NX Nastran Verification Manual
Page 9: NX Nastran Verification Manual

Part

I Introduction

Overview of the Verification Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Running the Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

NX Nastran Verification Manual

Page 10: NX Nastran Verification Manual
Page 11: NX Nastran Verification Manual

Chapter

1 Overview of the VerificationManual

This guide contains verification test cases for NX Nastran. These test cases verify the functionof the different NX Nastran analysis types using theoretical and benchmark solutions fromwell-known engineering test cases. Each test case contains test case data and information, suchas element type and material properties, results, and references.

The guide contains test cases for:

• Linear Statics verification using theoretical solutions

• Linear Statics verification using standard NAFEMS benchmarks

• Normal Mode Dynamics verification using theoretical solutions

• Normal Mode Dynamics verification using standard NAFEMS benchmarks

• Verification Test Cases from the Societe Francaise des Mecaniciens

• Material Nonlinear (Plasticity) verification using standard NAFEMS benchmarks (NXNastran only)

• Geometric Nonlinear verification using standard NAFEMS benchmarks

NX Nastran Verification Manual 1-1

Page 12: NX Nastran Verification Manual
Page 13: NX Nastran Verification Manual

Chapter

2 Running the Test Cases

All verification test cases are available as *.dat files and are included in the NX Nastraninstallation in the directory path install_dir/NXr/nast/demo.

The test cases are relatively simple, and most have closed-form theoretical solutions. Differencesbetween finite element and theoretical solutions are in most cases negligible. Some tests wouldrequire an infinite number of elements to achieve an exact solution. Elements are chosen toachieve reasonable engineering accuracy with reasonable computing times.

Actual results from NX Nastran may vary insignificantly from the results presented inthis document. This variation is generally due to different methods of performing realnumber algorithms on different systems.

NX Nastran Verification Manual 2-1

Page 14: NX Nastran Verification Manual
Page 15: NX Nastran Verification Manual

Part

II Linear Statics VerificationUsing Theoretical Solutions

Overview of Linear Statics Verification Using Theoretical Solutions . . . . . . . . . . . . . . . . . 3-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

NX Nastran Verification Manual

Page 16: NX Nastran Verification Manual
Page 17: NX Nastran Verification Manual

Chapter

3 Overview of Linear StaticsVerification Using TheoreticalSolutions

The purpose of these linear statics test cases is to verify the function of the NX Nastran softwareusing theoretical solutions. The test cases are relatively simple in form and most of them haveclosed-form theoretical solutions.

The theoretical solutions shown in these examples are from well-known engineering texts.For each test case, a specific reference is cited. All theoretical reference texts are listed at theend of this topic.

The finite element method is very flexible in the types of physical problems represented. Theverification tests provided are not exhaustive in exploring all possible problems, but representcommon types of applications.

This overview provides information on the following:

• Understanding the test case format

• Understanding comparisons with theoretical solutions

• References

3.1 Understanding the Test Case FormatEach test case is structured with the following information.

• Test case data and information:

– Physical and material properties

– Finite element modeling (modeling procedure or hints)

– Units

– Solution type

– Element type

– Boundary conditions (loads, restraints)

• Results

NX Nastran Verification Manual 3-1

Page 18: NX Nastran Verification Manual

Chapter 3 Overview of Linear Statics Verification Using Theoretical Solutions

• References (text from which a closed-form or theoretical solution was taken)

In addition to these example problems, test cases from NAFEMS (National Agency for FiniteElement Methods and Standards, National Engineering Laboratory, Glasgow, U.K.) have beenexecuted. Results for these test cases can be found in the next section, Linear Statics AnalysisVerification Using NAFEMS Standard Benchmarks.

3.2 Understanding Comparisons with Theoretical SolutionsWhile differences in finite element and theoretical results are, in most cases, negligible, sometests would require an infinite number of elements to achieve the exact solution. Elements arechosen to achieve reasonable engineering accuracy with reasonable computing times.

Results reported here are results which you can compare to the referenced theoretical solution.Other results available from the analyses are not reported here. Results for both theoretical andfinite element solutions are carried out with the same significant digits of accuracy.

The closed-form theoretical solution may have restrictions, such as rigid connections, that donot exist in the real world. These limiting restrictions are not necessary for the finite elementmodel, but are used for comparison purposes. Verification to real world problems is more difficultbut should be done when possible.

The actual results from the NX Nastran software may vary insignificantly from the resultspresented in this document. This variation is due to different methods of performing realnumerical arithmetic on different systems. In addition, it is due to changes in elementformulations which have been made to improve results under certain circumstances.

3.3 ReferencesThe following references have been used in the Linear Statics Analysis verification problemspresented:

1. Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992.

2. Harris, C. O. Introduction to Stress Analysis. New York Macmillan1959.

3. Roark, R. and Young, W. Formulas for Stress and Strain, 5th Edition. New York:McGraw-Hill Book Company, 1975.

4. Shigley, J. and Mitchel L. Mechanical Engineering Design, 4th Edition. New York:McGraw-Hill Book Company, 1983.

5. Timoshenko, S. Strength of Materials, Part I, Elementary Theory and Problems. New YorK:Van Norstrand Reinhold Company, 1955.

3-2 NX Nastran Verification Manual

Page 19: NX Nastran Verification Manual

Chapter

4 Test Cases

4.1 Point Load on a Cantilever BeamDetermine the deflection of a beam at the free end. Determine the stress at the midpoint of the

beam.

Test Case Data and Information

Input Files

mstvl001.dat

Units

Inch

Model Geometry

Length = 480 in.

NX Nastran Verification Manual 4-1

Page 20: NX Nastran Verification Manual

Chapter 4 Test Cases

Cross Sectional Properties

• Area = 30 x 30 in.

• Iy = Iz = 67500 in.4

Material Properties

• E = 30E06 psi

Finite Element Modeling

Create four successive linear beam (CBAR) elements along the X axis.

Boundary Conditions

• Restraints

– Restrain the left end of the beam in all six degrees.

• Loads

– Set grid force to 50,000 lb in. the -Y direction.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Von Mises Stress, grid point 1 (psi) 5333. 5333.

Y Deflection, grid point 5 (in) 0.9102 0.9130

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-2 NX Nastran Verification Manual

Page 21: NX Nastran Verification Manual

Test Cases

4.2 Axial Distributed Load on a Linear BeamDetermine the stress, elongation and resultant force due to an axial loading along a linear beam

element.

Test Case Data and Information

Input Filesmstvl002.dat

UnitsInch

Model Geometry• Length = 300 in.

Cross Sectional Properties• Area = 9 in.2

• square cross section (3 in. x 3 in.)

• I = 6.75 in.4

Material Properties• E = 30E+6 psi

Finite Element ModelingCreate 30 beam element along the X axis, each 10 inches long.

Boundary Conditions• Restraints

– Restrain one end of the beam in all six degrees.

• Loads

– Set the axial distributed load (force per unit length) to 1000 lb/in. for the 10-inch longelement furthest from the restrained end in the X direction.

NX Nastran Verification Manual 4-3

Page 22: NX Nastran Verification Manual

Chapter 4 Test Cases

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Von Mises Stress, grid point 1 (psi) 1111. 1111.

Deflection in X, grid point 2 (in) 0.01111 0.01093

Reaction in X, grid point 1 (lb) –1.000E4 –1.000E4

References

Beer and Johnston. Mechanics of Materials.. New York: McGraw-Hill, Inc., 1992. p. 76.

4-4 NX Nastran Verification Manual

Page 23: NX Nastran Verification Manual

Test Cases

4.3 Distributed Loads on a Cantilever BeamDetermine the deflection of a beam at the free end. Determine the stress at the midpoint of thebeam and the reaction force at the restrained end.

Test Case Data and Information

Input Filesmstvl003.dat

UnitsInch

Model GeometryLength = 480 in.

Cross Sectional Properties• Area = 900 in.2

• Square cross section (30 in. x 30 in.)

• Iy = Iz = 67500 in.4

Material Properties• E = 30E06 psi

Finite Element ModelingCreate eight successive linear beam (CBAR) elements along the X axis.

Boundary Conditions• Restraints

NX Nastran Verification Manual 4-5

Page 24: NX Nastran Verification Manual

Chapter 4 Test Cases

– Restrain the left end of the beam in all six degrees.

• Loads

– Define a distributed load of 250 lb/in. in the –Y direction.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

X Stress at grid point 1 (psi) 6,400. 6,383.

Deflection Magnitude at grid point 5 (in) 0.8190 0.8225 *

Reaction Force Magnitude at grid point 1 (lb) 1.200E5 1.200E5

* Includes shear deformation which is neglected in theoretical value.

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-6 NX Nastran Verification Manual

Page 25: NX Nastran Verification Manual

Test Cases

4.4 Moment Load on a Cantilever BeamDetermine the deflection of a beam at the free end. Determine the bending stress of the beamand the reaction force at the restrained end.

Test Case Data and Information

Input Filesmstvl004.dat

UnitsInch

Model GeometryLength = 480 in.

Cross Sectional Properties• Area = 900 in.2

• Iy = Iz = 67500 in.4

• Square cross section 30” x 30” inches

Material Properties• E = 30 E+06 psi

Finite Element ModelingCreate eight successive linear beam (CBAR) elements along the X axis.

Boundary Conditions• Restraints

NX Nastran Verification Manual 4-7

Page 26: NX Nastran Verification Manual

Chapter 4 Test Cases

– Restrain the left end of the beam in all six degrees.

• Loads

– Set the Z-moment of the end grid point to 2.5E06 in.-lb.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Von Mises Stress at grid point 1 (psi) 555.6 555.6

Deflection Magnitude at grid point 5 (in) 0.1422 0.1422

Reaction Force Z Direction at grid point 1 (lb) 2.500E6 2.499E6

* Includes shear deformation which is neglected in theoretical value.

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-8 NX Nastran Verification Manual

Page 27: NX Nastran Verification Manual

Test Cases

4.5 Edge Pressure on Beam Element - Torque LoadingDetermine the stress, elongation and resultant force due to a torque applied to a hollow cylinderat the free end.

Test Case Data and Information

Input Filesmstvl005.dat

UnitsSI - meter

Model GeometryLength = 1.5 m

Cross Sectional Properties• Radius1 = 0.02 m

• Radius2 = .03 m

Material Properties• E = 208.6 GPa

Finite Element Modeling• Create a CBAR element along the X axis.

NX Nastran Verification Manual 4-9

Page 28: NX Nastran Verification Manual

Chapter 4 Test Cases

• To find the maximum shearing stress, set the effective radius in torsion to 0.03 m.

• The minimum shearing stress is located at a radius equal to 0.02 m.

Boundary Conditions

• Restraints

– Restrain the left end of the beam in all six degrees.

• Loads

– Apply an edge torque equal to 4.08 kN-m along the 10 cm linear beam (CBAR) elementfurthest from the restrained end.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Max Torsional Shear Stress (MPa) 120.0 120.0

Min Torsional Shear Stress (MPa) 80.00 80.00

Post Processing

To obtain the minimum and maximum shear stress values, a post processor which supportscontour plots of the torsional shear stress on the cross section using the linear beam (CBAR)element forces must be used. The cross section location can be anywhere except the free end ofthe beam.

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 122.

4-10 NX Nastran Verification Manual

Page 29: NX Nastran Verification Manual

Test Cases

4.6 Thermal Strain, Displacement, and Stress on Heated BeamA beam originally 1 meter long and at –50° C is heated to 25° C. First, determine the displacementand thermal strain on a cantilever beam. Fix the beam at the free end and then determine thedisplacement, reaction forces, and stresses along the beam. Next, fix the beam at both ends.

Test Case Data and Information

Input Files

mstvl007.dat

Units

SI - meter

Model Geometry

Length = 1 m

Cross Sectional Properties

• Area = 0.01 m2

Material Properties

• E = 2.068E11 Pa

• Coefficient of thermal expansion = 1.2E–05

• v = 0.3

NX Nastran Verification Manual 4-11

Page 30: NX Nastran Verification Manual

Chapter 4 Test Cases

Finite Element Modeling

• Create 10 linear beam (CBAR) elements on the X axis and restrain the end grids in alldirections.

• Apply a temperature on all grid points.

Boundary Conditions

• Restraints

– Case 1: Restrain one end of the beam in all six directions.

– Case 2: Restrain both ends of the beam in all six directions.

• Loads

– Set grid temperatures to 25°C. Set the reference temperature to –50°C.

Solution Type

SOL 101 — Linear Statics

Results

Case 1

Result Bench Value NX Nastran

X Displacement at grid 11 (m) .0009000 .0009000

Axial Thermal Strain .0009000 .0009000

Case 2

Result Bench Value NX Nastran

X Displacement (m) 0 0

Axial Stress (Pa) 1.860E8 1.861E8

X Reaction Force (N) 1.860E6 1.861E6

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 65.

4-12 NX Nastran Verification Manual

Page 31: NX Nastran Verification Manual

Test Cases

4.7 Uniformly Distributed Load on Linear BeamA beam 40 feet long is restrained and loaded as shown with a distributed load of –833 lbs. perfoot. Determine the bending stress and the deflection at the middle of the beam.

Test Case Data and Information

Input Files

mstvl008.dat

Units

Inch

Model Geometry

Length = 480 in.

NX Nastran Verification Manual 4-13

Page 32: NX Nastran Verification Manual

Chapter 4 Test Cases

Cross Sectional Properties

• Rectangular cross section (1.17 in. x 43.24 in.)

• Iz = 7892 in.4

Material Properties

• E = 30E06 psi

Finite Element Modeling

Create 4 successive linear beam (CBAR) elements that are each 10 feet long.

Boundary Conditions

• Restraints

– Restrain the second and the fourth grids in five degrees of freedom. Do not restrainrotation about Z.

• Loads

– Define a distributed load (force per unit length) of –833 lb/foot (global negative Ydirection) on the end elements.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Y Displacement at grid 3 (in.) 0.1820 0.182

Max bending stress (psi) 1.644E4 1.644E4

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 98.

4-14 NX Nastran Verification Manual

Page 33: NX Nastran Verification Manual

Test Cases

4.8 Membrane Loads on a Linear Quadrilateral Thin Shell ElementA circle is scribed on an unstressed aluminum plate. Forces acting in the plane of the plate causenormal stresses. Determine the change in the length of diameter AB and of diameter CD.

Test Case Data and Information

Element Typescquad4

Input Filesmstvl009.dat

UnitsInch

Model Geometry• Length = 15 in.

• Diameter = 9 in.

NX Nastran Verification Manual 4-15

Page 34: NX Nastran Verification Manual

Chapter 4 Test Cases

• Thickness = 3/4 in.

Material Properties

• E = 10E06 psi

• Poisson’s ratio = 1/3

• F(x)/L = 9,000 lb/in.

• F(z)/L = 15,000 lb/in.

Finite Element Modeling

Create 1/4 of the model and apply symmetry boundary conditions. Then multiply the answer by2 for correct results. Remember to account for the ratio of the circle diameter to plate length.

Boundary Conditions

• Restraints

– Restrain the left end of the beam in all six degrees.

• Loads

– Set the edge pressure to 9,000 lb/in. in the X direction and 15,000 lb/in. in the Z direction.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

X Diameter Change (in.) –4.800E3 –4.800E3

Z Diameter Change (in.) –14.40E3 –14.40E3

Post Processing

Deflection

• (dx at grid point 7 – dx at grid point 10) x 2 = (0.004 – 0.0016) x 2 = 0.0048

• (dz at grid point 7 – dz at grid point 24) x 2 = (0.012 –0.0048) x 2 = 0.0144

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 85.

4-16 NX Nastran Verification Manual

Page 35: NX Nastran Verification Manual

Test Cases

4.9 Axial Loading on Rod ElementDetermine the stress, elongation, and strain due to an axial load on a rod element.

Test Case Data and Information

Input Files

mstvl011.dat

Units

SI - meters

Model Geometry

Length = 10 m

Cross Sectional Properties

• Area = 0.01 m2

Material Properties

• E = 200.0 GPa

Finite Element Modeling

Create a rod (CROD) element along the X axis.

Boundary Conditions

• Restraints

– Restrain an end of the rod in the 3 translational degrees.

• Loads

– Apply a grid point force in the positive X-direction of 500 kN.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Axial Stress (MPa) 50.00 50.00

Axial Strain 0.0002500 0.0002500

Elongation (mm) 2.500 2.500

NX Nastran Verification Manual 4-17

Page 36: NX Nastran Verification Manual

Chapter 4 Test Cases

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

4-18 NX Nastran Verification Manual

Page 37: NX Nastran Verification Manual

Test Cases

4.10 Stress on a Beam as It Expands and Closes a GapDetermine the stress on a beam as it expands thermally and closes a 0.002 inch gap. It isinitially at 70 °F and is heated to 170 °F.

Test Case Data and Information

Input Filesmstvl013.dat

UnitsInch

Model GeometryLength = 3 in.

Material Properties• E = 1.05E07 psi

• Coefficient of thermal expansion = 1.25E–05 in./(in.–°F)

Finite Element Modeling• Create a single linear beam (CBAR) element on the X axis.

NX Nastran Verification Manual 4-19

Page 38: NX Nastran Verification Manual

Chapter 4 Test Cases

• Create an MPC to define the closing of the gap.

Boundary Conditions

• Restraints

– Restrain the free end of the beam in all six degrees.

• Loads

– Set grid temperature to 170 °F.

– Set the reference temperature to 70 °F.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Axial Stress (psi) –6.125E3 –6.125E3

References

Harris, C. O. Introduction to Stress Analysis 1959. p. 58.

4-20 NX Nastran Verification Manual

Page 39: NX Nastran Verification Manual

Test Cases

4.11 Thin Wall Cylinder in Pure TensionDetermine the stress and deflection of a thin wall cylinder with a uniform axial load.

Test Case Data and Information

Input Files

mstvl014.dat

UnitsInch

Model Geometry• R = 0.5 in.

• Thickness = 0.01 in.

• y = 1.0 in.

NX Nastran Verification Manual 4-21

Page 40: NX Nastran Verification Manual

Chapter 4 Test Cases

Material Properties

• E = 10,000 psi

• ν = 0.3

Finite Element Modeling

Create 1/4 model of the cylinder with thin shell linear quadrilateral (CQUAD4) elements andsymmetry boundary conditions.

Boundary Conditions

• Restraints

– Restrain edges of symmetry, in translation, in hoop direction, and rotation about Z axis.

– Restrain one end in Y direction.

Loads

– Apply membrane edge pressure of p / (pi)D = 3.1831 where p = 10 psi

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Axial (Z) Stress (psi) 1.000E3 1.000E3

Axial (Z) Deflection (in.) 1.000 1.000

Radial Deflection (in.) –0.01500 –0.01500

References

Roark, R. and Young, W. Formulas for Stress and Strain, 6th Edition. New York: McGraw-HillBook Company, 1989. p. 518, Case 1a.

4-22 NX Nastran Verification Manual

Page 41: NX Nastran Verification Manual

Test Cases

4.12 Thin Shell Beam Wall in Pure BendingDetermine the maximum stress, maximum deflection, and strain energy of a thin shell beamwall with a uniform bending load.

Test Case Data and Information

Input Files

mstvl015.dat

Units

Inch

Model Geometry

• Length = 30 in.

• Width = 5 in.

• Thickness = 0.1 in.

NX Nastran Verification Manual 4-23

Page 42: NX Nastran Verification Manual

Chapter 4 Test Cases

Material Properties

• E = 30E06 psi

• ν = 0.03

Finite Element Modeling

Create a 30 in. x 5 in. plate with thing shell (CQUAD4) elements.

Boundary Conditions

• Restraints

– Restrain at one of the ends in all directions.

• Loads

– Apply edge pressure of p/w = 1.2 lbs/in. where p = 6.0 lb.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Max Z Deflection (in.) 4.320 4.264

Max Z Stress (psi) 2.160E4 1.980E4

Total Strain Energy (lb in.) 12.96 12.79

References

Shigley, J. and Mitchel L. Mechanical Engineering Design, 4th Edition. New York: McGraw-Hill,Inc., 1983. pp. 134, 804.

4-24 NX Nastran Verification Manual

Page 43: NX Nastran Verification Manual

Test Cases

4.13 Strain Energy of a TrussDetermine the strain energy of a truss. The cross-sectional area of the diagonal members is twicethe cross-sectional area of the horizontal and vertical members.

Test Case Data and Information

Input Filesmstvl016.dat

UnitsInch

Model Geometry• Length = 10 in.

Cross Sectional Properties• Cross-sectional area (A) = 0.01 in.2

Material Properties• E = 30E06 psi

Finite Element ModelingCreate truss shown using rod (CROD) elements.

Boundary Conditions• Restraints

NX Nastran Verification Manual 4-25

Page 44: NX Nastran Verification Manual

Chapter 4 Test Cases

– Restrain far left grid in directions: X, Y, Z, RX, RY.

– Restrain far right grid in directions: Y, Z, RX, RY.

• Loads

– Apply grid force in Y direction on lower center grid; F= 300 lb.

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Total Strain Energy (lb in.) 5.846 5.846

References

Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 588.

4-26 NX Nastran Verification Manual

Page 45: NX Nastran Verification Manual

Part

III Linear Statics VerificationUsing Standard NAFEMSBenchmarks

Overview of Linear Statics Verification Using Standard NAFEMS Benchmarks . . . . . . . . . 5-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

NX Nastran Verification Manual

Page 46: NX Nastran Verification Manual
Page 47: NX Nastran Verification Manual

Chapter

5 Overview of Linear StaticsVerification Using StandardNAFEMS Benchmarks

The purpose of these linear statics test cases is to verify the function of NX Nastran usingstandard benchmarks published by NAFEMS (National Agency for Finite Element Methods andStandards, National Engineering Laboratory, Glasgow, U.K.).

These standard benchmark tests were created by NAFEMS to stretch the limits of the finiteelements in commercial software. All results obtained using NX Nastran compare favorably withother commercial finite element analysis software.

5.1 Understanding the Test Case FormatEach test case is structured with the following information:

• Test case data and information

– Physical and material properties

– Finite element modeling (modeling procedure or hints)

– Units

– Finite element modeling information

– Boundary conditions (loads and restraints)

– Solution type

• Results

• Reference

5.2 ReferenceThe following reference has been used in these test cases:

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks. Glasgow:NAFEMS, Rev. 3, 1990.

NX Nastran Verification Manual 5-1

Page 48: NX Nastran Verification Manual
Page 49: NX Nastran Verification Manual

Chapter

6 Test Cases

6.1 Elliptic MembraneThis test is a linear elastic analysis of an elliptic membrane (shown below) using coarse and finemeshes of plane stress elements and thin shell elements. It provides the input data and resultsfor NAFEMS Standard Benchmark Test LE1.

Ellipses:

Test Case Data and Information

Input Files

le101.dat (plane stress quadrilateral)

le102.dat (plane stress triangle)

le103.dat (thin shell)

NX Nastran Verification Manual 6-1

Page 50: NX Nastran Verification Manual

Chapter 6 Test Cases

Physical and Material Properties

• Thickness = 0.1 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

Finite Element Modeling

• Plane stress (only MID1 defined on PSHELL) linear (CQUAD4) and parabolic (CQUAD8)quadrilaterals — coarse and fine mesh.

• Plane stress (only MID1 defined on PSHELL) linear (CTRI3) and parabolic (CTRI6) triangles— coarse and fine mesh.

• Thin shell (MID1, MID2 and MID3 defined on PSHELL) linear (CQUAD4) and parabolic(CQUAD8) quadrilaterals — coarse and fine mesh.

• The fine mesh is created by approximately halving the coarse mesh.

6-2 NX Nastran Verification Manual

Page 51: NX Nastran Verification Manual

Test Cases

Boundary Conditions

• Uniform outward pressure at outer edge BC = 10 MPa

• Inner curved edge AD unloaded

• X displacement (edge AB) = 0

NX Nastran Verification Manual 6-3

Page 52: NX Nastran Verification Manual

Chapter 6 Test Cases

• Y displacement (edge CD) = 0

Solution Type

SOL 101 — Linear Statics

Results

Output — tangential edge stress at D (stress in Y direction)

Plane Stress Elements

Test case Grid point # Bench Value NX Nastran

Linear quad — coarse mesh 4.000 92.70 62.10

Linear quad — fine mesh 204.0 92.70 79.60

Parabolic quad — coarse mesh 104.0 92.70 84.00

Parabolic quad — fine mesh 304.0 92.70 88.70

Linear triangle — coarse mesh 4.000 92.70 52.90

Linear triangle — fine mesh 204.0 92.70 70.90

Parabolic triangle — coarsemesh

104.0 92.70 76.80

Parabolic triangle — fine mesh 304.0 92.70 93.60

Thin Shell Elements

Test case Grid point # Bench Value NX Nastran

Linear quad — coarse mesh 4.000 92.70 62.10

6-4 NX Nastran Verification Manual

Page 53: NX Nastran Verification Manual

Test Cases

Test case Grid point # Bench Value NX Nastran

Linear quad — fine mesh 204.0 92.70 79.60

Parabolic quad — coarse mesh 104.0 92.70 84.00

Parabolic quad — fine mesh 304.0 92.70 88.70

References

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, TestNo. LE1. Glasgow: NAFEMS, Rev. 3, 1990.

NX Nastran Verification Manual 6-5

Page 54: NX Nastran Verification Manual

Chapter 6 Test Cases

6.2 Cylindrical Shell Patch TestThis test is a linear elastic analysis of a cylindrical shell (shown below) using thin shell elementsand two different loadings. It provides the input data and results for NAFEMS StandardBenchmark Test LE2.

Test Case Data and Information

Input Files

• le201a.dat (linear shell, case 1)

• le201b.dat (parabolic shell, case 1)

• le202a.dat (linear shell, case 2)

• le202b.dat (parabolic shell, case 2)

Physical and Material Properties

• Thickness = 0.1 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

6-6 NX Nastran Verification Manual

Page 55: NX Nastran Verification Manual

Test Cases

Units

SI

Finite Element Modeling

• Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals

Boundary Conditions

• Translations and rotations (edge AB) = 0

• Z translations and normal rotations (edge AD and edge BC) = 0

Case 1 loading:

• Uniform normal edge moment on DC = 1.0 kNm/m

Case 2 loading:

• Uniform outward normal pressure at mid-surface ABCD = 0.6 MPa

• Tangential outward normal pressure on edge DC = 60.0 MPa

NX Nastran Verification Manual 6-7

Page 56: NX Nastran Verification Manual

Chapter 6 Test Cases

Solution Type

SOL 101 — Linear Statics

Results

Output — outer (convex) surface tangential stress at point E (grid point 2):

Test case Bench Value NX Nastran

Linear quad — case 1 60.00 51.80

Linear quad — case 2 60.00 54.00*

Parabolic quad — case 1 60.00 51.10

Parabolic quad — case 2 60.00 55.10

* Since the shapes of the shells are an approximation to a cylindrical surface, an edge loadwill not be in the correct direction. To get this result, the edge load must be input as gridforces in the tangential direction.

Post Processing

• Stress component: Y

6-8 NX Nastran Verification Manual

Page 57: NX Nastran Verification Manual

Test Cases

• Results obtained on the element top surface in cylindrical coordinate system

References

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, TestNo. LE2. Glasgow: NAFEMS, Rev. 3, 1990.

NX Nastran Verification Manual 6-9

Page 58: NX Nastran Verification Manual

Chapter 6 Test Cases

6.3 Hemisphere-Point LoadsThis test is a linear elastic analysis of hemisphere point loads (shown below) using coarse andfine meshes of thin shell elements. It provides the input data and results for NAFEMS StandardBenchmark Test LE3.

Test Case Data and Information

Input Files

• le301.dat (linear quad, coarse mesh)

• le302.dat (linear quad, fine mesh)

• le303.dat (parabolic quad, coarse mesh)

• le304.dat (parabolic quad, fine mesh)

Physical and Material Properties

• Thickness = 0.04 m

• Isotropic material

• E = 68.25 × 103 MPa

• v = 0.3

6-10 NX Nastran Verification Manual

Page 59: NX Nastran Verification Manual

Test Cases

Units

SI

Finite Element Modeling

• Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh

• Equally spaced grid points on AC, CE, EA

• Point G at X = Y = Z = 10 /( 31/2) grid point 7

Boundary Conditions

• Edge AE symmetry about XZ plane (y = rotation x = rotation z = 0)

• Edge CE symmetry about YZ plane (x = rotation y = rotation z = 0)

• Point E (x = y = z = 0)

• All other displacements on edge AC are free.

• Concentrated radial load outward at A = 2KN

• Concentrated radial load inward at C = 2KN

NX Nastran Verification Manual 6-11

Page 60: NX Nastran Verification Manual

Chapter 6 Test Cases

Solution Type

SOL 101 — Linear Statics

Results

Output — X displacement at point A

Mesh Test Case Bench Value NX Nastran

linear quad — coarse mesh le301 0.1850 0.1890

linear quad — fine mesh le302 0.1850 0.1870

parabolic quad — coarsemesh

le303 0.1850 0.1420

parabolic quad — fine mesh le304 0.1850 0.1710

References

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, TestNo. LE3. Glasgow: NAFEMS, Rev. 3, 1990.

6-12 NX Nastran Verification Manual

Page 61: NX Nastran Verification Manual

Test Cases

6.4 Z-Section CantileverThis test is a linear elastic analysis of a Z-section cantilever (shown below) using thin shellelements. It provides the input data and results for NAFEMS Standard Benchmark Test LE5.

Test Case Data and Information

Input Files

• le501.dat (linear quadrilateral)

• le502.dat (parabolic quadrilateral)

Physical and Material Properties

• Thickness = 0.1 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

Finite Element Modeling

• Thin shell linear (CQUAD4) and parabolic (CQUAD8) quadrilaterals

Boundary Conditions

• All displacements on edges B1, B2, B3 = 0

• Torque of 1.2MN applied at end C by two edge shears (at C1 & C3) of 0.6 MN

NX Nastran Verification Manual 6-13

Page 62: NX Nastran Verification Manual

Chapter 6 Test Cases

Solution Type

SOL 101 — Linear Statics

Results

Output — averaged axial stress at mid-surface, point A, grid point 30 (compression)

Result Bench Value NX Nastran

Linear quad - point A/grid point 30 –108.0 –111.0

Parabolic quad - point A/grid point 30 –108.0 –109.3

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE5. Glasgow: NAFEMS, Rev. 3, 1990.

6-14 NX Nastran Verification Manual

Page 63: NX Nastran Verification Manual

Test Cases

6.5 Skew Plate Normal PressureThis test is a linear elastic analysis of a plate (shown below) using thin shell elements. Itprovides the input data and results for NAFEMS Standard Benchmark Test LE6.

Test Case Data and Information

Input Files

• le601.dat (linear and parabolic quad)

• le602.dat (linear and parabolic triangle)

Physical and Material Properties

• Thickness = 0.01 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

Finite Element Modeling

• Thin shelllinear (CQUAD4) and parabolic (CQUAD8) quadrilaterals — coarse and fine mesh

• Thin shell linear (CTRI3) and parabolic (CTRI6) triangles — coarse and fine mesh

Boundary Conditions

• Simple supports

• Z displacement = 0

• Normal pressure = –0.7KPa in the Z direction

NX Nastran Verification Manual 6-15

Page 64: NX Nastran Verification Manual

Chapter 6 Test Cases

Solution Type

SOL 101 — Linear Statics

Results

Output — maximum principal stress on the bottom surface at the plate center.

Case le601

Mesh Grid point # Bench Value NX Nastran

Linear quad coarse mesh 9.000 0.8020 0.3250

Linear quad fine mesh 18.00 0.8020 0.6830

Parabolic quad coarse mesh 43.00 0.8020 0.6250

Parabolic quad fine mesh 52.00 0.8020 0.7190

Case le602

Mresh Grid point # BenchValue

NX Nastran

Linear triangle coarse mesh 9.000 0.8020 0.3960

Linear triangle fine mesh 18.00 0.8020 0.7200

Parabolic triangle coarsemesh

43.00 0.8020 0.9260

Parabolic triangle fine mesh 52.00 0.8020 0.8570

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE6. Glasgow: NAFEMS, Rev. 3, 1990.

6-16 NX Nastran Verification Manual

Page 65: NX Nastran Verification Manual

Test Cases

6.6 Axisymmetric Cylinder/Sphere — PressureThis test is a linear elastic analysis of an axisymmetric cylinder (shown below) usingaxisymmetric shell elements. It provides the input data and results for NAFEMS StandardBenchmark Test LE7.

Test Case Data and Information

Input Files

• le701a.dat (coarse linear mesh)

• le701b.dat (fine linear mesh)

Physical and Material Properties

• Thickness = 0.025 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

NX Nastran Verification Manual 6-17

Page 66: NX Nastran Verification Manual

Chapter 6 Test Cases

Finite Element Modeling

• Axisymmetric shell — coarse and fine mesh

• Elements uniformly spaced between points A, B, C, D, E, F

Boundary Conditions

• Point A — radial displacement and rotation = 0

• Point F — axial displacement (z direction) = 0

• Uniform internal pressure = 1 MPa

6-18 NX Nastran Verification Manual

Page 67: NX Nastran Verification Manual

Test Cases

Solution Type

SOL 101 — Linear Statics

Results

Output — axial stress on outer surface at point D

2-noded axisymmetric shell

Mesh Bench Value NX Nastran

Coarse mesh 25.86 25.30

Fine mesh 25.86 25.65

3-noded axisymmetric shell

Mesh Bench Value NX Nastran

Coarse mesh 25.86 26.16

Fine mesh 25.86 25.99

Post Processing

2-noded axisymmetric shell

• σz at grid point 8

NX Nastran Verification Manual 6-19

Page 68: NX Nastran Verification Manual

Chapter 6 Test Cases

• σz at grid point 15

3-noded axisymmetric shell

• σz at grid point 33

• σz at grid point 43

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE7. Glasgow: NAFEMS, Rev. 3, 1990.

6-20 NX Nastran Verification Manual

Page 69: NX Nastran Verification Manual

Test Cases

6.7 Axisymmetric Shell PressureThis test is a linear elastic analysis of axisymmetric shell pressure (shown below) usingaxisymmetric shell elements. It provides the input data and results for NAFEMS StandardBenchmark Test LE8.

Test Case Data and Information

Input Files

• le801.dat (linear)

• le801a.dat (parabolic)

Physical and Material Properties

• Thickness = 0.01 m

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

NX Nastran Verification Manual 6-21

Page 70: NX Nastran Verification Manual

Chapter 6 Test Cases

Finite Element Modeling

• Axisymmetric shell — coarse and fine mesh

• Elements uniformly spaced between points A, B, C, D, E

Boundary Conditions

• Point E — radial displacement and rotation = 0

• Point A — Z-displacement = 0

• Uniform internal pressure = 1 MPa

6-22 NX Nastran Verification Manual

Page 71: NX Nastran Verification Manual

Test Cases

Solution TypeLinear Statics

ResultsOutput — hoop stress on outer surface at point D

2-noded axisymmetric shell

Mesh Bench Value NX Nastran

Coarse mesh 94.55 82.57

Fine mesh 94.55 83.14

3-noded axisymmetric shell

Mesh Bench Value NX Nastran

Coarse mesh 94.55 89.04

Fine mesh 94.55 94.88

Post Processing

2-noded axisymmetric shell

Fine Mesh

• Grid point 29

• Y stress

NX Nastran Verification Manual 6-23

Page 72: NX Nastran Verification Manual

Chapter 6 Test Cases

• Bottom surface

Coarse Mesh

• Grid point 73

• Y stress

• Bottom surface

3-noded axisymmetric shell

Fine Mesh

• Grid point 25

• Y stress

• Bottom surface

Coarse Mesh

• Grid point 1

• Y stress

• Bottom surface

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE8. Glasgow: NAFEMS, Rev. 3, 1990.

6-24 NX Nastran Verification Manual

Page 73: NX Nastran Verification Manual

Test Cases

6.8 Thick Plate PressureThis article provides the input data and results for NAFEMS Standard Benchmark Test LE10.This test is a linear elastic analysis of a thick (shown below) using coarse and fine meshes ofsolid elements.

Ellipses:

Test Case Data and Information

Input Files

• le1001.dat (linear and parabolic brick)

• le1002.dat (linear and parabolic wedge)

• le1003.dat (linear and parabolic tetrahedron)

Physical and Material Properties

• Isotropic material

• E = 210E3 MPa

• v = 0.3

Units

SI

Finite Element Modeling

• Solid brick (CHEXA) linear and parabolic - coarse and fine mesh

NX Nastran Verification Manual 6-25

Page 74: NX Nastran Verification Manual

Chapter 6 Test Cases

• Solid wedge (CPENTA) linear and parabolic - coarse and fine mesh

• Solid tetrahedron (CTETRA) - linear and parabolic - coarse and fine mesh

Solid Brick

6-26 NX Nastran Verification Manual

Page 75: NX Nastran Verification Manual

Test Cases

Solid Wedge

Solid Tetrahedron — fine mesh only

Boundary Conditions

• Uniform normal pressure on the upper surface of the plate = 1 MPa

• Inner curved edge AD unloaded

• X and Y displacements on faces DCD’C′ and ABA′B′ = 0

• X and Y displacements on face BCB′C′ are fixed

NX Nastran Verification Manual 6-27

Page 76: NX Nastran Verification Manual

Chapter 6 Test Cases

• Z displacements along mid-plane are fixed

Solution Type

SOL 101 — Linear Statics

Results

Output — direct stress at point Dσyy

Test Case 1e1001

Mesh Grid point # Bench Value NX Nastran

Linear brick — coarse mesh 4.000 –5.500 –5.410

Linear brick — fine mesh 204.0 –5.500 –5.670

Parabolic brick — coarsemesh

104.0 –5.500 –6.130

Parabolic brick — fine mesh 304.0 –5.500 –6.040

Test Case 1e1002

Mesh Grid point # Bench Value NX Nastran

Linear wedge — coarse mesh 4.000 –5.500 –5.940

Linear wedge — fine mesh 204.0 –5.500 –5.830

Parabolic wedge — coarse mesh 104.0 –5.500 –5.320

Parabolic wedge — fine mesh 304.0 –5.500 –6.010

Test Case 1e1003

Result Grid point # Bench Value NX Nastran

Linear tetra — fine mesh 40.00 –5.500 –2.410

6-28 NX Nastran Verification Manual

Page 77: NX Nastran Verification Manual

Test Cases

Result Grid point # Bench Value NX Nastran

Parabolic tetra — fine mesh 171.0 –5.500 –5.280

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE10. Glasgow: NAFEMS, Rev. 3, 1990.

NX Nastran Verification Manual 6-29

Page 78: NX Nastran Verification Manual

Chapter 6 Test Cases

6.9 Solid Cylinder/Taper/Sphere — TemperatureThis test is a linear elastic analysis of a solid cylinder with a temperature gradient (shownbelow) using coarse and fine meshes of solid elements. It provides the input data and results forNAFEMS Standard Benchmark Test LE11.

Test Case Data and Information

Input Files

• le1101a.dat (linear brick — coarse mesh)

• le1101b.dat (linear brick — fine mesh)

• le1102a.dat (parabolic brick — coarse mesh)

• le1102b.dat (parabolic brick — fine mesh)

• le1103a.dat (linear wedge — coarse mesh)

• le1103b.dat (linear wedge — fine mesh)

• le1104a.dat (parabolic wedge — coarse mesh)

• le1104b.dat (parabolic wedge — fine mesh)

• le1105a.dat (linear tetra — coarse mesh)

6-30 NX Nastran Verification Manual

Page 79: NX Nastran Verification Manual

Test Cases

• le1105b.dat (linear tetra — fine mesh)

• le1106a.dat (parabolic tetra — coarse mesh)

• le1106b.dat (parabolic tetra — fine mesh)

Physical and Material Properties

• Isotropic material

• E = 210E3 MPa

• v = 0.3

• a = 2.3E–4 °C

Units

SI

Finite Element Modeling

• Solid brick (CHEXA) linear and parabolic — coarse and fine mesh

• Solid wedge (CPENTA) linear (6 grid point) and parabolic (15 grid point) — coarse andfine mesh

• Solid tetrahedron (CTETRA) linear and parabolic — coarse and fine mesh

NX Nastran Verification Manual 6-31

Page 80: NX Nastran Verification Manual

Chapter 6 Test Cases

Solid Brick

Solid Tetrahedron

6-32 NX Nastran Verification Manual

Page 81: NX Nastran Verification Manual

Test Cases

Boundary Conditions

• Linear temperature gradient in the radial and axial direction

T° C = (X2 + Y2)1/2 + Z

• X, Y, and Z displacements = 0

• X and Y displacements on face BCB′C′ are fixed

• Z displacements on XY-plane face and HIH′I′ face = 0

Solution Type

SOL 101 — Linear Statics

Results

Output - direct stress σyy at point A

File Name Result Grid point at Point A BenchValue

NX Nastran

le1101a Linear brick — coarsemesh

30.00 –105.0 –88.29

le1101b Linear brick — finemesh

71.00 –105.0 –93.68

le1102a Parabolic brick —coarse mesh

67.00 –105.0 –100.4

le1102b Parabolic brick — finemesh

159.0 –105.0 –111.2

le1103a Linear wedge — coarsemesh

33.00 –105.0 –10.00

NX Nastran Verification Manual 6-33

Page 82: NX Nastran Verification Manual

Chapter 6 Test Cases

File Name Result Grid point at Point A BenchValue

NX Nastran

le1103b Linear wedge — finemesh

74.00 –105.0 –48.30

le1104a Parabolic wedge —coarse mesh

71.00 –105.0 –87.20

le1104b Parabolic wedge — finemesh

187.0 –105.0 –96.20

le1105a Linear tetra — coarsemesh

8.000 –105.0 –31.40

le1105b Linear tetra — finemesh

8.000 –105.0 –65.20

le1106a Parabolic tetra —coarse mesh

8.000 –105.0 –89.60

le1106b Parabolic tetra — finemesh

8.000 –105.0 –97.30

References

NAFEMS Finite Element Methods & Standards. The Standard NAFEMS Benchmarks, TestNo. LE11. Glasgow: NAFEMS, Rev. 3, 1990.

6-34 NX Nastran Verification Manual

Page 83: NX Nastran Verification Manual

Part

IV Normal Mode DynamicsVerification

Overview of Normal Mode Dynamics Verification Using Theoretical Solutions . . . . . . . . . . 7-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

NX Nastran Verification Manual

Page 84: NX Nastran Verification Manual
Page 85: NX Nastran Verification Manual

Chapter

7 Overview of Normal ModeDynamics Verification UsingTheoretical Solutions

The purpose of these normal mode dynamics test cases is to verify the function of NX Nastranusing theoretical solutions. The test cases are relatively simple in form and most of them haveclosed-form theoretical solutions.

The theoretical solutions shown in these examples are from well known engineering texts.For each test case, a specific reference is cited. All theoretical reference texts are listed at theend of this topic.

The finite element method is very flexible in the types of physical problems represented. Theverification tests provided are not exhaustive in exploring all possible problems, but representcommon types of applications.

This overview provides information on the following:

• Understanding the test case format

• Understanding comparisons with theoretical solutions

• References

7.1 Understanding the Test Case FormatEach test case is structured with the following information.

• Test case data and information:

– Physical and material properties

– Finite element modeling (modeling procedure or hints)

– Units

– Solution type

– Boundary conditions (loads and restraints/constraints)

• Results

• Reference

NX Nastran Verification Manual 7-1

Page 86: NX Nastran Verification Manual

Chapter 7 Overview of Normal Mode Dynamics Verification Using TheoreticalSolutions

7.2 Understanding Comparisons with Theoretical SolutionsWhile differences in finite element and theoretical results are, in most cases, negligible, sometests would require an infinite number of elements to achieve the exact solution. Elements arechosen to achieve reasonable engineering accuracy with reasonable computing times.

Results reported here are results which you can compare to the referenced theoretical solution.Other results available from the analyses are not reported here. Results for both theoretical andfinite element solutions are carried out with the same significant digits of accuracy.

The closed-form theoretical solution may have restrictions, such as rigid connections, that donot exist in the real world. These limiting restrictions are not necessary for the finite elementmodel, but are used for comparison purposes. Verification to real world problems is more difficultbut should be done when possible.

The actual results from NX Nastran may vary insignificantly from the results presented in thisdocument. This variation is due to different methods of performing real numerical arithmetic ondifferent systems. In addition, it is due to changes in element formulations which have beenmade to improve results under certain circumstances.

7.3 ReferenceThe following references have been used in the normal mode dynamics analysis verificationproblems presented:

1. Blevins, R. Formulas For Natural Frequency and Mode Shape, 1st Edition. New York: VanNorstrand Reinhold Company, 1979.

2. Timoshenko and Young. Vibration Problems in Engineering. New York: Van NorstrandReinhold Company, 1955.

3. Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, Theory and Applications. Boston:Allyn and Bacon, Inc., 1978.

4. Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition. Boston: Allyn andBacon, Inc., 1978.

7-2 NX Nastran Verification Manual

Page 87: NX Nastran Verification Manual

Chapter

8 Test Cases

8.1 Natural Frequency of Circular Ring with Axisymmetric ModelDetermine the frequency of radial vibration of an axisymmetric ring.

Test Case Data and Information

Input Filemstvn001.dat

UnitsInch

Model Geometry• Thickness = 0.05 in.

• Radius = 100 in.

Material Properties• Density = 0.00073 lb-sec2/in.4

• E = 30E6 psi

Finite Element ModelingCreate a linear axisymmetric thin shell element (CCONEAX) .05 inches long at a radius of100 inches from the center.

NX Nastran Verification Manual 8-1

Page 88: NX Nastran Verification Manual

Chapter 8 Test Cases

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Results

Result Bench Value NX Nastran

Frequency (Hz) 322.6 322.6

References

Timoshenko and Young. Vibration Problems in Engineering, p. 425. New York: Van NorstrandReinhold Company, 1955.

8-2 NX Nastran Verification Manual

Page 89: NX Nastran Verification Manual

Test Cases

8.2 Undamped Free Vibration — Single Degree of FreedomDetermine the natural frequency of the system shown.

Test Case Data and Information

Input File

mstvn002.dat

Units

SI - meter

Model Geometry

• Length = 0.5 m

• a = 0.3 m

Physical Properties

• mass = 20 Kg

• k = 8 KN/m

NX Nastran Verification Manual 8-3

Page 90: NX Nastran Verification Manual

Chapter 8 Test Cases

Finite Element Modeling

• Create 5 rigid bar (RBAR) elements along the X axis. Each bar should be 0.1 m long.

• A lumped mass (CONM2) element is applied on the end grid point.

• A grid point-to-ground spring element (CELAS1) is applied 0.2 m from the lumped mass.

Boundary Conditions

• Restrain the first grid point to allow rotation only in the Z direction.

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Results

Result Bench Value NX Nastran

Frequency (Hz) 1.910 1.910

References

Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, Theory and Applications, p. 75. Boston:Allyn and Bacon, Inc., 1978.

8-4 NX Nastran Verification Manual

Page 91: NX Nastran Verification Manual

Test Cases

8.3 Two Degrees of Freedom Undamped Free Vibration — PrincipleModesDetermine the natural frequencies of a dynamic system with two degrees of freedom.

Test Case Data and Information

Input File

mstvn003.dat

Units

SI- meter

NX Nastran Verification Manual 8-5

Page 92: NX Nastran Verification Manual

Chapter 8 Test Cases

Element Types

• Translational springs (CELAS1)

• Lumped mass (CONM2)

Physical Properties

• Mass = 1 kg

• k = 1 N/m

Finite Element Modeling

• Create four grid points on the Y axis.

• Create three linear springs (CELAS1) with stiffness of 1 N/m and with a uniaxial stiffnessreference coordinate system.

• Create two lumped mass elements (CONM2) with a mass of 1 kg.

Boundary Conditions

• Restrain ends in all directions.

• Restrain other grid points in all directions but Y.

Solution Type

Normal Mode Dynamics - SOL 103, Lanczos method

Results

Result Bench Value NX Nastran

Frequency of Mode 1 (Hz) 0.1592 0.1592

Frequency of Mode 2 (Hz) 0.2757 0.2757

References

Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, pp. 145-149. Boston:Allyn and Bacon, Inc., 1978.

8-6 NX Nastran Verification Manual

Page 93: NX Nastran Verification Manual

Test Cases

8.4 Three Degrees of Freedom Torsional SystemDetermine the natural frequencies of a dynamic system with three degrees of freedom.

Test Case Data and Information

Input File

mstvn004.dat

Element Types

• Rotational springs (CELAS1)

• Lumped mass (CONM2)

Units

SI — meter

Physical Properties

• J = J1 = J2 = J3 = 0.1

• k = k1 = k2 = k3 = 1 N*m

Finite Element Modeling

• Create four grid points on the X axis.

• Create three linear torsional springs (CELAS1) with stiffness of 1 N*m and with a stiffnessreference coordinate system being uniaxial.

• Create three lumped mass elements (CONM2) with a mass coordinate system = 1 and withmass inertia system of: 0.1, 0.0, 0.0, 0.0, 0.0, 0.0.

Boundary Conditions

• Restrain one end in all directions.

• Restrain the other grid points in all directions but RX.

NX Nastran Verification Manual 8-7

Page 94: NX Nastran Verification Manual

Chapter 8 Test Cases

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos method

Results

Result Bench Value NX Nastran

Frequency of Mode 1 (Hz) 0.2240 0.2240

Frequency of Mode 2 (Hz) 0.6276 0.6276

Frequency of Mode 3 (Hz) 0.9069 0.9069

References

Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, pp. 153-155. Boston:Allyn and Bacon, Inc., 1978.

8.5 Two Degrees of Freedom Vehicle Suspension SystemDetermine the natural frequencies of dynamic system with two degrees of freedom. Degrees offreedom are one translational and one rotational.

Test Case Data and Information

Input Files

mstvn005.dat

8-8 NX Nastran Verification Manual

Page 95: NX Nastran Verification Manual

Test Cases

Units

SI - meter

Physical Properties

• Mass = 1800 kg

• K1 = 42000 N/m

• K2 = 48000 N/m

Finite Element Modeling

• Create a linear translation spring (CELAS1) with stiffness of K1

• Create a linear translation spring (CELAS1) with stiffness of K2

• Create a lumped mass element (CONM2) with a mass coordinate system = 1 and massinertia system of: 0.0, 0.0, 3528, 0.0, 0.0, 0.0.

• Create a three-noded rigid element (RBE2)

Boundary Conditions

• Nodal displacement restraints

– Restrain grid points 4 and 5 in all directions.

– Restrain the other grid points in all directions but Y and RZ.

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Results

Result Bench Value NX Nastran

Frequency of Mode 1 (Hz) 1.086 1.086

Frequency of Mode 2(Hz) 1.496 1.496

References

Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations. Boston: Allyn and Bacon, Inc., 1978.pp. 150-153.

NX Nastran Verification Manual 8-9

Page 96: NX Nastran Verification Manual

Chapter 8 Test Cases

8.6 Two Degrees of Freedom Vehicle Suspension SystemDetermine the natural frequencies of dynamic system with two degrees of freedom. Degrees offreedom are one translational and one rotational.

Test Case Data and Information

Input File

mstvn005.dat

Element Types

• Translational springs (CELAS1)

• Lumped mass (CONM2)

• Rigid (RBE2)

Units

SI — meter

Model Geometry

• Length1 = 1.6 m

• Length2 = 2.0 m

• r = 1.4 m (gyration radius; J = m*r*r)

8-10 NX Nastran Verification Manual

Page 97: NX Nastran Verification Manual

Test Cases

Physical Properties• mass = 1800 kg

• K1 = 42000 N/m

• K2 = 48000 N/m

Finite Element Modeling• Create five grid points in the XY plane with the following coordinates:

– Grid point 1 = (0,0)

– Grid point 2 = (12,0)

– Grid point 3 = (–L1,0)

– Grid point 4 = (L2,–1)

– Grid point 5 = (–L1,–1)

• Create a linear translation spring (CELAS1) with stiffness of K1 between grid point 1 andgrid point 5.

• Create a linear translation spring (CELAS1) with stiffness of K2 between grid point 2 andgrid point 4.

• Create a lumped mass element (CONM2) with a mass coordinate system = 1 and massinertia system of: 0.0, 0.0, 3528, 0.0, 0.0, 0.0.

• Create a three-grid-point rigid element (RBE2) using grid point 1, grid point 2, and gridpoint 3.

Boundary Conditions• Restrain grid points 4 and 5 in all directions.

• Restrain the other grid points in all directions but Y and RZ.

Solution TypeSOL 103 — Normal Mode Dynamics, Lanczos Method

Results

Result Bench Value NX Nastran

Frequency of Mode 1 (Hz) 1.086 1.086

Frequency of Mode 2(Hz) 1.496 1.496

ReferencesTse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, pp. 150-153. Boston: Allyn and Bacon,Inc., 1978.

NX Nastran Verification Manual 8-11

Page 98: NX Nastran Verification Manual

Chapter 8 Test Cases

8.7 Cantilever Beam Undamped Free VibrationsDetermine the natural frequencies of a cantilever beam.

Test Case Data and Information

Input Filemstvn006.dat

Element TypeLinear beam (CBEAM)

UnitsInch

Model Geometry• Length = 100 in.

• Height = 2 in.

Physical and Material Properties• w = 1 lb/in.

• J = .10

• Poisson’s ratio = .3

Calculated Data• A = h2 = 4 in2

• I = h4/12 = 1.33333

• G = E/2 × 1/1 + nu = 11538461.54

• m = w/g = 2.59067375E–3

• Ip = Ixx + Iyy = 2.66666

8-12 NX Nastran Verification Manual

Page 99: NX Nastran Verification Manual

Test Cases

Finite Element Modeling

• Create 11 grid points on X axis.

• Create 10 linear beams (CBEAM) between grid points.

Boundary Conditions

• Restrain one end grid point in all directions.

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Results

Result Bench Value NX Nastran

Frequency of Modes 1 & 2 (TransverseVibration)

6.953 6.953

Frequency of Modes 3 & 4 (TransverseVibration)

43.58 43.58

Frequency of Mode 5 (Torsional Vibration) 64.68 64.68

Frequency of Modes 6 & 7 (TransverseVibration)

122.0 122.0

Frequency of Mode 8 (Torsional Vibration) 193.9 195.7

Frequency of Modes 9 & 10 (TransverseVibration)

238.8 239.3

References

Blevins, R. Formulas For Natural Frequency and Mode Shape, 1st Edition, pp. 108,193. NewYork: Van Norstrand Reinhold Company, 1979.

NX Nastran Verification Manual 8-13

Page 100: NX Nastran Verification Manual

Chapter 8 Test Cases

8.8 Natural Frequency of a Cantilevered MassDetermine the natural frequencies of a dynamic system consisting of a massless beam and alumped mass at the end.

Test Case Data and Information

Input Filemstvn007.dat

Element Types• Linear beam (CBAR)

• Lumped mass (CONM2)

UnitsInch

Model GeometryLength = 30 in.

Physical and Material Properties• Mass = 0.5 lbm

• E = 30E6 psi

• Density = 1.0E–6

• I = 1.5 in.4

Finite Element Modeling• Create 2 grid points on the X axis with coordinates (0,0,0) and (30,0,0).

• Create a linear beam (CBAR) element between grid points with shear area ratio = 0.

• Create a lumped mass (CONM2) on one grid point with mass of 0.5 lbm.

8-14 NX Nastran Verification Manual

Page 101: NX Nastran Verification Manual

Test Cases

Boundary Conditions

• Restrain wall end in all directions.

• Restrain mass end in directions of Z, RX, and RY.

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos method

Results

Result Bench Value NX Nastran

Mode 2 Frequency (Hz) 15.92 15.92

References

Tse, F., Morse, I., and Hinkle, R. Mechanical Vibrations, 2nd Edition, p. 72. Boston: Allynand Bacon, Inc., 1978.

NX Nastran Verification Manual 8-15

Page 102: NX Nastran Verification Manual
Page 103: NX Nastran Verification Manual

Part

V Normal Mode DynamicsVerification Using StandardNAFEMS Benchmarks

Overview of Normal Mode Dynamics Verification Using Standard NAFEMS Benchmarks . . 9-1

Beam Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

Shell Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Axisymmetric Solid and Solid Element Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

NX Nastran Verification Manual

Page 104: NX Nastran Verification Manual
Page 105: NX Nastran Verification Manual

Chapter

9 Overview of Normal ModeDynamics Verification UsingStandard NAFEMS Benchmarks

The purpose of these normal mode dynamics test cases is to verify the function of NX Nastranusing standard benchmarks published by NAFEMS (National Agency for Finite ElementMethods and Standards, National Engineering Laboratory, Glasgow, U.K.).

These standard benchmark tests were created by NAFEMS to stretch the limits of the finiteelements in commercial software. All results obtained using NX Nastran compare favorablywith other commercial finite element analysis software. Results of these test cases using othercommercial finite element analysis software programs are available from NAFEMS.

9.1 Understanding the Test Case FormatEach test case is structured with the following information.

• Test case data and information:

– Units

– Physical and material properties

– Finite element modeling information

– Boundary conditions (loads and restraints/constraints)

– Solution type

• Results

• Reference

9.2 ReferenceThe following reference has been used in these test cases:

NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles, N.C. Selected Benchmarks for Natural Frequency Analysis. Glasgow: NAFEMS, Nov., 1987.

NX Nastran Verification Manual 9-1

Page 106: NX Nastran Verification Manual
Page 107: NX Nastran Verification Manual

Chapter

10 Beam Element Test Cases

10.1 Pin-ended Cross — In-plane VibrationThis test is a normal mode dynamic analysis of a pin-ended cross (shown below) using beamelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 1.

Attributes of this test are:

• Coupling between flexural and extensional behavior

• Repeated and close eigenvalues

Test Case Data and Information

Input Files

• nf001ac.dat (linear consistent)

• nf001al.dat (linear lumped)

Units

SI

NX Nastran Verification Manual 10-1

Page 108: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

Cross Sectional Properties• Area = .015625 m2

Shear ratio:

• Y = 0

• Z = 0

Material Properties• E = 200E09 N/m2

• ρ=8000 kg/m3

• ν = 0.29 (Poisson’s ratio)

• G = 8.01E10

Finite Element Modeling• Four linear beam (CBAR) elements per arm

Boundary Conditions• X = Y = 0 at A, B, C, D

• Z = Rx = Ry = 0 at all grid points

Solution TypeSOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (lumped mass on, param coupmass = –1)

10-2 NX Nastran Verification Manual

Page 109: NX Nastran Verification Manual

Beam Element Test Cases

• Using coupled mass (lumped mass off, param coupmass = 1)

Results

Mode ReferenceValue (Hz)

NAFEMSTarget Value(Hz)

NX Nastran Result(lumped mass) (Hz)

NX Nastran Result(coupled mass) (Hz)

1 11.34 11.34 11.33 11.34

2, 3 17.71 17.69 17.66 17.69

4 17.71 17.72 17.69 17.72

5 45.35 45.48 45.02 45.52

6, 7 57.39 57.36 56.06 57.43

8 57.39 57.68 56.34 57.75

References

NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles,N. C.Selected Benchmarks for Natural Frequency Analysis Test No. 1. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 10-3

Page 110: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

10.2 Pin-ended Double Cross - In-plane VibrationThis test is a normal mode dynamic analysis of a pin-ended double cross (shown below) usingbeam elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 2.

Attributes of this test are:

• Coupling between flexural and extensional behavior

• Repeated and close eigenvalues

Test Case Data and Information

Input Files

• nf002ac.dat (linear consistent)

• nf002al.dat (linear lumped)

Units

SI

Cross Sectional Properties

Key-in section:

• Area = .015625 m2

Shear ratio:

• Y = 0

• Z = 0

10-4 NX Nastran Verification Manual

Page 111: NX Nastran Verification Manual

Beam Element Test Cases

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

Finite Element Modeling• Four linear beam (CBAR) elements per arm

Boundary Conditions• X = Y = 0 at A, B, C, D, E, F, G, H

• Z = Rx= Ry = 0 at all grid points

Solution TypeSOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (lumped mass toggle on, param coupmass = –1)

• Using coupled mass (lumped mass toggle off, param coupmass = 1)

Results

Mode ReferenceValue (Hz)

NAFEMS TargetValue (Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

1 11.34 11.34 11.33 11.34

2, 3 17.71 17.69 17.66 17.69

NX Nastran Verification Manual 10-5

Page 112: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

Mode ReferenceValue (Hz)

NAFEMS TargetValue (Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

4, 5, 6, 7,8 17.71 17.72 17.69 17.72

9 45.35 45.48 45.02 45.52

10, 11 57.39 57.36 56.06 57.43

12, 13, 14, 15,16

57.39 57.68 56.34 57.75

References

NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 2. Glasgow: NAFEMS,Nov., 1987.

10-6 NX Nastran Verification Manual

Page 113: NX Nastran Verification Manual

Beam Element Test Cases

10.3 Free Square Frame - In-plane VibrationThis test is a normal mode dynamic analysis of a free square frame (shown below) using beamelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 3.

Attributes of this test are:

• Coupling between flexural and extensional behavior

• Rigid body modes (3 modes)

• Repeated and close eigenvalues

Test Case Data and Information

Input Files

• nf003ac.dat (linear consistent)

• nf003al.dat (linear lumped)

Units

SI

Cross Sectional Properties

Shear ratio:

• Y = 1.0

• Z = 1.0

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

NX Nastran Verification Manual 10-7

Page 114: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

Finite Element Modeling

• Four linear beam (CBAR) elements per arm

Boundary Conditions

• Rotations fixed, translations free

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (lumped mass toggle on, param coupmass = –1)

• Using coupled mass (lumped mass toggle off, param coupmass = 1)

Results

Mode ReferenceValue (Hz)

NAFEMS TargetValue (Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

4 3.261 3.262 3.259 3.259

5 5.668 5.665 5.660 5.663

6, 7 11.14 11.15 10.89 11.13

8 12.85 12.83 12.74 12.80

9 24.57 24.66 23.53 24.64

10, 11 28.70 28.81 28.13 28.73

References

NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 3. Glasgow: NAFEMS,Nov., 1987.

10-8 NX Nastran Verification Manual

Page 115: NX Nastran Verification Manual

Beam Element Test Cases

10.4 Cantilever with Off-center Point MassesThis test is a normal mode dynamic analysis of a cantilever with off-center point masses (shownbelow) using beam elements. This document provides the input data and results for NAFEMSSelected Benchmarks for Natural Frequency Analysis,Test 4.

Attributes of this test are:

• Coupling between torsional and flexural behavior

• Inertial axis non-coincident with flexibility axis

• Discrete lumped mass, rigid links

• Close eigenvalues

Test Case Data and Information

Input Files• nf004a.dat

UnitsSI

Cross Sectional PropertiesShear ratio:

• Y = 1.128

• Z = 1.128

Material Properties• E = 200E09 N/m 2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element Modeling• Five linear beam (CBAR) elements along cantilever

NX Nastran Verification Manual 10-9

Page 116: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

Boundary Conditions

• X = Y = Z = Rx = Ry = Rz = 0 at A

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos (Parameter COUPMASS = –1)

Results

Mode Reference Value(Hz)

NAFEMS TargetValue (Hz)

NX Nastran Result(Hz)

1 1.723 1.723 1.714

2 1.727 1.727 1.720

3 7.413 7.413 7.554

4 9.972 9.972 9.954

5 18.16 18.16 17.68

6 26.96 26.97 26.78

References

NAFEMS Finite Element Methods & Standards. Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 4. Glasgow: NAFEMS,Nov., 1987.

10-10 NX Nastran Verification Manual

Page 117: NX Nastran Verification Manual

Beam Element Test Cases

10.5 Deep Simply-Supported BeamThis test is a normal mode dynamic analysis of a deep simply supported beam (shown below).This document provides the input data and results for NAFEMS Selected Benchmarks forNatural Frequency Analysis, Test 5.

Attributes of this test are:

• Shear deformation and rotary inertial (Timoshenko beam)

• Possibility of missing extensional modes when using iteration solution methods

• Repeated eigenvalues

Test Case Data and Information

Input Files

• nf005ac.dat (linear consistent, param coupmass = 1)

• nf005al.dat (linear lumped, param coupmass = –1)

Units

SI

Cross Sectional Properties

Shear ratio:

• Y = 1.176923

• Z = 1.176923

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 10-11

Page 118: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

Finite Element Modeling

• Five linear beam elements (CBEAM)

Boundary Conditions

• X = Y = Z = Rx =0 at A

• Y = Z = 0 at B

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (lumped mass on, param coupmass = –1)

• Using coupled mass (lumped mass off, param coupmass = 1)

Results

Mode ReferenceValue (Hz)

NAFEMS TargetValue (Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

1, 2 (flexural) 42.65 42.57 43.15 43.26

3 (torsional) 77.54 77.84 77.20 77.84

4 (extensional) 125.0 125.5 124.5 125.5

5, 6 (flexural) 148.3 145.5 149.9 154.9

7 (torsional) 233.1 241.2 224.1 241.2

8, 9 (flexural) 284.6 267.0 271.0 306.7

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 5. Glasgow: NAFEMS,Nov., 1987.

10-12 NX Nastran Verification Manual

Page 119: NX Nastran Verification Manual
Page 120: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

10.6 Circular Ring — In-plane and Out-of-plane VibrationThis test is a normal mode dynamic analysis of a circular ring (shown below) using beamelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 6.

Attributes of this test are:

• Rigid body modes (six modes)

• Repeated eigenvalues

Test Case Data and Information

Input Files• nf006ac.dat (param coupmass = 1)

• nf006al.dat (param coupmass = –1)

UnitsSI

Cross Sectional PropertiesShear ratio:

• Y = 1.128205

• Z = 1.128205

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

10-14 NX Nastran Verification Manual

Page 121: NX Nastran Verification Manual

Beam Element Test Cases

Finite Element Modeling

• 20 linear beam (CBAR) elements

Boundary Conditions

• X = Y = Z = Rx = Ry = Rz active

• Model is unsupported.

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained two different ways:

• Using coupled mass (param coupmass = –1)

• Using lumped mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

NAFEMS TargetValue (Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

7, 8 (out ofplane)

51.85 52.29 51.63 52.38

9, 10 (in plane) 53.38 53.97 54.05 53.80

11, 12 (out ofplane)

148.8 149.7 146.9 149.7

13, 14 (in plane) 151.0 152.4 152.2 151.5

15 (out of plane) 287.0 288.3 280.4 287.4

16 (in plane) 289.5 288.3 289.2 289.1

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 6. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 10-15

Page 122: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

10.7 Cantilevered BeamThis test is a normal mode dynamic analysis of a cantilevered beam (shown below). Thisdocument provides the input data and results for NAFEMS Selected Benchmarks for NaturalFrequency Analysis, Test 71.

Attributes of this test are:

• Ill-conditioned stiffness matrix

Test Case Data and Information

Input Files

• nf071a.dat (Test 1)

• nf071b.dat (Test 2)

• nf071c.dat (Test 3)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ=8000 kg/m3

Finite Element Modeling

Three tests — all use linear beam (CBAR) elements

• Test 1: a = b

• Test 2: a = 10b

• Test3: a = 100b

10-16 NX Nastran Verification Manual

Page 123: NX Nastran Verification Manual

Beam Element Test Cases

Boundary Conditions

• X = Y = Rz = 0 at A

• Z = 0 at all grid points

• Rx = Ry = 0 at all grid points

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Beams always use a coupled mass formulation (param coupmass = 1).

Results

Mode Reference Value(Hz)

Mesh NX Nastran Result (Hz)

1 1.010 a = b

a = 10b

a = 100b

1.010

1.010

1.010

2 6.327 a = b

a = 10b

a = 100b

6.324

6.327

6.330

3 17.72 a = b

a = 10b

a = 100b

17.70

17.80

17.83

4 34.72 a = b

a = 10b

a = 100b

34.70

34.87

35.07

5 57.39 a = b

a = 10b

a = 100b

57.48

60.64

64.83

6 85.73 a = b

a = 10b

a = 100b

86.24

101.9

104.7

NX Nastran Verification Manual 10-17

Page 124: NX Nastran Verification Manual

Chapter 10 Beam Element Test Cases

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 71. Glasgow: NAFEMS,Nov., 1987.

10-18 NX Nastran Verification Manual

Page 125: NX Nastran Verification Manual

Chapter

11 Shell Element Test Cases

11.1 Thin Square Cantilevered Plate — Symmetric ModesThis test is a normal mode dynamic analysis of a thin, square, cantilevered plate meshed withNX Nastran shell elements. This document provides the input data and results for NAFEMSSelected Benchmarks for Natural Frequency Analysis, Test 11a.

Attributes of this test are:

• Symmetric modes, symmetric boundary conditions along the cutting plane

Test Case Data and Information

Input Files

• nf011a_l.dat (4-noded quadrilateral, lumped mass)

• nf011a_c.dat (4-noded quadrilateral, coupled mass)

• nf011ha_l.dat (8-noded quadrilateral, lumped mass)

• nf011ha_c.dat (8-noded quadrilateral, coupled mass)

Units

SI

NX Nastran Verification Manual 11-1

Page 126: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 32 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m

• 8 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions• X = Y = Rz = 0 at all grid points

• Z = Ry = Rx = 0 along Y-axis

• Rx = 0 along Y = 5m

Solution TypeSOL 103 — Normal Mode Dynamics, Lanczos Method

Results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

11-2 NX Nastran Verification Manual

Page 127: NX Nastran Verification Manual

Shell Element Test Cases

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NX NastranResult (lumpedmass)(Hz)

NX NastranResult (coupledmass(Hz)

1 0.4210 Linear

Parabolic

0.4150

0.4150

0.4180

0.4180

2 2.582 Linear

Parabolic

2.490

2.478

2.604

2.567

3 3.306 Linear

Parabolic

3.115

3.134

3.314

3.271

4 6.555 Linear

Parabolic

6.044

6.163

6.538

6.539

5 7.381 Linear

Parabolic

7.094

7.099

7.808

7.495

6 11.40 Linear

Parabolic

10.57

10.99

12.34

12.08

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 11a. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-3

Page 128: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.2 Thin Square Cantilevered Plate — Anti-symmetric ModesThis test is a normal mode dynamic analysis of a thin, square, cantilevered plate meshed withshell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 11b.

Attributes of this test are:

• Anti-symmetric modes

Test Case Data and Information

Input Files

• nf011b.dat (linear (4-noded) quadrilateral)

• nf011hb.dat (parabolic (8-noded) quadrilateral)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element Modeling

Two tests:

• 32 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m

• 8 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Mesh only half the plate (10m × 5m).

11-4 NX Nastran Verification Manual

Page 129: NX Nastran Verification Manual

Shell Element Test Cases

Boundary Conditions

• X = Y = Rz = 0 at all grid points

• Z = Ry = Rx = 0 along Y-axis

• Rx = 0 along Y = 5m

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = —1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass)(Hz)

NX NastranResult(coupledmass(Hz)

1 1.029 Linear

Parabolic

1.019

1.018

1.000

1.005

1.020

1.022

NX Nastran Verification Manual 11-5

Page 130: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass)(Hz)

NX NastranResult(coupledmass(Hz)

2 3.753 Linear

Parabolic

3.839

3.710

3.570

3.597

3.767

3.725

3 7.730 Linear

Parabolic

8.313

7.768

7.091

7.026

8.113

7.786

4 8.561 Linear

Parabolic

9.424

8.483

8.047

8.133

9.025

8.690

5 not available Linear

Parabolic

11.73

11.19

9.940

10.15

11.69

11.19

6 not available Linear

Parabolic

17.82

15.76

14.22

14.21

17.44

16.78

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 11b. Glasgow: NAFEMS,Nov., 1987.

11-6 NX Nastran Verification Manual

Page 131: NX Nastran Verification Manual

Shell Element Test Cases

11.3 Free Thin Square PlateThis test is a normal mode dynamic analysis of a free thin square plate meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 12.

Attributes of this test are:

• Rigid body modes (three modes)

• Repeated eigenvalues

Test Case Data and Information

Input Files• nf012l_l.dat (linear (4-noded) quadrilateral, lumped mass)

• nf012l_c.dat (linear (4-noded) quadrilateral, coupled mass)

• nf012h_l.dat (parabolic (8-noded) quadrilateral, lumped mass)

• nf012h_c.dat (parabolic (8-noded) quadrilateral, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m

NX Nastran Verification Manual 11-7

Page 132: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

• 16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions

• X = Y = Rz = 0 at all grid points

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

Results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

4 1.622 Linear

Parabolic

1.632

1.532

1.578

1.584

1.624

1.619

5 2.360 Linear

Parabolic

2.402

2.356

2.241

2.233

2.389

2.363

6 2.922 Linear

Parabolic

3.006

2.861

2.804

2.808

2.979

2.929

7, 8 4.233 Linear

Parabolic

4.251

4.122

3.931

3.944

4.237

4.158

9 7.416 Linear

Parabolic

7.859

7.363

6.822

6.813

7.790

7.477

10 Notavailable

Linear

Parabolic

8.027

7.392

6.822

6.813

7.790

7.477

11-8 NX Nastran Verification Manual

Page 133: NX Nastran Verification Manual

Shell Element Test Cases

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 12. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-9

Page 134: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.4 Simply Supported Thin Square PlateThis test is a normal mode dynamic analysis of a free thin square plate meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 13.

Attributes of this test are:

• Well established

• Repeated eigenvalues

Test Case Data and Information

Input Files• nf013l_l.dat (linear quadrilateral, lumped mass)

• nf013l_c.dat (linear quadrilateral, coupled mass)

• nf013h_l.dat (parabolic quadrilateral, lumped mass)

• nf013h_c.dat (parabolic quadrilateral, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05m

11-10 NX Nastran Verification Manual

Page 135: NX Nastran Verification Manual

Shell Element Test Cases

• 16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05m

Boundary Conditions

• X = Y = Rz = 0 at all grid points

• Z = Rx = 0 along edges X = 0 and X = 10m

• Z = Ry = 0 along edges Y = 0 and Y = 10m

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

1 2.377 Linear

Parabolic

2.332

2.376

2.392

2.382

2, 3 5.942 Linear

Parabolic

5.797

5.938

6.181

6.026

4 9.507 Linear

Parabolic

8.963

9.747

9.933

10.22

5, 6 11.88 Linear

Parabolic

11.67

11.87

13.27

12.39

7, 8 15.45 Linear

Parabolic

14.45

16.56

17.07

18.17

NX Nastran Verification Manual 11-11

Page 136: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 13. Glasgow: NAFEMS,Nov., 1987.

11-12 NX Nastran Verification Manual

Page 137: NX Nastran Verification Manual

Shell Element Test Cases

11.5 Simply Supported Thin Annular PlateThis test is a normal mode dynamic analysis of a free thin square plate meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 14.

Attributes of this test are:

• Curved boundary (skewed coordinate system)

• Repeated eigenvalues

Test Case Data and Information

Input Files• nf014l_l.dat (linear quadrilateral, lumped mass)

• nf014l_c.dat (linear quadrilateral, coupled mass)

• nf014h_l.dat (parabolic quadrilateral, lumped mass)

• nf014h_c.dat (parabolic quadrilateral, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 11-13

Page 138: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Finite Element Modeling

Two tests:

• 160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.06 m

• 48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.06 m

Boundary Conditions

• X = Y = Rz = 0 at all grid points

• Z′ = Rx′ = 0 around the circumference

Solution Type

SOL 103 — Normal Mode Dynamics, Lanczos Method

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

1 1.870 Linear

Parabolic

1.859

1.840

1.877

1.873

2, 3 5.137 Linear

Parabolic

5.293

5.111

5.249

5.151

4, 5 9.673 Linear

Parabolic

10.03

9.673

9.983

9.713

11-14 NX Nastran Verification Manual

Page 139: NX Nastran Verification Manual

Shell Element Test Cases

Mode ReferenceValue (Hz)

Mesh NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

6 14.85 Linear

Parabolic

14.37

13.95

15.41

14.92

7, 8 15.57 Linear

Parabolic

16.10

15.55

15.55

15.71

9 18.38 Linear

Parabolic

18.07

17.38

19.09

18.52

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis,, Test No. 13. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-15

Page 140: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.6 Clamped Thin Rhombic PlateThis test is a normal mode dynamic analysis of a free thin square plate meshed with I-DEASshell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 15.

Attributes of this test are:

• Distorted elements

Test Case Data and Information

Input Files• nf015l.dat linear (lumped)

• nf015ha.dat parabolic (lumped)

• nf015hb.dat parabolic (consistent)

• nf015hc.data linear (consistent)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 144 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.05 m

• 36 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05 m

11-16 NX Nastran Verification Manual

Page 141: NX Nastran Verification Manual

Shell Element Test Cases

Boundary Conditions• X = Y = Rz = 0 at all grid points

• Z′ = Rx′ = Ry′ = 0 along all four edges

Solution TypeSOL103 — Normal Mode Dynamics

NX Nastran results were obtained two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 7.938 Linear

Parabolic

8.142

7.873

7.818

7.902

7.955

7.929

2 12.84 Linear

Parabolic

13.89

12.48

12.83

12.85

13.39

13.01

3 17.94 Linear

Parabolic

20.04

17.31

17.81

17.95

19.07

18.47

4 19.13 Linear

Parabolic

20.17

18.74

18.55

18.96

19.24

19.17

NX Nastran Verification Manual 11-17

Page 142: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

5 24.01 Linear

Parabolic

27.70

27.95

23.67

23.88

26.19

25.23

6 27.92 Linear

Parabolic

32.05

25.88

27.70

27.91

29.82

28.81

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 15. Glasgow: NAFEMS,Nov., 1987.

11-18 NX Nastran Verification Manual

Page 143: NX Nastran Verification Manual

Shell Element Test Cases

11.7 Cantilevered Thin Square Plate with Distorted MeshThis test is a normal mode dynamic analysis of a free thin square plate meshed with I-DEASshell elements. This document provides the input data and results for NAFEMSSelectedBenchmarks for Natural Frequency Analysis, Test 16.

Attributes of this test are:

• Distorted meshes

Test Case Data and Information

Input Files• nf016a1.dat: (16 parabolic quad, lumped mass)

• nf016a2.dat: (16 parabolic quad, coupled mass)

• nf016b1.dat: (16 parabolic quad, lumped mass)

• nf016b2.dat: (16 parabolic quad, coupled mass)

• nf016c1.dat: (4 parabolic quad, lumped mass)

• nf016c2.dat: (4 parabolic quad, coupled mass)

• nf016d1.dat: (4 parabolic quad, lumped mass)

• nf016d2.dat: (4 parabolic quad, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 11-19

Page 144: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Finite Element Modeling

All tests — parabolic quadrilateral thin shell elements — thickness = 0.05m

Four tests:

• Test 1 — 16 elements

• Test 2 — 16 elements with specified grid points at the following XY coordinates:

Coordinates

Node X Y

1 4.000 4.000

2 2.250 2.250

3 4.750 2.500

4 7.250 2.750

5 7.500 7.250

6 5.250 7.250

7 5.250 7.250

8 2.250 7.250

9 2.500 4.750

• Test 3 — 4 elements

11-20 NX Nastran Verification Manual

Page 145: NX Nastran Verification Manual

Shell Element Test Cases

• Test 4 — 4 elements with a specified grid point at the following XY coordinate:

Coordinates

Node X Y

1 4.000 4.000

Boundary Conditions

• X = Y = Z = Ry = 0 along Y-axis

Solution Type

SOL103 — Normal Mode Dynamics

NX Nastran Verification Manual 11-21

Page 146: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Test NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 0.4210 1

2

3

4

0.4174

0.4174

0.4144

0.4145

0.4139

0.4135

0.4021

0.4000

0.4181

0.4182

0.4189

0.4192

2 1.029 1

2

3

4

1.020

1.020

0.9990

1.002

0.9985

0.9967

0.9347

0.9202

1.024

1.024

1.021

1.025

3 2.582 1

2

3

4

2.564

2.571

2.554

2.565

2.444

2.445

2.132

2.112

2.569

2.566

2.708

2.698

4 3.306 1

2

3

4

3.302

3.317

3.401

3.424

3.082

3.072

2.707

2.697

3.281

3.280

3.449

3.430

5 3.753 1

2

3

4

3.769

3.780

3.697

3.714

3.540

3.535

3.136

3.077

3.728

3.731

3.913

3.881

6 6.555 1

2

3

4

6.805

6.883

5.455

5.133

6.018

5.994

5.458

5.459

6.551

6.552

7.108

6.858

11-22 NX Nastran Verification Manual

Page 147: NX Nastran Verification Manual

Shell Element Test Cases

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 16. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-23

Page 148: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.8 Simply Supported Thick Square Plate, Test AThis test is a normal mode dynamic analysis of a free thin square plate meshed with I-DEASshell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 21a.

Attributes of this test are:

• Well established

• Repeated eigenvalues

• Effect of secondary restraints

Test Case Data and Information

Input Files• nf021a.dat: linear (lumped mass)

• nf021ha.dat: parabolic (lumped mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 64 linear quadrilateral thin shell (CQUAD4) elements — thickness = 1.0 m

• 16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 1.0 m

11-24 NX Nastran Verification Manual

Page 149: NX Nastran Verification Manual

Shell Element Test Cases

Boundary Conditions

• Z = 0 along all four edges

• X = Y = Rz = 0 at all grid points

• Rx = 0 along edges X = 0 and X = 10 m

• Ry = 0 along edges Y = 0 and Y = 10 m

Solution Type

SOL103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

NX Nastran Verification Manual 11-25

Page 150: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 45.90 Linear

Parabolic

46.66

45.94

45.83

46.17

46.35

45.83

2, 3 109.4 Linear

Parabolic

115.8

110.4

110.6

110.3

114.1

109.4

4 167.9 Linear

Parabolic

177.5

170.4

164.8

167.3

174.3

169.8

5, 6 204.5 Linear

Parabolic

233.4

212.8

211.8

204.6

227.1

208.2

7, 8 256.5 Linear

Parabolic

283.6

270.0

250.5

249.3

276.9

268.4

9 336.6 Linear

Parabolic

371.1

344.8

313.1

311.4

364.3

319.4

10 336.6 Linear

Parabolic

371.1

344.8

338.4

347.6

385.8

319.4

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 21a. Glasgow: NAFEMS,Nov., 1987.

11-26 NX Nastran Verification Manual

Page 151: NX Nastran Verification Manual

Shell Element Test Cases

11.9 Simply Supported Thick Square Plate, Test BThis test is a normal mode dynamic analysis of a free thin square plate meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 21b.

Attributes of this test are:

• Well established

• Repeated eigenvalues

• Effect of secondary restraints

Test Case Data and Information

Input Files• nf021b_c.dat (quadrilateral thin shell elements — coupled mass)

• nf021b_l.dat (quadrilateral thin shell elements — lumped mass)

• nf021hb_c.dat (parabolic thin shell elements — coupled mass)

• nf021hb_l.dat (parabolic thin shell elements — lumped mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

NX Nastran Verification Manual 11-27

Page 152: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

• 64 linear quadrilateral thin shell elements — thickness = 1.0 m

• 16 parabolic quadrilateral thin shell elements — thickness = 1.0 m

Boundary Conditions

• Z = 0 along all four edges; X = Y = Rz = 0 at all grid points

Solution Type

SOL103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

11-28 NX Nastran Verification Manual

Page 153: NX Nastran Verification Manual

Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 45.90 Linear

Parabolic

44.75

44.13

44.65

44.82

44.96

44.49

2, 3 109.4 Linear \

Parabolic

112.9

107.9

109.1

108.5

112.3

107.6

4 167.9 Linear

Parabolic

170.3

164.2

161.4

163.6

170.2

165.7

5, 6 204.5 Linear

Parabolic

230.2

20.07

210.5

203.1

225.4

206.5

7, 8 256.5 Linear

Parabolic

274.2

260.3

247.1

245.7

272.5

263.6

9 336.6 Linear

Parabolic

356.0

342.8

308.8

307.2

358.4

318.6

10 336.6 Linear

Parabolic

356.0

342.8

337.6

346.9

384.8

318.6

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 21b. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-29

Page 154: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.10 Clamped Thick Rhombic PlateThis test is a normal mode dynamic analysis of a free thin square plate meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 22.

Attributes of this test are:

• Distorted elements

Test Case Data and Information

Input Files• nf022l_l.dat

• nf022l_c.dat

• nf022h_l.dat

• nf022h_c.dat

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 100 linear quadrilateral thin shell (CQUAD4) elements - thickness = 1.0 m

• 36 parabolic quadrilateral thin shell (CQUAD8) elements - thickness = 1.0 m

11-30 NX Nastran Verification Manual

Page 155: NX Nastran Verification Manual

Shell Element Test Cases

Boundary Conditions

• X = Y = Rz = 0 at all grid points

• Z′ = Rx′ = Ry′ = 0 along all four edges

Solution Type

SOL 103 – Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (parm coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 134.0 Linear

Parabolic

137.8

133.9

131.2

134.9

134.3

135.2

2 201.4 Linear

Parabolic

218.5

203.3

200.4

204.4

211.9

206.3

3 265.8 Linear

Parabolic

295.4

271.4

262.0

270.3

286.6

276.4

NX Nastran Verification Manual 11-31

Page 156: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

4 282.7 Linear

Parabolic

296.8

283.7

273.6

286.9

287.0

289.1

5 334.5 Linear

Parabolic

383.6

346.4

327.0

337.5

373.3

353.8

6 Notavailable

Linear

Parabolic

426.6

386.6

372.2

384.7

410.6

394.0

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C.,Selected Benchmarks for Natural Frequency Analysis, Test No. 22. Glasgow: NAFEMS,Nov., 1987.

11-32 NX Nastran Verification Manual

Page 157: NX Nastran Verification Manual

Shell Element Test Cases

11.11 Simply Supported Thick Annular PlateThis test is a normal mode dynamic analysis of a simply supported thick annular plate meshedwith shell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 23.

Attributes of this test are:

• Curved boundary (skewed coordinate system)

• Repeated eigenvalues

Test Case Data and Information

Input Files

nf023l_l.dat

nf023l_c.dat

nf023h_l.dat

nf023h_c.dat

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 11-33

Page 158: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Finite Element Modeling

Two tests:

• 160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.6 m

• 48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.6 m

Boundary Conditions

• X = Y = Rz = 0 at all grid points

• Z′ = Rx′ = 0 around the circumference

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmas = 1)

11-34 NX Nastran Verification Manual

Page 159: NX Nastran Verification Manual

Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass(Hz)

1 18.58 Linear

Parabolic

18.82

18.59

18.40

18.53

18.64

18.65

2, 3 48.92 Linear

Parabolic

49.82

49.02

50.00

49.22

50.81

49.41

4, 5 92.59 Linear

Parabolic

96.06

92.90

93.09

93.41

96.00

93.73

6 140.2 Linear

Parabolic

148.3

140.9

134.6

140.2

147.0

143.1

7, 8 Notavailable

Linear

Parabolic

153.7

146.6

144.0

147.0

152.1

148.2

9 166.4 Linear

Parabolic

174.5

167.3

162.2

166.9

177.1

170.4

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 23. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-35

Page 160: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.12 Cantilevered Square MembraneThis test is a normal mode dynamic analysis of a cantilevered square membrane meshed withshell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 31.

Attributes of this test are:

• Well established

Test Case Data and Information

Input Files

• nf031l.dat (linear quadrilateral, lumped mass)

• nf031a.dat (linear quadrilateral, coupled mass)

• nf031h.dat (parabolic quadrilateral, lumped mass)

• nf031j.dat (parabolic quadrilateral, coupled mass)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

11-36 NX Nastran Verification Manual

Page 161: NX Nastran Verification Manual

Shell Element Test Cases

Finite Element Modeling

Two tests:

• 64 linear quadrilateral thin shell (CQUAD4) elements - thickness = 0.05 m

• 16 parabolic quadrilateral thin shell (CQUAD8) elements - thickness = 0.05 m

Boundary Conditions

• X = Y = 0 along the Y axis

• Z = 0 at all grid points

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

NX Nastran Verification Manual 11-37

Page 162: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 52.40 Linear

Parabolic

52.91

52.64

52.48

52.30

52.78

52.60

2 125.7 Linear

Parabolic

126.1

125.9

125.6

125.7

126.1

125.9

3 140.8 Linear

Parabolic

143.2

141.5

139.6

139.5

142.9

141.4

4 222.5 Linear

Parabolic

228.9

224.6

215.1

214.4

227.5

224.3

5 241.4 Linear

Parabolic

247.9

243.3

240.1

242.3

247.4

242.9

6 255.7 Linear

Parabolic

260.6

256.8

252.4

254.6

259.8

256.6

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 31. Glasgow: NAFEMS,Nov., 1987.

11-38 NX Nastran Verification Manual

Page 163: NX Nastran Verification Manual

Shell Element Test Cases

11.13 Cantilevered Tapered MembraneThis test is a normal mode dynamic analysis of a cantilevered tapered membrane meshed withshell elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 32.

Attributes of this test are:

• Shear behavior

• Irregular mesh

• Symmetry

Test Case Data and Information

Input Files

• nf032l.dat (linear quadrilateral, lumped mass)

• nf032a.dat (linear quadrilateral, coupled mass)

• nf032h.dat (parabolic quadrilateral, lumped mass)

• nf032j.dat (parabolic quadrilateral, coupled mass)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 11-39

Page 164: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Finite Element Modeling

Two tests:

• 128 linear quadrilateral thin shell (CQUADR) elements — thickness = 0.1 m

• 32 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.1 m

Boundary Conditions

• X = Y = 0 along the Y axis

• Z = 0 at all grid points

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmas = –1)

• Using coupled mass (param coupmass = 1)

11-40 NX Nastran Verification Manual

Page 165: NX Nastran Verification Manual

Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 44.62 Linear

Parabolic

44.91

44.64

44.66

44.54

44.78

44.63

2 130.0 Linear

Parabolic

132.1

130.1

130.3

129.7

131.8

130.1

3 162.7 Linear

Parabolic

162.8

162.7

162.6

162.7

162.8

162.7

4 246.1 Linear

Parabolic

253.0

246.6

246.1

245.1

252.3

246.4

5 379.9 Linear

Parabolic

393.3

382.0

377.9

377.9

393.2

381.4

6 391.4 Linear

Parabolic

396.3

391.6

389.7

390.9

395.0

391.5

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 32. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-41

Page 166: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

11.14 Free Annular MembraneThis test is a normal mode dynamic analysis of a free annular membrane meshed with shellelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 33.

Attributes of this test are:

• Repeated eigenvalues

• Rigid body modes (three modes)

Test Case Data and Information

Input Files• nf033l.dat (linear quadrilateral, lumped mass)

• nf033a.dat (linear quadrilateral, coupled mass)

• nf033h.dat (parabolic quadrilateral, lumped mass)

• nf033j.dat (parabolic quadrilateral, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

11-42 NX Nastran Verification Manual

Page 167: NX Nastran Verification Manual

Shell Element Test Cases

Finite Element Modeling

Two tests:

• 160 linear quadrilateral thin shell (CQUAD4) elements — thickness = 0.06 m

• 48 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.06 m

Boundary Conditions

• Z = 0 at all grid points

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

NX Nastran Verification Manual 11-43

Page 168: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

4, 5 129.2 Linear

Parabolic

129.5

126.5

127.8

125.7

128.8

125.8

6 226.2 Linear

Parabolic

225.5

224.3

224.5

224.0

225.3

224.2

7, 8 234.7 Linear

Parabolic

234.9

233.0

229.9

230.8

234.9

233.0

9, 10 264.7 Linear

Parabolic

272.1

264.8

264.3

262.6

271.2

263.6

11, 12 336.6 Linear

Parabolic

340.3

335.7

329.0

331.5

339.9

335.7

13, 14 376.8 Linear

Parabolic

392.0

378.6

369.9

373.3

390.5

377.4

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 33. Glasgow: NAFEMS,Nov., 1987.

11-44 NX Nastran Verification Manual

Page 169: NX Nastran Verification Manual

Shell Element Test Cases

11.15 Cantilevered Thin Square PlateThis test is a normal mode dynamic analysis of a cantilevered thin square plate meshed withshell elements. This document provides the input data and results for NAFEMSSelectedBenchmarks for Natural Frequency Analysis, Test 73.

Test Case Data and Information

Input Files• nf073a.dat (Test 1)

• nf073b.dat (Test 2)

• nf073c.dat (Test 3)

• nf073d.dat (Test 4)

UnitsSI

Material Properties• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

Finite Element Modeling16 parabolic quadrilateral thin shell (CQUAD8) elements — thickness = 0.05 m

NX Nastran Verification Manual 11-45

Page 170: NX Nastran Verification Manual

Chapter 11 Shell Element Test Cases

Boundary ConditionsX = Y = Z = Ry = 0 along the Y axis

Solution TypeSOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

11-46 NX Nastran Verification Manual

Page 171: NX Nastran Verification Manual

Shell Element Test Cases

Results

Mode ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 0.4210 Test 1

Test 2

Test 3

Test 4

0.4174

0.4174

0.4175

0.4184

0.4154

0.4154

0.4154

0.4161

0.4183

0.4183

0.4184

0.4192

2 1.029 Test 1

Test 2

Test 3

Test 4

1.020

1.020

1.021

1.032

1.051

1.006

1.007

1.015

1.023

1.023

1.027

1.024

3 2.582 Test 1

Test 2

Test 3

Test 4

2.564

2.597

2.677

2.850

2.485

2.509

2.524

2.563

2.579

2.605

2.675

2.672

4 3.306 Test 1

Test 2

Test 3

Test 4

3.302

3.345

3.365

3.571

3.150

3.180

3.196

3.373

3.298

3.332

3.344

3.535

5 3.753 Test 1

Test 2

Test 3

Test 4

3.769

3.888

4.035

5.466

3.622

3.713

3.828

4.935

3.765

3.862

4.000

5.360

6 376.8 Test 1

Test 2

Test 3

Test 4

6.805

7.517

7.495

——

6.292

6.901

6.879

——

6.719

7.399

7.387

——

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 73. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 11-47

Page 172: NX Nastran Verification Manual
Page 173: NX Nastran Verification Manual

Chapter

12 Axisymmetric Solid and SolidElement Test Cases

12.1 Free Cylinder — Axisymmetric VibrationThis test is a normal mode dynamic analysis of a free cylinder meshed with axisymmetricelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 41.

Attributes of this test are:

• Rigid body modes (one mode)

• Coupling between axial, radial, and circumferential behavior

• Close eigenvalues

Test Case Data and Information

Input Files• nf041.dat (linear axisymmetric, lumped mass)

• nf041a.dat (linear axisymmetric, coupled mass)

• nf041h.dat (parabolic axisymmetric, lumped mass)

• nf041j.dat (parabolic axisymmetric, coupled mass)

UnitsSI

Material Properties• E = 200E09 N/m2

NX Nastran Verification Manual 12-1

Page 174: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

• ρ = 8000 kg / m3

• ν = 0.3

Finite Element ModelingTwo tests:

• 16 axisymmetric solid linear quadrilateral (CQUADX) elements

• 8 axisymmetric solid parabolic quadrilateral (CQUADX) elements

Boundary ConditionsUnsupported

Solution TypeSOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

12-2 NX Nastran Verification Manual

Page 175: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTargetValue (Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

2 243.5 Linear

Parabolic

244.0

243.5

243.1

243.4

243.9

243.5

3 377.4 Linear

Parabolic

379.4

377.5

372.1

376.4

378.4

377.4

4 394.1 Linear

Parabolic

395.4

394.3

385.8

392.4

394.4

394.2

5 397.7 Linear

Parabolic

401.4

397.9

386.9

392.8

398.5

397.9

6 405.3 Linear

Parabolic

421.9

406.4

391.7

397.2

415.4

406.0

The reference value refers to the accepted solution to the problem.

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 41. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 12-3

Page 176: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

12.2 Thick Hollow Sphere — Uniform Radial VibrationThis test is a normal mode dynamic analysis of a thick hollow sphere meshed using axisymmetricelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 42.

Attributes of this test are:

• Curved boundary (skewed coordinate system)

• Constraint equations

Test Case Data and Information

Input Files

• nf042.dat (linear axisymmetric, lumped mass)

• nf042a.dat (linear axisymmetric, coupled mass)

• nf042h.dat (parabolic axisymmetric, lumped mass)

• nf042j.dat (parabolic axisymmetric, coupled mass)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

12-4 NX Nastran Verification Manual

Page 177: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling

• 10 axisymmetric solid linear quadrilateral (CQUADX) elements -α = 5°

Boundary Conditions

• Z′ displacement = 0 at all grid points

• Grid points at the same R′ are constrained to have the same r′ displacement

• One constraint set

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

NX Nastran Verification Manual 12-5

Page 178: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTargetValue (Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 369.9 Linear

Parabolic

370.6

370.0

369.3

369.7

369.6

369.7

2 838.0 Linear

Parabolic

841.2

838.1

828.1

836.2

837.7

837.7

3 1451. Linear

Parabolic

1473.

1453.

1416.

1445.

1468.

1451.

4 2117. Linear

Parabolic

2192.

2132.

2023.

2100.

2186.

2117.

5 2796. Linear

Parabolic

2976.

2853.

2595.

2764.

2967.

2799.

The reference value refers to the accepted solution to the problem.

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis Test No. 42. Glasgow: NAFEMS,Nov., 1987.

12-6 NX Nastran Verification Manual

Page 179: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

12.3 Simply Supported Annular Plate — Axisymmetric VibrationThis test is a normal mode dynamic analysis of a simply supported annular plate meshed withaxisymmetric elements. This document provides the input data and results for NAFEMSSelected Benchmarks for Natural Frequency Analysis, Test 43.

Attributes of this test are:

• Well established

Test Case Data and Information

Input Files

• nf043a.dat (lumped mass)

• nf043b.dat (coupled mass)

• nf043c.dat (lumped mass)

• nf043d.dat (coupled mass)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 12-7

Page 180: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling

Two tests:

• 60 axisymmetric solid linear quadrilateral (CQUADX) elements

• 5 axisymmetric solid parabolic quadrilateral (CQUADX) elements

Boundary Conditions

• Z = 0 at A

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

12-8 NX Nastran Verification Manual

Page 181: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTargetValue (Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 18.54 Linear

Parabolic

18.71

18.58

18.23

18.48

18.27

18.55

2 150.2 Linear

Parabolic

145.5

145.6

140.9

135.9

142.6

138.6

3 224.2 Linear

Parabolic

224.2

224.2

224.2

224.1

224.2

224.2

4 358.3 Linear

Parabolic

385.6

374.1

366.3

345.3

376.5

360.3

5 629.2 Linear

Parabolic

689.3

686.0

647.7

592.7

677.8

640.2

The reference value refers to the accepted solution to the problem.

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 43. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 12-9

Page 182: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

12.4 Deep Simply Supported "Solid" BeamThis test is a normal mode dynamic analysis of a deep, simply supported beam meshed withbrick elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis , Test 51.

Attributes of this test are:

• Skewed coordinate system

• Skewed restraints

Test Case Data and Information

Input Files

• nf051l.dat (linear brick)

• nf051b.dat (parabolic brick)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

12-10 NX Nastran Verification Manual

Page 183: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling

Two tests:

• 30 solid linear brick (CHEXA) elements

• 5 solid parabolic brick (CHEXA) elements

Boundary Conditions

• X′ = Z′ = 0 along AA′

• Z′ = 0 along BB′

• Y′ = 0 at all grid points on the plane Y′ = 2.0 m

NX Nastran Verification Manual 12-11

Page 184: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTargetValue (Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult(coupledmass) (Hz)

1 38.20 linear

parabolic

42.88

38.82

37.96

37.85

38.28

38.24

2 85.21 linear

parabolic

93.82

88.45

83.38

87.12

83.95

87.52

3 152.2 linear

parabolic

170.7

159.4

152.7

151.8

157.6

157.0

4 245.5 linear

parabolic

286.1

259.2

251.6

248.5

264.9

258.2

5 297.1 linear

parabolic

318.9

307.9

288.0

289.6

298.3

305.6

The reference value refers to the accepted solution to the problem.

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C., Selected Benchmarks for Natural Frequency Analysis Test No. 51. Glasgow: NAFEMS,Nov., 1987.

12-12 NX Nastran Verification Manual

Page 185: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

12.5 Simply Supported "Solid" Square PlateThis test is a normal mode dynamic analysis of a simply supported square plate meshed withbrick elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 52.

Attributes of this test are:

• Well established

• Rigid body modes (three modes)

• Kinematically incomplete suppressions

Test Case Data and Information

Input Files

• nf052l.dat (linear brick)

• nf052b.dat (parabolic brick)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

NX Nastran Verification Manual 12-13

Page 186: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling

Two tests:

• 64 solid linear brick (CHEXA) elements

• 16 solid parabolic brick (CHEXA) elements

Boundary Conditions

Z = 0 along the four edges on the plane Z = –0.5 m

Solution Type

SOL 103 normal modes

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

12-14 NX Nastran Verification Manual

Page 187: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTarget Value(Hz)

NX NastranResult(lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

4 45.90 Linear

Parabolic

51.65

44.76

44.04

43.81

45.24

44.16

5, 6 109.4 Linear

Parabolic

132.7

110.5

106.5

105.2

113.7

107.9

7 167.9 Linear

Parabolic

194.4

169.1

155.5

156.3

172.3

163.9

8 193.6 Linear

Parabolic

197.2

193.9

193.6

194.0

196.8

193.9

9, 10 206.2 Linear

Parabolic

210.6

206.6

200.1

193.5

209.6

206.6

The reference value refers to the accepted solution to the problem.

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 52. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 12-15

Page 188: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

12.6 Simply Supported "Solid" Annular PlateThis test is a normal mode dynamic analysis of a simply supported annular plate meshed withbrick elements. This document provides the input data and results for NAFEMS SelectedBenchmarks for Natural Frequency Analysis, Test 53.

Attributes of this test are:

• Curved boundary (skewed coordinate system)

• Constraint equations

Test Case Data and Information

Input Files

• nf053l.dat (linear brick)

• nf053h.dat (parabolic brick)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 0.3

12-16 NX Nastran Verification Manual

Page 189: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Finite Element ModelingTwo tests:

• 60 solid linear brick (CHEXA) elements — α = 5°

• 5 solid parabolic brick (CHEXA) elements — α = 10°

Boundary Conditions• θ displacement = 0 at all grid points

• Z displacement = 0 at all grid points along AA

• Grid points at same R and Z are constrained to have same z displacement

• One constraint set

Solution TypeSOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

NX Nastran Verification Manual 12-17

Page 190: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Results

Mode # ReferenceValue (Hz)

Mesh NAFEMSTargetValue (Hz)

NX NastranResult(lumpedmass) (Hz)

NX Nastran Result(coupled mass)(Hz)

1 18.58 Linear

Parabolic

19.66

18.58

18.57

18.45

18.61

18.58

2 140.2 Linear

Parabolic

146.4

140.4

138.8

135.9

140.5

140.3

3 224.2 Linear

Parabolic

224.3

224.2

224.2

223.7

224.4

224.2

4 358.3 Linear

Parabolic

386.7

374.0

361.8

351.2

372.1

371.9

5 629.2 Linear

Parabolic

689.5

686.0

643.8

624.7

674.7

679.6

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 53. Glasgow: NAFEMS,Nov., 1987.

12-18 NX Nastran Verification Manual

Page 191: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

12.7 Cantilevered Solid BeamThis test is a normal mode dynamic analysis of a cantilevered solid beam meshed using brickelements. This document provides the input data and results for NAFEMS Selected Benchmarksfor Natural Frequency Analysis, Test 72.

Attributes of this test are:

• Highly populated stiffness matrix

Test Case Data and Information

Input Files

• nf072a.dat (conventional)

• nf072b.dat (unconventional)

Units

SI

Material Properties

• E = 200E09 N/m2

• ρ = 8000 kg/m3

• ν = 3

NX Nastran Verification Manual 12-19

Page 192: NX Nastran Verification Manual

Chapter 12 Axisymmetric Solid and Solid Element Test Cases

Finite Element Modeling

Two tests — both use solid parabolic brick (CHEXA) elements

• Test 1: conventional grid point numbering

• Test 2: unconventional grid point numbering

Boundary Conditions

• X = Y = Z = 0 at all grid points on X = 0 plane

• Y = 0 at grid points on Y = 1 m plane

12-20 NX Nastran Verification Manual

Page 193: NX Nastran Verification Manual

Axisymmetric Solid and Solid Element Test Cases

Solution Type

SOL 103 — Normal Mode Dynamics

NX Nastran results were obtained in two different ways:

• Using lumped mass (param coupmass = –1)

• Using coupled mass (param coupmass = 1)

Results

Mode # Mesh NAFEMSTarget Value(Hz)

NX NastranResult (lumpedmass) (Hz)

NX NastranResult (coupledmass) (Hz)

1 Test 1

Test 2

16.01

16.01

15.82

15.82

15.99

15.99

2 Test 1

Test 2

87.23

87.23

83.18

83.18

87.09

87.09

3 Test 1

Test 2

126.0

126.0

125.5

125.5

126.0

126.0

4 Test 1

Test 2

209.6

209.6

193.5

193.5

209.1

209.1

5 Test 1

Test 2

351.1

351.1

310.1

310.1

349.9

349.9

6 Test 1

Test 2

375.8

375.8

364.2

364.2

375.8

375.8

References

NAFEMS Finite Element Methods & Standards, Abbassian, F., Dawswell, D. J., and Knowles,N. C. Selected Benchmarks for Natural Frequency Analysis, Test No. 72. Glasgow: NAFEMS,Nov., 1987.

NX Nastran Verification Manual 12-21

Page 194: NX Nastran Verification Manual
Page 195: NX Nastran Verification Manual

Part

VI Verification Test Cases from theSociete Francaise des Mecaniciens

Overview of Verification Test Cases Provided by the Societe Francaise des Mecaniciens . . . 13-1

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements . . . . . . . . . 14-1

Mechanical Structures — Linear Statics Analysis with Shell Elements . . . . . . . . . . . . . . 15-1

Mechanical Structures — Linear Statics Analysis with Solid Elements . . . . . . . . . . . . . . 16-1

Mechanical Structures — Normal Mode Dynamics Analysis . . . . . . . . . . . . . . . . . . . . . . 17-1

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response . . . . . . . 18-1

Stationary Thermal Tests — Heat Transfer Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

Thermo-mechanical Tests — Linear Statics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

NX Nastran Verification Manual

Page 196: NX Nastran Verification Manual
Page 197: NX Nastran Verification Manual

Chapter

13 Overview of VerificationTest Cases Provided by the SocieteFrancaise des Mecaniciens

The purpose of these linear statics test cases is to verify the function of NX Nastran usingstandard benchmarks published by SFM (Societe Francaise des Mecaniciens. Paris, France) inGuide de validation des progiciels de calcul de structures.

Included here are:

• Tests cases on mechanical structures using linear statics analysis, normal mode dynamicsanalysis, and model response.

• Stationary thermal test cases using heat transfer analysis.

• Thermo-mechanical test cases using linear statics analysis.

Results published in Guide de validation des progiciels de calcul de structures are compared withthose computed using NX Nastran.

13.1 Understanding the Test Case FormatEach test case is structured with the following information.

• Test case data and information:

– Input files

– Units

– Material properties

– Finite element modeling information

– Boundary conditions (loads and restraints)

– Solution type

• Results

• Reference

NX Nastran Verification Manual 13-1

Page 198: NX Nastran Verification Manual

Chapter 13 Overview of Verification Test Cases Provided by the Societe Francaisedes Mecaniciens

13.2 ReferenceThe following reference has been used in these test cases:

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990.

13-2 NX Nastran Verification Manual

Page 199: NX Nastran Verification Manual

Chapter

14 Mechanical Structures —Linear Statics Analysis with Beamor Rod Elements

14.1 Short Beam on Two Articulated SupportsThis test is a linear statics analysis of a short, straight beam with plane bending and shearloading. It provides the input data and results for benchmark test SSLL02/89 from Guide devalidation des progiciels de calcul de structures.

• Area = 31E–04 m2

• Inertia = 2810E–08 m4

• Shear area ratio = 2.42

Test Case Data and Information

Input Files

ssll02.dat

Units

SI

Material Properties

• E = 2E11 Pa

• ν = 0.3

NX Nastran Verification Manual 14-1

Page 200: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Finite Element Modeling

• 10 linear beam (CBAR) elements

• 11 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Restrain both free ends of the beam in translation DOF.

– Edge load = 1E05 N/m in –Y direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Result Bench Value NX Nastran

Displacement at point B v (m) (Grid point 7) –1.259E–3 –1.249E–3

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLL02/89.

14-2 NX Nastran Verification Manual

Page 201: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

14.2 Clamped Beams Linked by a Rigid ElementThis test is a linear statics analysis of a straight, cantilever beam with plane bending and a rigidelement. It provides the input data and results for benchmark test SSLL05/89 from Guide devalidation des progiciels de calcul de structures.

Test Case Data and Information

Input File

ssll05.dat

Units

SI

Material Properties

• E = 2E11 Pa

• I = (4/3)E–08 m4

Finite Element Modeling

• 20 linear beam (CBAR) elements

• 1 rigid element

• 26 grid points

The mesh is shown in the following figure:

NX Nastran Verification Manual 14-3

Page 202: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Boundary Conditions

• Points A and C: Clamped

• Point D: Set nodal force = 1000 N in –Y direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type Grid point Point BenchValue

NXNastran

v (m) Disp. Y Grid point 6 B –0.1250 –0.1250

v (m) Disp. Y Grid point 3 D –0.1250 –0.1250

V force (N) Y Grid point 1 A 500.0 500.0

M moment (Nm) Rz Grid point 1 A 500.0 500.0

V force (N) Y Grid point 4 C 500.0 500.0

M moment (Nm) Rz Grid point 4 C 500.0 500.0

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990 Test No. SSLL05/89.

14-4 NX Nastran Verification Manual

Page 203: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

14.3 Transverse Bending of a Curved PipeThis test is a linear statics analysis (three-dimensional problem) of a curved pipe with transversebending and bending-torque loading. It provides the input data and results for benchmark testSSLL07/89 from Guide de validation des progiciels de calcul de structures.

• R = 1 m

• de = 0.02 m

• di = 0.016 m

• A = 1.131E-0–04 m2

• Ix = 4.637E–09 m4

Test Case Data and Information

Input Files

• ssll07a.dat linear beam

• ssll07b.dat curved beam

Units

SI

Material Properties

• E = 2E11 Pa

• ν = 0.3

NX Nastran Verification Manual 14-5

Page 204: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Finite Element ModelingTest 1

• 90 linear beam (CBAR) elements

• 91 grid points

Test 2

• 90 curved beam (CBEND) elements

• 91 grid points

To obtain the point where θ = 15° with accuracy, use surface mapped meshing on 1/4 of a cylinder.Then mesh a curved edge with the Surface Coating command and undo the mesh on the surface.

The mesh for Test 1 is shown in the following figure:

Boundary Conditions• Clamp point A.

• Grid point force F = 100 N in Z direction.

The boundary conditions are shown in the following figure:

Solution TypeSOL 101 — Linear Statics

14-6 NX Nastran Verification Manual

Page 205: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Results

Type Grid point Point BenchValue

TestNumber

NX Nastran

u (m) Disp. Z Grid point 1 B 0.1346 1 0.1346

2 0.1346

Mt (Nm)* Grid point 1 θ = 15° 74.12 1 76.67

2 77.51

Mf (Nm) –96.59 1 –96.37

2 –95.70

Mf = bending moment

Mt = torsional moment

*See "Post Processing" below.

Post Processing

Linear Beam (CBAR) Elements

List beam forces on element 167, second end:

• Mf = torque

• Mt = bending moment

Curved Beam (CBEND) Elements

List beam forces on element 166, second end:

• Mf = torque

• Mt = bending moment

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990.Test No. SSLL07/89..

NX Nastran Verification Manual 14-7

Page 206: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

14.4 Plane Bending Load on a Thin ArchThis test is a linear statics analysis (plane problem) of a thin arc with plane bending. It providesthe input data and results for benchmark test SSLL08/89 from Guide de validation des progicielsde calcul de structures.

• R = 1 m

• de = 0.02 m

• di = 0.016 m

• A = 1.131E–04 m2

• Ix 4.637E–09 m4

Test Case Data and Information

Input File

ssll08.dat

Units

SI

Material Properties

• E = 2E11 Pa

• ν = 0.3

14-8 NX Nastran Verification Manual

Page 207: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Finite Element Modeling• 10 linear beam (CBAR) elements

• 11 grid points

Boundary Conditions• Point A: Articulated Z

• Point B: Sets Y and Z displacement to 0

• Force = 100N in –Y direction

The boundary conditions are shown in the following figure:

Solution TypeSOL 101 — Linear Statics

Results

Type Grid Point Point Bench Value NX Nastran

Rz (rad) 2 A –3.077E–2 –3.110E–2

Rz (rad) 1 B 3.077E–2 3.110E–2

Y (m) 7 C -1.921E–2 –1.934E–2

X (m) 1 B 5.391E-2 5.374E–2

NX Nastran Verification Manual 14-9

Page 208: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLL08/89.

14-10 NX Nastran Verification Manual

Page 209: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

14.5 Grid Point Load on an Articulated CONROD TrussThis test is a linear statics analysis of a plane truss with an articulated rod. It provides the inputdata and results for benchmark test SSLL11/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input File

ssll11.dat

Units

SI

Material Properties

• E = 1.962E11 Pa

NX Nastran Verification Manual 14-11

Page 210: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Finite Element Modeling

• 4 rod (CONROD) elements

• 4 grid points

The mesh is shown in the following figure:

Element Length (m) Area (m2)

AC 2.000E–4

CB 2.000E–4

CD 1.000E–4

BD 1.000E–4

Boundary Conditions

• Point A and B: Articulated

• Point D: Set Nodal force = 9.81 E3 N in –Y direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

14-12 NX Nastran Verification Manual

Page 211: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Results

Type Grid Point Point Bench Value NX Nastran

X (m) 18.00 C 0.2652E–3 0.2652E–3

Y (m) 18.00 C 0.08839E–3 0.08839E–3

X (m) 2.000 D 3.479E–3 3.479E–3

Y (m) 2.000 D –5.601E–3 –5.600E–3

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.(Paris, Afnor Technique, 1990..) Test No. SSLL11/89.

NX Nastran Verification Manual 14-13

Page 212: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

14.6 Articulated Plane TrussThis test is a linear statics analysis of a straight cantilever beam with plane bending andtension-compression. It provides the input data and results for benchmark test SSLL14/89 fromGuide de validation des progiciels de calcul de structures.

• I1 = 5E–04 m4

• I2 = 2.5E–04 m4

Test Case Data and Information

Input Files

• ssll14a.dat (4 elements)

• ssll14b.dat (10 elements)

Units

SI

Material Properties

• E = 2.1E11 Pa

14-14 NX Nastran Verification Manual

Page 213: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Finite Element Modeling

Test 1

• 4 linear beam (CBAR) elements

• 5 grid points

Test 2

• 10 linear beam (CBAR) elements

• 11 grid points

The mesh for Test 2 is shown in the following figure:

NX Nastran Verification Manual 14-15

Page 214: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Boundary Conditions

• Point A and B: Articulate

• Set forces and moments to the following numeric values:

– p = –3,000 N/m

– F1 = –20,000 N

– F2 = –10,000 N

– M = –100,000 Nm

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type GridPoint

Point Bench Value TestNumber

NX Nastran

Vertical reaction(N)

1.000 A 3.150E4 1

2

3.150E4

3.320E4

Hortizontalreaction (N)

1.000 A 2.024E4 1

2

1.920E4

2.061E4

VerticalDisplacement (m)

8.000 C 0.03072 1

2

–0.02100

–0.03161

NX Nastran takes shear effect into account.

14-16 NX Nastran Verification Manual

Page 215: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLL14/89.

NX Nastran Verification Manual 14-17

Page 216: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

14.7 Beam on an Elastic FoundationThis test is a linear statics analysis (plane problem) of a straight beam with plane bending andan elastic support. It provides the input data and results for benchmark test SSLL16/89 fromGuide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input Filessll16.dat

UnitsSI

Material Properties• E = 2.1E11 Pa

• K = 8.4E05 N/m2

• Each spring stiffness is set to: K * L/(number of spring elements).

Finite Element Modeling• 50 linear beam (CBAR) elements

• 49 spring (CBUSH) elements

• 51 grid points

The mesh is shown in the following figure:

14-18 NX Nastran Verification Manual

Page 217: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Beam or Rod Elements

Boundary Conditions

• Point A and B: Articulated

• Set forces and moments to the following numeric values:

–F = –10000 N

–p = –5000 N/m

–M = 15000 Nm.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 14-19

Page 218: NX Nastran Verification Manual

Chapter 14 Mechanical Structures — Linear Statics Analysis with Beam or RodElements

Results

Type Point Bench Value NX Nastran

Rotation(rad) Rz A —0.003050 –0.003034

Vertical Reaction force (N) 1.167E4 1.158E4

Vertical Disp. (m) D –0.4233E–2 –0.4216E–2

M moment (Nm)* 3.384E4 3.369E4

*List beam forces on element 26, first end, z bending moment.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLL16/89.

14-20 NX Nastran Verification Manual

Page 219: NX Nastran Verification Manual

Chapter

15 Mechanical Structures —Linear Statics Analysis withShell Elements

15.1 Plane Shear and Bending Load on a PlateThis test is a linear statics analysis (plane problem) of a plate with plane bending. It providesthe input data and results for benchmark test SSLP01/89 from Guide de validation des progicielsde calcul de structures.

• Thickness = 1 mm

Test Case Data and Information

Input File

sslp01.dat

Units

SI

Material Properties

• E = 3E10 Pa

• ν = 0.25

NX Nastran Verification Manual 15-1

Page 220: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 126 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Clamped Plate

• Set a shear force with parabolic distribution on width and constant distribution on thickness.

• Resultant force: p = 40 N.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

15-2 NX Nastran Verification Manual

Page 221: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results

Type Grid point # Location Bench Value NX Nastran

Y (mm) Grid point 3 (L,y) 0.3413 0.3408

Displacement is shown in the following figure:

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990 Test No. SSLP01/89.

NX Nastran Verification Manual 15-3

Page 222: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.2 Infinite Plate with a Circular HoleThis test is a linear statics analysis (plane problem) of a plate with tension-compression and amembrane effect. It provides the input data and results for benchmark test SSLP02/89 fromGuide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input File

sslp02.dat

Units

SI

Material Properties

• E = 3E10 Pa

• ν = 0.25

15-4 NX Nastran Verification Manual

Page 223: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

The plate is meshed using the biasing option.

The mesh is shown in the following figure:

Boundary Conditions

• u (0,y) = 0, Ry (y) = 0, Rz (y) = 0, (z = 0, all grid points)

• ν (x,0) = 0, Rx (x) = 0, Rz (x) = 0

• Tension force P = 2.5 N/mm**2 (in plane force of 2500 N/m)

The boundary conditions are shown in the following figure:

NX Nastran Verification Manual 15-5

Page 224: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Solution Type

SOL 101 — Linear Statics

Results

Type Point Bench Value NX Nastranσθθ (a, 0) 7.500E7 7.528E7σθθ (a, π/4) 2.500E7 2.511E7σθθ (a, π/2) –2.500E7 –2.452E7

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLP02/89.

15-6 NX Nastran Verification Manual

Page 225: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.3 Uniformly Distributed Load on a Circular PlateThis test is a linear statics analysis (three-dimensional problem) of a circular plate fixed at theedge with transverse bending and a uniform load. It provides the input data and results forbenchmark test SSLS03/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input Files

• ssls03a.dat linear quadrilateral

• ssls03b.dat linear triangle

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 15-7

Page 226: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 38 linear quadrilateral thin shell (CQUAD4) elements

• 50 grid points

Test 2

• 53 linear triangular thin shell (CTRIA3) elements

• 38 grid points

Meshing is only done on 1/4 of the plate.

The meshes are shown in the following figure:

15-8 NX Nastran Verification Manual

Page 227: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Clamp free edges.

• Uniform pressure p = –1000 Pa.

• Symmetric conditions are applied to the sides.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Result Grid Point Point Bench Value Test Number NX Nastran

Z 1.000 Center O –0.006500 1 –0.006600

w (m) 1.000 2 –0.006500

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS03/89.

NX Nastran Verification Manual 15-9

Page 228: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.4 Torque Loading on a Square TubeThis test is a linear statics analysis (three-dimensional problem) of a thin-walled tube loaded intorsion by pure shear at the free end. It provides the input data and results for benchmark testSSLS05/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input File

ssls05.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• = 0.3

15-10 NX Nastran Verification Manual

Page 229: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

• 160 CQUAD4 elements

• 219 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Plane X = 0

• Clamped beam

• Apply a torque equal to 10 Nm on the free end.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 15-11

Page 230: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Results

Result Grid Point Bench Value NX Nastran

Disp. Y (m) 193.0 –6.170E–7 .6.170E–7

Disp. Rx (rad) 1.230E–5 1.230E–5

Stress XY Shear (Pa) –11.00E4 –11.00E4

Disp. Y (m) 208.0 –9.870E–7 –9.870E–7

Disp. Rx (rad) 1.970E–5 1.970E–5

Stress XY Shear (Pa) –11.00E4 –11.00E4

Results are post-processed using the Shell surface: Bottom option.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS05/89.

15-12 NX Nastran Verification Manual

Page 231: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.5 Cylindrical Shell with Internal PressureThis test is a linear statics analysis of a thin cylinder loaded by internal pressure. It provides theinput data and results for benchmark test SSLS06/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• ssls06a.dat

• ssls06b.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 15-13

Page 232: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

The meshes are shown in the following figure:

Test 1

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

Test 2

• 400 liinear quadrilateral thin shell (CQUAD4) elements

• 441 grid points

15-14 NX Nastran Verification Manual

Page 233: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Free conditions:

To set free boundary conditions, use symmetry about XZ, XY, and YZ planes.

• Internal pressure = 10000 Pa.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type Point Bench Value TestNumber

NX Nastran

σ11(Pa) All 0 1 1.720

2 4.960

σ22(Pa) 5.000E5 1 4.950E5

2 4.990E5

ΔR(m) 2.380E–6 1 2.370E–6

2 2.380E–6

ΔL(m) –1.430E–6 1 –1.420E–6

2 –1.430E–6

All results are averages.

NX Nastran Verification Manual 15-15

Page 234: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Post Processing

• σ11 is the stress of z at grid point 11 (test 1) and grid point 21 (test 2)

• σ22 is the stress of x at grid point 111 (test 1) and grid point 421 (test 2)

• ΔR(m) is the displacement of x at grid point 121 (test 1) and grid point 441 (test 2)

• ΔL(m) is the displacement of z at grid point 121 (test 1) and grid point 441 (test 2)

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS06/89.

15-16 NX Nastran Verification Manual

Page 235: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.6 Uniform Axial Load on a Thin Wall CylinderThis test is a linear static analysis of a thin cylinder loaded axially. It provides the input dataand results for benchmark test SSLS07/89 from Guide de validation des progiciels de calcul destructures.

Test Case Data and Information

Input Files

• ssls07a.dat – parabolic quadrilateral, thin shell

• ssls07b.dat – parabolic triangle, thin shell

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 15-17

Page 236: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 200 parabolic quadrilateral thin shell (CQUAD8) elements

• 661 grid points

Test 2

• 400 parabolic triangular thin shell (CTRIA6) elements

The meshes are shown in the following figure:

15-18 NX Nastran Verification Manual

Page 237: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Axial displacement = 0 in. X = 0 section

• Uniform axial load q = 10000 N/m

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Sstatics

Results

Type Point Bench Value Test Number NX Nastran

σ11(Pa) Any 5.000E5 1 5.000E5

2 5.790E5

σ22(Pa) Any 0 1 0

2 3.080E4

ΔL(m) Any 9.520E–6 1 9.520E–6

2 9.560E–6

ΔR (m) Any –7.140E–7 1 –7.140E-7

2 –7.330E–7

All results are averages.

NX Nastran Verification Manual 15-19

Page 238: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Post Processing

• σ11 is the stress of z at grid point 641 in coordinate system 2.

• σ22 is the stress of y at grid point 641 in coordinate system 2.

• ΔR is the displacement of x at grid point 641 in coordinate system 2.

• ΔL is the displacement of z at grid point 641 in coordinate system 2.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS07/89.

15-20 NX Nastran Verification Manual

Page 239: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.7 Hydrostatic Pressure on a Thin Wall CylinderThis test is a linear statics analysis of a thin cylinder loaded by hydrostatic pressure. It providesthe input data and results for benchmark test SSLS08/89 from Guide de validation des progicielsde calcul de structures.

Test Case Data and Information

Input File

ssls08.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 15-21

Page 240: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

• 200 parabolic quadrilateral thin shell (CQUAD8) elements

• 661 grid points

The mesh is shown in the following figure:

15-22 NX Nastran Verification Manual

Page 241: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Restrain the grid points on side A (from grid point 21 to grid point 661) in the X translationand the Y and Z rotations.

• Restrain the grid points on side B (from grid point 1 to grid point 641) in the Y translationand X and Z rotations.

• Internal pressure p = p0 * Z/L with p0 = 20000 Pa.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type Grid Point Point Bench Value NX Nastran

σ11(Pa) 321.0 Any 0 8.800E3

L/2σ22 (Pa) 321.0 x = L/2 5.000E5 4.970E5

ΔR (m) 321.0 x = L/2 2.380E–6 2.380E–6

ΔL (m) 1.000 x = L –2.860E–6 2.860E–6

(rad) 321.0 1.190E–6 1.190E–6

represents the rotation of a generator.

NX Nastran Verification Manual 15-23

Page 242: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Post Processing

• σ11is the stress of z at grid point 321 in coordinate system 2

• σ22 is the stress of y at grid point 321 in coordinate system 2

• ΔR is the displacement of x at grid point 321 in coordinate system 2

• ΔL is the displacement of z at grid point 1 in coordinate system 2

• is the rotation of y at grid point 321 in coordinate system 2

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS08/89.

15-24 NX Nastran Verification Manual

Page 243: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.8 Gravity Loading on a Thin Wall CylinderThis test is a linear statics analysis of a thin cylinder loaded by its own weight. It provides theinput data and results for benchmark test SSLS09/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• ssls09a.dat linear quadrilateral, thin shell

• ssls09b.dat axisymmetric

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• γ = 7.85 x 104 N/m3

• Mass = 8002 kg/m3

NX Nastran Verification Manual 15-25

Page 244: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 65 linear quadrilateral thin shell (CQUAD4) elements

• 84 grid points

Test 2

• 20 linear axisymmetric (CCONEAX) elements

• 21 grid points

The meshes are shown in the following figure:

15-26 NX Nastran Verification Manual

Page 245: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Axial displacement = 0 in. Z = 0 section.

• Gravity loading; gravity acts in the Z direction.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type Gridpoint

Point Bench Value TestNumber

NX Nastran

σ22(Pa) 2.000 Any 0 1 –34.66

2 0

σ11 (Pa) 2.000 x = 0 3.140E5 1 3.020E5

2 3.060E5

Δz (m) 1.000 x = L 2.990E–6 1 2.990E–6

2 2.990E–6

ΔR (m) 2.000 x = 0 –4.490E–7 1 –4.390E–76

2 –4.480E–7

(rad) 10.00 x – L 1.120E–7 1 –1.120E–7

2 –1.120E–7

NX Nastran Verification Manual 15-27

Page 246: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Post Processing

Test 1

• σ11 is the stress of z at grid point 2 in coordinate system 2

• σ22is the stress of x at grid point 2 in coordinate system 2

• Δz is the displacement of z at grid point 1 in coordinate system 2

• ΔR is the displacement of x at grid point 2 in coordinate system 2

• is the rotation of y at grid point 10 in coordinate system 2

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS09/89.

15-28 NX Nastran Verification Manual

Page 247: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.9 Pinched Cylindrical ShellThis test is a linear statics analysis of a cylindrical shell with grid point forces, F, pinching asshown. It provides the input data and results for benchmark test SSLS20/89 from Guide devalidation des progiciels de calcul de structures.

Test Case Data and Information

Input Files

• ssls20a.dat linear triangle thin shells

• ssls20b.dat linear quadrilateral thin shells

Units

SI

Material Properties

• E = 10.5 x 106 Pa

• ν = 0.3125

NX Nastran Verification Manual 15-29

Page 248: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 296 linear triangular thin shell (CTRIA3) elements

• 173 grid points

Test 2

• 140 linear quadrilateral thin shell (CQUAD4) elements

• 165 grid points

The meshes are shown in the following figure:

15-30 NX Nastran Verification Manual

Page 249: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Free conditions

To set free boundary conditions, use symmetry about XY, XZ, and YZ planes.

• Grid point forces Fy = –25 N at point D

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Type Point Bench Value Test Number NX Nastran

Disp. Y (Grid point 3) ν(m) D –113.9E-3 1 –114.4E–3

Disp. Y (Grid point 3) 2 –113.3E–3

Post Processing

• ν(m) is the displacement of y at grid point 3 (quadrilateral).

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS020/89.

NX Nastran Verification Manual 15-31

Page 250: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.10 Spherical Shell with a HoleThis test is a linear statics analysis of a spherical shell with a hole with grid point forces. Itprovides the input data and results for benchmark test SSLS21/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

• ssls21a.dat – linear quadrilateral thing shells

• ssls21b.dat – linear triangle thin shells

• ssls21c – parabolic quadrilateral thin shells

Units

SI

Material Properties

• E = 6.285 x 107 Pa

• ν = 0.3

15-32 NX Nastran Verification Manual

Page 251: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

Test 2

• 200 linear triangular thin shell (CTRIA3) elements

• 121 grid points

Test 3

• 100 parabolic quadrilateral thin shell (CQUAD8) elements

• 441 grid points

The mesh is shown in the following figure:

NX Nastran Verification Manual 15-33

Page 252: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

• Free conditions

To set free boundary conditions, use symmetry about XY and YZ planes.

• Grid point forces F = 2 Newtons

Due to the symmetric boundary conditions, only half of the load is applied.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

Result Point BenchValue

TestNumber

NX Nastran

u (m) grid point 111 A(R,0,0) 9.400E–2 1 102.0E–3

Grid point 111 2 102.1E–3

Grid point 421 3 100.9E–3

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS021/89.

15-34 NX Nastran Verification Manual

Page 253: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.11 Bending Load on a Cylindrical ShellThis test is a linear statics analysis of a cylindrical shell with bending and membrane effect. Itprovides the input data and results for benchmark test SSLS23/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

• ssls23a.dat (Test 1, linear)

• ssls23b.dat (Test 2, parabolic)

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 15-35

Page 254: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1

• 60 linear quadrilateral thin shell (CQUAD4) elements

• 78 grid points

Test 2

• 60 parabolic quadrilateral thin shell (CQUAD8) elements

• 215 grid points

The mesh is shown in the following figure:

Boundary Conditions

• AB side: Clamped in local system coordinates.

• AD and BC sides: Restrain Z translation, θx and θy.

• DC side: Set bending moment CZ to 1000 Nm/m. Set in plane force to 0.6E6 N/m.

• ABCD surface: Set internal pressure to 0.6E06 N/m**2.

• AD and DC sides are restrained in the global coordinate system.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

15-36 NX Nastran Verification Manual

Page 255: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results

Use coordinate system 3 (the cylindrical coordinate system) to display the results.

Results are post-processed using the Shell surface middle option.

Result Point Bench Value Test Number NX Nastran

Grid point 35 E 60.00 MPa 1 60.70

Grid point 93 2 59.60

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS023/89.

NX Nastran Verification Manual 15-37

Page 256: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.12 Uniformly Distributed Load on a Simply-SupportedRectangular PlateThis test is a linear statics analysis of a plate with pressure loading and simple supports. Itprovides the input data and results for benchmark test SSLS24/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

• ssls24a.dat (Test 1, coarse mesh)

• ssls24b.dat (Test 2, fine mesh)

• ssls24c.dat (Test 3, very fine mesh)

Units

SI

Material Properties

• E = 1.0 x 107 Pa

• ν = 0.3

15-38 NX Nastran Verification Manual

Page 257: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1 — a/b = 1

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

Test 2 — a/b = 2

• 200 linear quadrilateral thin shell (CQUAD4) elements

• 231 grid points

Test 3 — a/b = 5

• 500 linear quadrilateral thin shell (CQUAD4) elements

• 561 grid points

The mesh is shown in the following figure:

NX Nastran Verification Manual 15-39

Page 258: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Boundary Conditions

Restraints

• All edges: w = 0

• One corner fixed

Loads

• Set pressure = 1 N/m**2 in the –Z direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

15-40 NX Nastran Verification Manual

Page 259: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results

Result a/b Parameters BenchValue

TestNumber

NX Nastran

61z direction 1.000 1.000α 0.004440 1 0.004500

116z direction 2.000 2.000α 0.01110 2 0.01110

281z direction 5.000 5.000α 0.01417 3 0.01406

61x component topsurface

1.000 1.000β 2874. 1 2867.

116x componenttop surface

2.000 2.000β 6102. 2 6034.

281x componenttop surface

5.000 5.000β 7476. 3 7331.

Where:

q = distributed load

b = dimension

t = thickness

E = elastic modules

β values of reference from the Guide de Validation are incorrect. The correct values are extractedfrom Formulas for Stress and Strain (Roark/Young).

Note that the shell top surface corresponds to the side of the plate with negative globalZ coordinates.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS024/89.

NX Nastran Verification Manual 15-41

Page 260: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

15.13 Uniformly Distributed Load on a Simply-Supported RhomboidPlateThis test is a linear statics analysis (three-dimensional problem) of a plate with pressure andtransverse bending. It provides the input data and results for benchmark test SSLS25/89 fromGuide de validation des progiciels de calcul de structures.

• Thickness = 0.01 m

• b = 1.0 m

• a = 2.0 m

Test Case Data and Information

Input Files

• ssls25a.dat (Test 1)

• ssls25b.dat (Test 2)

Units

SI

Material Properties

• E = 36.0 x 106 Pa

• ν = 0.3

15-42 NX Nastran Verification Manual

Page 261: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

• a/b = 2

• Linear quadratic thin shell (CQUAD4) elements

Test 1

• θ = 30°

Test 2

• θ = 45°

The mesh is shown in the following figure:

Boundary Conditions

• All edges: w = 0, one corner fixed

• Pressure = 1 N/m2 in the –Z direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 15-43

Page 262: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Results

Parameter Test Case Bench Value NX Nastranα Test 1

ssls25a

z displacement

–3.277E–3 m

116z displacement

–2.963E–3 mβ Y stress

–5.700E3 N/m2

116y stress

–5.831E3 N/m2α Test 2

ssls25b

z displacement

–3.000E-3 m

116z displacement

–2.720E–3 mβ Y stress

–5.390E3 N/m2

116Y stress

–5.441E3 N/m2

Where:

q = distributed load

b = dimension

t = thickness

E = elastic modulus

Values of reference from the Guide de validation are incorrect. The correct values are extractedfrom Formulas for Stress and Strain (Roark/Young), table 26, case number 14a.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS025/89.

15-44 NX Nastran Verification Manual

Page 263: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

15.14 Shear Loading on a PlateThis test is a linear statics analysis of a thin plate with torque and shear loading. It provides theinput data and results for benchmark test SSLS27/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• ssls27a.dat (Test 1, Mindlin)

• ssls27b.dat (Test 2, Kirchoff)

• ssls27c.dat (Test 3, Mindlin)

Units

SI

Material Properties

• E = 1.0 x 107 Pa

• ν = 0.25

NX Nastran Verification Manual 15-45

Page 264: NX Nastran Verification Manual

Chapter 15 Mechanical Structures — Linear Statics Analysis with Shell Elements

Finite Element Modeling

Test 1 — Mindlin

• 6 linear quadrilateral thin shell (CQUAD4) elements

• 14 grid points

Test 2 — Kirchhoff

• 6 linear quadrilateral thin shell (CQUAD4) elements

• 14 grid points

Test 3 — Mindlin

• 48 linear quadrilateral thin shell (CQUAD4) elements

• 75 grid points

The meshes are shown in the following figure:

All tests are executed with mapped meshing

Boundary Conditions

• Clamp AD side

• Point B: grid point force Fz = –1N

• Point C: grid point force –Fz = 1N

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

15-46 NX Nastran Verification Manual

Page 265: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Shell Elements

Results at Location C

Displacement atGrid point

Bench Value Test Number NX Nastran

14.00 3.537E–2 1 3.585E–2

14.00 3.537E–2 2 3.573E–2

75.00 3.537E–2 3 3.603E–2

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLS027/89.

NX Nastran Verification Manual 15-47

Page 266: NX Nastran Verification Manual
Page 267: NX Nastran Verification Manual

Chapter

16 Mechanical Structures —Linear Statics Analysis withSolid Elements

16.1 Solid Cylinder in Pure TensionThis test is a linear statics analysis of a solid cylinder with tension-compression. It provides theinput data and results for benchmark test SSLV01/89 from Guide de validation des progiciels decalcul de structures.

NX Nastran Verification Manual 16-1

Page 268: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Test Case Data and Information

Input Files

• sslv01a.dat (Test 1)

• sslv01b.dat (Test 2)

• sslv01c.dat (Test 3)

• sslv01d.dat (Test 4)

• sslv01e.dat (Test 5)

Units

SI

Material Properties

• E = 2.0 x 1011 Pa

• ν = 0.30

16-2 NX Nastran Verification Manual

Page 269: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element ModelingTest 1

• 155 parabolic tetrahedron (CTETRA) elements

• 342 grid points

Test 2

• 144 linear brick (CHEXA) elements & 48 linear solid wedge (CPENTA) elements

• 307 grid points

Test 3

• 48 linear quadrilateral axisymmetric solid (CQUADX) elements

• 65 grid points

Test 4

• 96 linear triangular axisymmetric solid (CTRIA6) elements

• 65 grid points

Test 5 — Mapped meshing

• 18 parabolic quadrilateral axisymmetric solid (CQUADX) elements

• 95 grid points

The meshes are shown in the following figure:

NX Nastran Verification Manual 16-3

Page 270: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions

• Uniaxial deformation of the cylinder section

• Set uniformly distributed force –F/A on the free end in the Z direction

• F/A = 100 MPa

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

linear statics

Point GridPoint

Displacement Bench Value TestNumber

NX Nastrans

A & C 6.000 u (m) 1.500E–3 1 1.500E–3

A & C 279.0 2 1.500E–3

A & C 1.000 3 1.500E–3

A & C 4.000 4 1.500E–3

A & C 1.000 5 1.600E–3

B 4.000 u (m) 1.500E–3 1 1.500E–3

16-4 NX Nastran Verification Manual

Page 271: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Point GridPoint

Displacement Bench Value TestNumber

NX Nastrans

B 307.0 2 1.500E–3

B 53.00 3 1.450E–3

B 3.000 4 1.500E–3

B 39.00 5 1.600E–3

D 37.00 u (m) 1.000E-3 1 1.000E–3

D 189.0 2 1.000E–3

D 5.000 3 1.000E–3

D 25.00 4 1.000E–3

D 7.000 5 1.000E–3

E 41.00 u (m) 0.5000E-3 1 0.5000E–3

E 99.00 2 0.5000E–3

E 9.000 3 0.5000E–3

E 29.00 4 0.5000E–3

E 13.00 5 0.5000E–3

A & C 6.000 w (m) –0.1500E–3 1 0.1500E–3

A & C 279.0 2 0.1500E–3

A & C 1.000 3 0.1500E–3

A & C 4.000 4 0.1500E–3

A & C 1.000 5 0.1500E–3

D 37.00 w (m) –0.1500E-3 1 0.1500E–3

D 189.0 2 0.1500E–3

D 5.000 3 0.1500E–3

D 25.00 4 0.1500E–3

D 7.000 5 0.1500E–3

E 41.00 w (m) –0.1500E–3 1 0.1500E–3

E 99.00 2 0.1500E–3

E 9.000 3 0.1500E–3

E 29.00 4 0.1500E–3

E 13.00 5 0.1500E–3

Post Processing

To view the results for Test 1 and Test 2, use coordinate system 2 (cylindrical). All results areaveraged.

NX Nastran Verification Manual 16-5

Page 272: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLV01/89.

16-6 NX Nastran Verification Manual

Page 273: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

16.2 Internal Pressure on a Thick-Walled Spherical ContainerThis test is a linear statics analysis of a thick sphere with internal pressure. It provides theinput data and results for benchmark test SSLV03/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• sslv03a.dat (Test 1)

• sslv03b.dat (Test 2)

• sslv03c.dat (Test 3)

• sslv03d.dat (Test 4)

Units

SI

Material Properties

• E = 2 x 105 Pa

• ν = 0.3

NX Nastran Verification Manual 16-7

Page 274: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling

Test 1

• 1600 linear brick (CHEXA) elements & linear solid wedge (CPENTA) elements

• 1898 grid points

Test 2

• 200 parabolic brick (CHEXA) elements & 50 solid wedge (CPENTA) elements

• 1256 grid points

Test 3

• 400 linear quadrilateral axisymmetric solid (CQUADX) elements

• 451 grid points

Test 4

• 400 parabolic quadrilateral axisymmetric solid (CQUADX) elements

• 1301 grid points

The meshes from these tests are shown in the following figure:

16-8 NX Nastran Verification Manual

Page 275: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions

• The equivalent of the center of the sphere being fixed is modeled via symmetric boundaryconditions.

• Uniform radial pressure = 100 MPa.

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 16-9

Page 276: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Results

Point GridPoint

DisplacementStress

Bench Value TestNumber

NX Nastran

r=1 m 1.000 σrr (MPa) –100.0 1 –90.15

1.000 2 –97.29

451.0 3 –97.07

451.0 4 –99.27

1.000 σθ (MPa) 71.43 1 72.09

1.000 2 77.23

451.0 3 68.62

451.0 4 71.52

1.000 u (m) 0.4000E–3 1 0.4000E–3

1.000 2 0.4000E–3

451.0 3 0.4000E–3

451.0 4 0.4000E-3

r=2 m 1826. σrr (MPa) 0 1 –0.02800

2221. 2 0.2241

411.0 3 –0.2860

411.0 4 –0.04100

1826. σθ (MPa) 21.43 1 21.18

2221. 2 21.18

411.0 3 22.18

411.0 4 21.38

1826 u (m) 1.500E–4 1 1.500E–4

2221. 2 1.500E–4

411.0 3 1.500E–4

411.0 4 1.500E–4

All results are averaged. Use the spherical coordinate system for the stress results.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLV03/89.

16-10 NX Nastran Verification Manual

Page 277: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

16.3 Internal Pressure on a Thick-Walled Infinite CylinderThis test is a linear statics analysis of a thick cylinder with internal pressure. It provides theinput data and results for benchmark test SSLV04/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• sslv04a.dat (Test 1)

• sslv04b.dat (Test 2)

• sslv04c.dat (Test 3)

• sslv04d.dat (Test 4)

Units

SI

Material Properties

• E = 2 x 105 mPa

• ν = 0.3

Finite Element Modeling

Test 1

• 400 linear brick (CHEXA) elements

• 902 grid points

Test 2

• 240 parabolic brick (CHEXA) elements

• 1873 grid points

NX Nastran Verification Manual 16-11

Page 278: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Test 3

• 600 linear quadrilateral axisymmetric solid (CQUADX) elements

• 656 grid points

Test 4

• 600 parabolic quadrilateral axisymmetric solide (CQUADX) elements

• 1911 grid points

The meshes from these tests are shown in the following figure:

16-12 NX Nastran Verification Manual

Page 279: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions

• Unlimited cylinder

• Internal pressure p = 60 MPa

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

Results

All results are averaged.

Test Case Grid Point Displacement /Stress

Bench Value NX Nastran

sslv04a 411.0 σr –60.00 (MPa) –57.00

sslv04b 977.0 σr –60.00

sslv04c 616.0 σr ( –59.00

NX Nastran Verification Manual 16-13

Page 280: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Test Case Grid Point Displacement /Stress

Bench Value NX Nastran

sslv04d 1831. –127.0

sslv04a 411.0 σθ 100.0 (MPa) 99.70

sslv04b 977.0 102.0

sslv04c 616.0 99.40

sslv04d 1831. 145.0

sslv04a 411.0 τmax 80.00 (MPa) 79.34

sslv04b 977.0 81.00

sslv04c 616.0 79.40

sslv04d 1831. 79.98

sslv04a 411.0 ur 59.00E–6 (m) 59.00E–6

sslv04b 977.0 59.00E–6

sslv04c 616.0 59.00E–6

sslv04d 1831. 59.00E–6

sslv04a 451.0 σr 0 (MPa) –0.006500

sslv04b –0.04480

sslv04c –0.1684

sslv04d .003417

sslv04a σθ 40.00 (MPa) 39.66

sslv04b 40.39

sslv04c 40.09

sslv04d 40.19

sslv04a τmax 20.00 (MPa) 20.08

sslv04b 20.17

sslv04c 20.07

sslv04d 19.99

sslv04a ur 40.00E–6 (m) 40.00E–6

sslv04b 40.00E–6

sslv04c 40.00E–6

sslv04d 40.20E–6

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLV04/89.

16-14 NX Nastran Verification Manual

Page 281: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

16.4 Prismatic Rod in Pure BendingThis test is a linear statics analysis of a solid rod with bending. It provides the input data andresults for benchmark test SSLV08/89 from Guide de validation des progiciels de calcul destructures.

Test Case Data and Information

Input Files

• sslv08a.dat (Test 1)

• sslv08b.dat (Test 2)

• sslv08c.dat (Test 3)

• sslv08d.dat (Test 4)

Units

SI

Material Properties

• E = 2 x 105 MPa

• ν = 0.3

NX Nastran Verification Manual 16-15

Page 282: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling

Test 1

• 198 linear solid pyramid (CTETRA) elements

• 76 grid points

Test 2

• 198 parabolic solid pyramid (CTETRA) elements

• 409 grid points

Test 3

• 48 linear parabolic brick (CHEXA) elements

• 117 grid points

Test 4 — Mapped meshing

• 48 linear parabolic brick (CHEXA) elements

• 381 grid points

The meshes from these tests are shown in the following figure:

16-16 NX Nastran Verification Manual

Page 283: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions

• Clamp Point B.

• Other points of B section: Set Z-displacement to 0. NOTE: In these tests some grid points ofsection B are also restrained in the x direction about the x-axis at the free end of the rod.

• Set moment Mx equal to (4/3)E+7 N.m

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 16-17

Page 284: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Results

Test # Point GridPoint

DisplacementStress

Bench Value NX Nastran

1 F or G 5.000 σzz –10.00E6 (Pa) –4.268E6

2 5.000 –10.03E6

3 75.00 –10.00E6

4 245.0 –9.995E6

1 A 26.00 uA 4.000E–4 (m) 2.964E–4

2 90.00 4.000E–4

3 77.00 4.000E–4

4 251.0 4.000E–4

1 H 19.00 wB 2.000E–4 (m) 2.000E–4

2 40.00 2.000E–4

3 76.00 2.000E–4

4 249.0 2.000E–4

1 F or G 5.000 vF = -vG 0.1500E-4 (m) 0.07450E–4

2 5.000 0.1508E–4

3 75.00 0.1500E–4

4 245.0 0.1503E–4

1 D or E 8.000 vD = -vE -0.1500E-4 (m) –6.262E–4

2 8.000 –0.1505E–4

3 73.00 –0.1500E–4

4 241.0 –0.1503E–4

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLV08/89.

16-18 NX Nastran Verification Manual

Page 285: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

16.5 Thick Plate Clamped at EdgesThis test is a linear statics analysis of a thick plate with pressure and transverse bending. Itprovides the input data and results for benchmark test SSLV09/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

• sslv09a.dat (Test 1)

• sslv09b.dat (Test 2)

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

NX Nastran Verification Manual 16-19

Page 286: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Finite Element Modeling

Test 1

• 25 parabolic linear brick (CHEXA) elements

• 228 grid points

• λ =10, 20, 50, 75, 100

Test 2

• 25 linear quadrilateral thin shell (CQUAD4) elements

• 36 grid points

• λ =10, 20, 50, 75, 100

Test 2 is done using CQUAD4 elements with the thicknesses specified in the physical propertytable.

The meshes from these tests are shown in the following figure:

16-20 NX Nastran Verification Manual

Page 287: NX Nastran Verification Manual

Mechanical Structures — Linear Statics Analysis with Solid Elements

Boundary Conditions

• AB and AD sides: clamped

• BC and DC sides: symmetry

• Load case 1:

Pressure p = 1E06 Pascals in –Z direction

• Load case 2: Point C

Grid Point force F = 1E06 N in –Z direction

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 Linear statics

NX Nastran Verification Manual 16-21

Page 288: NX Nastran Verification Manual

Chapter 16 Mechanical Structures — Linear Statics Analysis with Solid Elements

Results

Test Case 1 (z displacement at location C)

PartName

Load Case Grid Point Analytical Reference FEM NX Nastran

10 Pressure 242.0 –0.6552E-4 –0.7620E–4 –0.7379E–4

Force 242.0 –0.2915E-3 –0.4300E–3 –0.3684E–3

20 Pressure 242.0 –0.5242E-3 –0.5383E–3 –0.5266E–3

Force 242.0 –0.2332E–2 –0.2535E–2 –0.2456E–2

50 Pressure 242.0 –0.8190E–2 –0.8029E–2 –0.7935E–2

Force 242.0 –0.3643E–1 –0.3574E–1 –0.3602E–1

75 Pressure 242.0 –0.2764E–1 –0.2690E–1 –0.2666E-1

Force 242.0 –0.1230 –0.1184 –0.1206

100 Pressure 242.0 –0.6552E–1 –0.6339E–1 –0.6305E–1

Force 242.0 –0.2915 –0.2779 –0.2849

Test Case 2 (z displacement at location C)

PartName

Load Case Grid Point Analytical Reference FEM NX Nastran

10 Pressure 1.000 –0.6552E–4 –0.7866E–4 –0.8131E–4

Force 1.000 –0.2915E–3 –0.4109E–3 –0.4050E–3

20 Pressure 36.00 –0.5242E–3 –0.5557E–3 –0.5775E–3

Force 36.00 –0.2332E–2 –0.2595E–2 –0.2668E–2

50 Pressure 36.00 –0.8190E–2 –0.8348E–2 –0.8669E–2

Force 36.00 –0.3643E–1 –0.3745E–1 –0.3878E–1

75 Pressure 36.00 –0.2764E–1 –0.2805E–1 –0.2906E–1

Force 36.00 –0.1230 –0.1253 –0.1292

100 Pressure 36.00 –0.6552E–1 –0.6639E–1 –0.6864E–1

Force 36.00 –0.2915 -0.2958 –0.3042

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SSLV09/89.

16-22 NX Nastran Verification Manual

Page 289: NX Nastran Verification Manual

Chapter

17 Mechanical Structures —Normal Mode Dynamics Analysis

17.1 Lumped Mass-Spring SystemThis test is a normal mode dynamics analysis of an elastic link with lumped mass. It provides theinput data and results for benchmark test SDLD02/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input File

sdld02.dat

Units

SI

Material Properties

Spring constant

NX Nastran Verification Manual 17-1

Page 290: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 8 lumped mass (CONM2) elements

• 9 spring (CBUSH) elements

• 8 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Clamp points A and B

• Other points:

ν = 0 ; θ = 0

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

17-2 NX Nastran Verification Manual

Page 291: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency Results (Hz)

Normal Mode Bench Value NX Nastran

1 5.527 5.527

2 10.89 10.89

3 15.92 15.92

4 20.46 20.46

5 24.38 24.38

6 27.57 27.57

7 29.91 29.91

8 31.35 31.35

Mode Shapes Results

The mode shapes results are exact. The multiplication coefficient is 3.162.

Normal Mode Point Bench Value NX Nastran

1 P1 0.1612 0.05100

P2 0.3030 0.09580

P3 0.4082 0.1291

P4 0.4642 0.1468

P5 0.4642 0.1468

P6 0.4082 0.1291

P7 0.3030 0.09580

P8 0.1612 0.05100

8 P1 0.1612 0.05100

P2 –0.3030 –0.09580

P3 0.4082 0.1291

P4 –0.4642 –0.1468

P5 0.4642 0.1468

P6 –0.4082 –0.1291

P7 0.3030 0.09580

P8 –0.1612 –0.05100

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLD02/89, p. 178.

NX Nastran Verification Manual 17-3

Page 292: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.2 Short Beam on Simple SupportsThis test is a modal analysis of a straight short beam with simple supports both inline and offset.It provides the input data and results for benchmark test SDLL01/89 from Guide de validationdes progiciels de calcul de structures.

Test Case Data and Information

Input Files

• sdll01a.dat (Test 1)

• sdll01b.dat (Test 2)

Units

SI

Material Properties

• E = 2 x 101111 Pa

• ν = 0.3

• ρ = 7800 kg/m3

17-4 NX Nastran Verification Manual

Page 293: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 10 linear beam (CBAR) elements

• 11 grid points

The meshes are shown in the following figure:

NX Nastran Verification Manual 17-5

Page 294: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

Problem 1

• Point A (grid point 1): Constrain in all directions, except the Z rotation.

• Point B (grid point 2): Constrain in the Y and Z translations and X and Y rotations.

• All other grid points (3-11): Constrain in the Z translation and X and Y rotations.

• No load case.

Problem 2

• Point C (grid point 1): Constrain in all directions, except the Z rotation.

• Point D (grid point 2): Constrain in the Y and Z translations and X and Y rotations.

• All other grid points (3-11): Constrain in the Z translation and X and Y rotations.

• No load case.

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

17-6 NX Nastran Verification Manual

Page 295: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results

Problem 1: Frequency results (Hz)

Normal Mode Bench Value NX Nastran

Bending 1 431.6 437.2

Tension 1 1266. 1265.

Bending 2 1498. 1539.

Bending 3 2871. 2925.

Tension 2 3798. 3763.

Bending 4 4378. 4328.

Problem 2: Frequency results (Hz)

Mode Number Bench Value NX Nastran

1 392.8 398.5

2 902.2 927.3

3 1592. 1666.

4 2629. 2815.

5 3126. 3266.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL01/89.

NX Nastran Verification Manual 17-7

Page 296: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.3 Axial Loading on a RodThis test is a modal analysis of a simply-supported beam with stress stiffening. It provides theinput data and results for benchmark test SDLL05/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• sdll05a.dat

• sdll05b.dat

Units

SI

Material Properties

• E = 2 x 1011 Pa

• ρ = 7800 kg/m3

Finite Element Modeling

• 10 linear beam (CBAR) elements

• 11 grid points

The mesh is shown in the following figure:

17-8 NX Nastran Verification Manual

Page 297: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

• Points A: u = v = 0

• Points B: v = 0

• Load case 2 (grid point 2): Fx = 1E05N in –X direction

• Stress stiffening on

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Load Case Normal Mode Bench Value NX Nastran

1 Bending 1 28.70 28.68

Bending 2 114.8 114.4

2 Bending 1 22.43 22.40

Bending 2 109.1 108.7

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL05/89.

NX Nastran Verification Manual 17-9

Page 298: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.4 Cantilever Beam with a Variable Rectangular SectionThis test is a modal analysis of a straight cantilever beam with a variable section. It provides theinput data and results for benchmark test SDLL09/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• sdll09a.dat

• sdll09b.dat

Units

SI

Material Properties

• E = 2 x 1011 Pa

• ρ = 7800 kg/m3

17-10 NX Nastran Verification Manual

Page 299: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 10 tapered beam (CBEAM) elements

• 11 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Clamp point A

• No load case

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

NX Nastran Verification Manual 17-11

Page 300: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency results (Hz)

β Normal Mode Bench Value NX Nastran

4 1 54.18 54.24

2 171.9 172.4

3 384.4 384.9

4 697.2 695.4

5 1112. 1104.

5 1 56.55 56.59

2 175.8 176.3

3 389.0 389.5

4 702.4 700.6

5 1118. 1109.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL09/89.

17-12 NX Nastran Verification Manual

Page 301: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.5 Thin Circular RingThis test is a modal analysis of a thin curved beam. It provides the input data and results forbenchmark test SDLL11/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input File

sdll11.dat

Units

SI

Material Properties

• E = 7.2 x 1010 Pa

• ν = 0.3

• ρ = 2700 kg/m3

NX Nastran Verification Manual 17-13

Page 302: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 36 linear beam (CBAR) elements

• 36 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Free conditions

• Create one constraint set (kinematic DOF) to fully constrain the three grid points shownbelow (grid points 7, 21, 30).

• No load case

The boundary conditions are shown in the following figure:

17-14 NX Nastran Verification Manual

Page 303: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran ADS #

Plane mode 1,2,3 0 0 1.000, 2.000, 3.000

Plane mode 4,5 318.4 319.0 7.000, 8.000

Plane mode 6,7 900.5 900.9 11.00, 12.00

Plane mode 8,9 1727. 1724. 15.00, 16.00

Plane mode 10,11 2792. 2781. 17.00, 18.00

Transverse Mode1,2,3

0 0 4.000, 5.000, 6.000

Transverse Mode 4,5 511.0 511.0 9.000, 10.00

Transverse Mode 6,7 1590. 1585. 13.00, 14.00

Transverse Mode 8,9 3184. 3159. 19.00, 20.00

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL11/89.

NX Nastran Verification Manual 17-15

Page 304: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.6 Thin Circular Ring Clamped at Two PointsThis test is a modal analysis of a thin curved beam. It provides the input data and results forbenchmark test SDLL12/89 from Guide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input File

sdll12.dat

Units

SI

Material Properties

• E = 7.2 x 1010 Pa

• ν = 0.3

• ρ = 2700 kg/m3

17-16 NX Nastran Verification Manual

Page 305: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 29 linear beam (CBAR) elements

• 29 grid points

The mesh is shown in the following figure:

NX Nastran Verification Manual 17-17

Page 306: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

• Points A and B: Clamped in local coordinate system

• No load case

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 235.3 235.9

2 575.3 575.2

3 1106. 1103.

4 1406. 1399.

5 1751. 1743.

6 2557. 2536.

7 2802. 2723.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL12/89.

17-18 NX Nastran Verification Manual

Page 307: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.7 Vibration Modes of a Thin Pipe ElbowThis test is a modal analysis of a straight cantilever beam, and a thin curved beam. It providesthe input data and results for benchmark test SDLL14/89 from Guide de validation des progicielsde calcul de structures.

Test Case Data and Information

Input Files

• sdll14a.dat (test 1, L=0)

• sdll14b.dat (test 2, L=0.6)

• sdll14c.dat (test 3, L=2.0)

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg/m3

NX Nastran Verification Manual 17-19

Page 308: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• L = 0 or L = 0.6:

18 linear beam (CBAR) elements

19 grid points

• L = 2:

28 linear beam (CBAR) elements

29 grid points

Two of the meshes are shown in the following figure:

17-20 NX Nastran Verification Manual

Page 309: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

• Clamp points C and D

• Point A: v = 0; w = 0

• Point B: u = 0; w = 0

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

NX Nastran Verification Manual 17-21

Page 310: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency results (Hz)

L Normal Mode Bench Value NX Nastran ADS#0 Transverse 1 44.23 44.07 1.000

Plane 1 119.0 119.2 2.000

Transverse 2 125.0 125.4 3.000

Plane 2 227.0 225.0 4.000

0.6000 Transverse 1 33.40 33.15 1.000

Plane 1 94.00 94.42 2.000

Transverse 2 100.0 98.50 3.000

Plane 2 180.0 183.7 4.000

2.000 Transverse 1 17.90 17.65 1.000

Plane 1 24.80 24.40 3.000

Transverse 2 25.30 24.94 2.000

Plane 2 27.00 26.67 4.000

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL14/89.

17-22 NX Nastran Verification Manual

Page 311: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.8 Cantilever Beam with Eccentric Lumped MassThis test is a modal analysis of a straight cantilever beam and a lumped mass. It provides theinput data and results for benchmark test SDLL15/89 from Guide de validation des progiciels decalcul de structures.

Test Case Data and Information

Input Files

• sdll15a.dat

• sdll15b.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ρ = 7800 kg/m3

NX Nastran Verification Manual 17-23

Page 312: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

Test 1:

• 10 linear beam (CBEAM) elements

• 1 rigid (RBAR) element from point B to point C

• 1 lumped mass (CONM2) element at point C

• 11 grid points

Test 2:

• 10 linear beam (CBAR) elements

• 1 rigid (RBAR) element from point B to point C

• 1 lumped mass (CONM2) element at point C

• 11 grid points

The mesh both tests is is shown in the following figure:

Boundary Conditions

• Clamp point A

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 normal mode dynamics — SVI

17-24 NX Nastran Verification Manual

Page 313: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency results (Hz)

yc Normal Mode Bench Value NX Nastran

0 Transverse 1,2 1.650 1.650

Transverse 3,4 16.07 15.88

Transverse 5,6 50.02 48.64

Tension 1 76.47 76.42

Torsion 1 80.47 80.68

Transverse 7,8 103.2 97.89

1 1 1.636 1.633

2 1.642 1.638

3 13.46 13.36

4 13.59 13.59

5 28.90 29.20

6 31.96 31.57

7 61.61 59.85

8 63.93 61.72

Mode shapes results

yc NormalMode

ModalDisplacement

Bench Value NX Nastran

1 1 wc/wb 1.030 1.030

2 uc/vb 0.1480 –0.1480

3 uc/vb 2.882 –2.904

4 wc/wb –0.9220 –0.9800

• wc = z displacement at point C

• wb = z displacement at point B

• uc = x displacement at point C

• vb = y displacement at point B

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL15/89.

NX Nastran Verification Manual 17-25

Page 314: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.9 Thin Square Plate (Clamped or Free)This test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. Itprovides the input data and results for benchmark test SDLS01/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

• sdls01a.dat

• sdls01b.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg/m3

17-26 NX Nastran Verification Manual

Page 315: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Problem 1: AB side clamped

• Problem 2: Free plate; 1 kinematic DOF set (grid points 1, 11, 111)

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

NX Nastran Verification Manual 17-27

Page 316: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Results

Problem 1: Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 8.727 8.638

2 21.30 20.89

3 53.55 52.42

4 68.30 65.77

5 77.74 75.14

6 136.0 127.8

Problem 2: Frequency results (Hz)

Normal Mode Bench Value NX Nastran

7 33.71 32.91

8 49.46 47.42

9 61.05 59.19

10,11 87.52 83.08

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLS01/89..

17-28 NX Nastran Verification Manual

Page 317: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.10 Simply-Supported Rectangular PlateThis test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. Itprovides the input data and results for benchmark test SDLS03/89 from Guide de validation desprogiciels de calcul de structures.

Test Case Data and Information

Input Files

sdls03.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg/m3

NX Nastran Verification Manual 17-29

Page 318: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 150 linear quadrilateral thin shell (CQUAD4) elements

• 176 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Z-displacement = 0 on all sides of the plate

• One DOF set

• No load case

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Mode Dynamics

17-30 NX Nastran Verification Manual

Page 319: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 35.63 35.27

2 68.51 67.29

3 109.6 108.5

4 123.3 120.8

5 142.5 138.2

6 197.3 188.2

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLS03/89.

NX Nastran Verification Manual 17-31

Page 320: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.11 Thin Ring Plate Clamped on a HubThis test is a normal mode dynamics analysis (three-dimensional problem) of a thin plate. Itprovides the input data and results for benchmark test SDLS04/89 from Guide de validation desprogiciels de calcul de structures.

• Re = 0.1 m

• Ri = 0.2 m

• Thickness = .001 m

Test Case Data and Information

Input Files

sdls04.dat

Units

SI

Material Properties

• E = 2 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg/m3

17-32 NX Nastran Verification Manual

Page 321: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling

• 400 linear quadrilateral thin shell (CQUAD4) elements

• 440 grid points

The mesh is shown in the following figure:

Boundary Conditions

• If r = Ri: Clamp in local coordinate system.

• No load case.

The boundary conditions are shown in the following figure:

NX Nastran Verification Manual 17-33

Page 322: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 79.26 79.22

2,3 81.09 80.72

4,5 89.63 88.83

6,7 112.8 111.3

8,9 Not available 152.7

10,11 Not available 212.9

12,13 Not available 290.1

14,15 Not available 382.9

16,17 Not available 490.3

18 518.9 510.9

19,20 528.6 519.7

21,22 559.1 546.2

23 609.7 590.3

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLS04/89.

17-34 NX Nastran Verification Manual

Page 323: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.12 Vane of a Compressor - Clamped-free Thin ShellThis test is a normal mode dynamics analysis (three-dimensional problem) of a cylindrical thinshell. It provides the input data and results for benchmark test SDLS05/89 from Guide devalidation des progiciels de calcul de structures.

• α = 0.5 rad

• AD = L = 0.3048m

• r = 2L = 0.6096m

• thickness = 3.048 x 10–3 m

Test Case Data and Information

Input Files

• sdls05a.dat (coarse mesh)

• sdls05b.dat (fine mesh)

Units

SI

Material Properties

• E = 2.0685 x 1011 Pa

• ν = 0.3

• ρ = 7857.2 kg/m3

NX Nastran Verification Manual 17-35

Page 324: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling — Coarse Mesh

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

The coarse mesh is shown in the following figure:

Finite Element Modeling — Fine Mesh

• 225 linear quadrilateral thin shell (CQUAD4) elements

• 256 grid points

The fine mesh is shown in the following figure:

17-36 NX Nastran Verification Manual

Page 325: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

• AD side: Clamped in local coordinate system.

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran coarsemesh

NX Nastran fine mesh

1 85.60 84.60 85.30

2 134.5 137.1 137.8

3 259.0 240.7 243.9

4 351.0 333.3 338.1

5 395.0 370.0 378.3

6 531.0 503.7 515.4

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLS05/89.

NX Nastran Verification Manual 17-37

Page 326: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.13 Bending of a Symmetric TrussThis test is a normal mode dynamics analysis (plane problem) of a straight cantilever beamstructure. It provides the input data and results for benchmark test SDLX01/89 from Guide devalidation des progiciels de calcul de structures.

• h = 0.0048 m

• b = 0.029 m

• A = 1.392 x 10–4 m2

• Iz = 2.673 x 10–10 m4

Test Case Data and Information

Input File

sdlx01.dat

Units

SI

17-38 NX Nastran Verification Manual

Page 327: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg/m3

Finite Element Modeling

• 24 linear beam (CBAR) elements

• 24 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Clamp points A and B

The boundary conditions are shown in the following figure:

NX Nastran Verification Manual 17-39

Page 328: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 8.800 8.769

2 29.40 29.34

3 43.80 43.82

4 56.30 56.25

5 96.20 95.43

6 102.6 102.5

7 147.1 146.2

8 174.8 173.1

9 178.8 177.4

10 206.0 202.9

11 266.4 262.4

12 320.0 309.7

13 335.0 321.9

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLX01/89.

17-40 NX Nastran Verification Manual

Page 329: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

17.14 Hovgaard’s Problem — Pipes with Flexible ElbowsThis test is a normal mode dynamics analysis (three-dimensional problem) of a straightcantilever beam structure. It provides the input data and results for benchmark test SDLX02/89from Guide de validation des progiciels de calcul de structures.

• A = 0.3439 x 10E–2 m2

• R = 0.922 m

• e = 0.00612 m

• Re = 0.0925 m

• Ri = 0.08638 m

• Iy = Iz = 0.1377x10–4 m4 (straight elements)

• Iy = Iz = 0.5887x10–5 m4 (curved elements)

Test Case Data and Information

Input Files

sdlx02.dat

Units

SI

NX Nastran Verification Manual 17-41

Page 330: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Material Properties

• E = 1.658 x 1011 Pa

• ν = 0.3

• ρ = 13404.106 kg/m3

Finite Element Modeling

• 25 linear beam (CBAR) elements

• 26 grid points

The mesh is shown in the following figure:

17-42 NX Nastran Verification Manual

Page 331: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Boundary Conditions

• Clamp points A and B

The boundary conditions are shown in the following figure:

Solution Type

SOL 103 — Normal Modes

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 10.18 10.39

2 19.54 19.85

3 25.47 25.32

4 48.09 47.74

5 52.86 51.78

6 75.94 83.00

7 80.11 85.12

8 122.3 125.8

9 123.2 127.7

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLX02/89.

NX Nastran Verification Manual 17-43

Page 332: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

17.15 Rectangular PlatesThis test is a normal mode dynamics analysis (three dimensional problem) of a thin plate withrigid body modes. It provides the input data and results for benchmark test SDLX03/89 fromGuide de validation des progiciels de calcul de structures.

Test Case Data and Information

Input Files

sdlx03.dat

Units

SI

Material Properties

• E = 2.1 x 1011 Pa

• ν = 0.3

• ρ = 7800 kg / m3

17-44 NX Nastran Verification Manual

Page 333: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis

Finite Element Modeling• 300 linear quadrilateral thin shell (CQUAD4) elements

• 320 grid points

The mesh is shown in the following figure:

Boundary Conditions• Free plate

• One DOF set

The boundary conditions are shown in the following figure:

Solution TypeSOL 103 — Normal Mode Dynamics

NX Nastran Verification Manual 17-45

Page 334: NX Nastran Verification Manual

Chapter 17 Mechanical Structures — Normal Mode Dynamics Analysis

Results

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 584.0 577.0

2 826.0 813.0

3 855.0 844.0

4 911.0 895.0

5 1113. 1062.

6 1136. 1118.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLX03/89.

17-46 NX Nastran Verification Manual

Page 335: NX Nastran Verification Manual

Chapter

18 Mechanical Structures —Normal Mode Dynamics Analysisand Model Response

18.1 Transient Response of a Spring-Mass System with AccelerationLoadingThis test is an undamped transient response by modal superposition. It provides the inputdata and results for benchmark test SDLD04/89 from Guide de validation des progiciels decalcul de structures.

Where:

• m = 1 kg

• k = 1000 N/m

Test Case Data and Information

Input Files

sdld04.dat

Units

SI

Material Properties

Spring constant.

NX Nastran Verification Manual 18-1

Page 336: NX Nastran Verification Manual

Chapter 18 Mechanical Structures — Normal Mode Dynamics Analysis and ModelResponse

Finite Element Modeling

• 3 lumped mass (CONM) elements

• 3 translational spring (CELAS) elements

The mesh is shown in the following figure:

Boundary Conditions

• Points A: Clamped (u = v = 0 : θ - 0)

• Points B, C and D: v = 0 ; = 0

• Point A: Set acceleration: u(t) = 2E5 * (t2) ; (0 < t < 0.1 s)

• Initial condition: u(0) = 0 ; u(0) = 0 at every point

The mesh and the boundary conditions are shown in the following figure:

Solution Type

SOL 112 — Modal Transient Response

Results

The mode shapes results are exact.

Frequency results (Hz)

Normal Mode Bench Value NX Nastran

1 2.239 2.239

2 6.275 6.275

3 9.069 9.069

18-2 NX Nastran Verification Manual

Page 337: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Mode shapes results

Normal Mode Point Bench Value NX Nastran

1 B 0.4450 0.4450

C 0.8019 0.8019

D 1.000 1.000

2 B 1.000 1.000

C 0.4450 0.4450

D –0.8019 –0.8019

B –0.8019 –0.8019

C 1.000 1.000

D –0.4450 –0.4450

Transient response (Point D: X-displacement in meters)

Time (sec) Bench Value NX Nastran

0.02000 –0.002700 –0.002670

0.04000 –0.04260 –0.04270

0.05000 –0.1041 –0.1041

0.06000 –0.2158 –0.2160

0.08000 –0.6813 –0.6818

0.1000 –1.658 –1.659

NX Nastran Verification Manual 18-3

Page 338: NX Nastran Verification Manual

Chapter 18 Mechanical Structures — Normal Mode Dynamics Analysis and ModelResponse

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLD04/89.

18-4 NX Nastran Verification Manual

Page 339: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

18.2 Transient Response of a Clamped-free PostThis test is a transient response of a straight cantilever beam with acceleration and forceloadings, and modal damping. It provides the input data and results for benchmark testSDLL06/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information

Input Files

sdll06.dat

Units

SI

Material Properties

• E = 4 x 1010 Pa

• Iz = 3.285 x 10–1 m4

• ρ = 0

Finite Element Modeling

• 8 linear beam (CBAR) elements

• 9 grid points

The mesh is shown in the following figure:

NX Nastran Verification Manual 18-5

Page 340: NX Nastran Verification Manual

Chapter 18 Mechanical Structures — Normal Mode Dynamics Analysis and ModelResponse

Boundary Conditions

To apply an acceleration üA(t) at point A, we can do the following:

• Points A: Clamped (u = v = 0 : θ - 0)

• Point B: Set nodal force Fx(t) equal to mB * üA(t) in the -X direction

Fx(t) = –m * üA(t)

• Initial conditions: u(0) = 0 ; u (0) = 0 at every point

The mesh and the boundary conditions are shown in the following figure:

18-6 NX Nastran Verification Manual

Page 341: NX Nastran Verification Manual

Mechanical Structures — Normal Mode Dynamics Analysis and Model Response

Solution Type

SOL 109 — Direct Transient Response

Results

uB displacement (mm)

Time (s) Bench Value NX Nastran

0.01000 –0.06500 –0.06570

0.02000 –0.5130 –0.5152

0.03000 –1.679 –1.682

0.04000 –3.457 –3.464

0.05000 –5.316 –5.333

0.06000 –6.764 –6.804

0.07000 –7.609 –7.682

0.08000 –7.774 –7.891

0.09000 –7.244 –7.413

0.1000 –6.068 –6.289

0.1200 –2.242 –2.542

0.1400 2.367 2.070

0.1600 6.149 5.977

0.1800 7.783 7.847

0.2000 6.698 7.042

The problem with damping is not computed.

NX Nastran Verification Manual 18-7

Page 342: NX Nastran Verification Manual

Chapter 18 Mechanical Structures — Normal Mode Dynamics Analysis and ModelResponse

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. SDLL06/89.

18-8 NX Nastran Verification Manual

Page 343: NX Nastran Verification Manual

Chapter

19 Stationary Thermal Tests —Heat Transfer Analysis

NX Nastran Verification Manual 19-1

Page 344: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

19.1 Hollow Cylinder - Fixed TemperaturesThis test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with fixedtemperatures. It provides the input data and results for benchmark test TPLA01/89 from "Guidede validation des progiciels de calcul de structures."

• Re = 0.30 m

• Ri = 0.35 m

Test Case Data and Information

Input Files

htpla01.dat

Units

SI

Material Properties

• λ = 1 W/m °C

Finite Element Modeling

• 10 linear axisymmetric solid (CTRIAX6) elements

The mesh is shown in the following figure:

19-2 NX Nastran Verification Manual

Page 345: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions

• One temperature set:

– Internal temperature Ti = 100 °C

– External temperature Te = 20 °C

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature results

Radius (m) Bench Value (°C) NX Nastran (°C)0.3000 100.0 100.0

0.3100 82.98 82.98

0.3200 66.51 66.51

0.3300 50.54 50.54

0.3400 35.04 35.04

0.3500 20.00 20.00

Flux results

Radius (m) Bench Value (W/m2) NX Nastran (W/m2)0.3000 1730. 1702.

0.3100 1674. 1666.

0.3200 1622. 1614.

0.3300 1573. 1565.

0.3400 1526. 1519.

0.3500 1483. 1505.

NX Nastran Verification Manual 19-3

Page 346: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLA01/89.

19-4 NX Nastran Verification Manual

Page 347: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

19.2 Hollow Cylinder - ConvectionThis test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with convection.It provides the input data and results for benchmark test TPLA03/89 from "Guide de validationdes progiciels de calcul de structures."

• Re = 0.300 m

• Ri = 0.391 m

Test Case Data and Information

Input Files

htpla03.dat

Units

SI

Material Properties

• λ = 40.0 W/m °C

Finite Element Modeling

• 20 linear axisymmetric solid (CTRIAX6) elements

NX Nastran Verification Manual 19-5

Page 348: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

The mesh is shown in the following figure:

Boundary Conditions• Convection on internal surface:

hi = 150.0 W/m2 / °C

Ti = 500 °C

• Convection on external surface:

he = 142.0 W/m2 / °C

Ti = 20 °C

Solution TypeSOL 153 — Steady State Heat Transfer

Results

Temperature / Flux Bench Value NX Nastran

Ti (°C) 272.3 272.5

Te (°C) 205.1 204.6

i (W/m2) 3.416E4 3.378E4

e (W/m2) 2.628E4 2.642E4

φ / l = φ * 2 * π * R

So: φ / l= 34173.82 * 2 * π * 0.300 = 64416.13 W/m

ReferencesSociete Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLA03/89.

19-6 NX Nastran Verification Manual

Page 349: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

19.3 Cylindrical Rod - Flux DensityThis test is a steady-state heat transfer analysis of a 2D axisymmetric rod with fixedtemperatures and flux density. It provides the input data and results for benchmark testTPLA05/89 from "Guide de validation des progiciels de calcul de structures."

Test Case Data and Information

Input Files

htpla05.dat

Units

SI

Material Properties

• λ = 33.33 W/m °C

Finite Element Modeling

• 20 linear axisymmetric solid (CTRIAX6) elements

• 42 grid points

NX Nastran Verification Manual 19-7

Page 350: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

The meshes are shown in the following figure:

Boundary Conditions• z = 0

Set temperature to 0 °C

• z = 1

Set temperature to 500 °C

• Cylindrical surface

Set flux to –200 W/m2

The boundary conditions are shown in the following figure:

19-8 NX Nastran Verification Manual

Page 351: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type

SOL 153 — Steady State Heat transfer

Results

Temperature results (°C)

Grid point # z (m) Bench Value NX Nastran

Grid point 3 0 0 0

Grid point 41 0.1000 –4.000 –4.020

Grid point 39 0.2000 4.000 3.980

Grid point 37 0.3000 24.00 23.97

Grid point 35 0.4000 56.00 55.97

Grid point 33 0.5000 100.0 99.97

Grid point 31 0.6000 156.0 156.0

Grid point 29 0.7000 224.0 224.0

Grid point 27 0.8000 304.0 304.0

Grid point 25 0.9000 396.0 396.0

Grid point 4 1.000 500.0 500.0

Results are post-processed on the internal surface. NX Nastran does not make theapproximation, T = cte when r is fixed.

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLA05/89.

NX Nastran Verification Manual 19-9

Page 352: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

19.4 Hollow Cylinder with Two Materials - ConvectionThis test is a steady-state heat transfer analysis of a 2D axisymmetric cylinder with twomaterials and convection. It provides the input data and results for benchmark test TPLA08/89from "Guide de validation des progiciels de calcul de structures."

• Ri = 0.30 m

• Rm = 0.35 m

• Re = 0.37 m

Test Case Data and Information

Input Files

htpla08.dat

Units

SI

Material Properties

• Material 1: λ1 = 40.0 W/m °C

• Material 2: λ2 = 20.0 W/m °C

Finite Element Modeling

• 14 linear axisymmetric solid (CTRIAX6) elements

• 16 grid points

19-10 NX Nastran Verification Manual

Page 353: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

The mesh is shown in the following figure:

Boundary Conditions• Convection on internal surface

hi = 150.0 W/m2 °C

Ti = 70 °C

• Convection on external surface

he = 200.0 W/m2 °C

Te = –15 °C

Solution TypeSOL 153 — Steady State Heat Transfer

Results

Grid point # Temperature Flux Bench Value NX Nastran

Grid point 9 Ti (°C) 25.42 25.45

Grid point 14 Tm (°C) 17.69 17.68

Grid point 16 Te (°C) 12.11 12.09

Grid point 9 Grid point 9 i(W/m2)

6687. 6609.

Grid point 14 Grid point 14 m(W/m**2)

5732. 5768.

Grid point 16 Grid point 16 e(W/m2)

5422. 5497.

φ/l = φ * 2 * π * R

NX Nastran Verification Manual 19-11

Page 354: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

So: φ/l= 5733.33 * 2 * π * 0.35 = 12608.25 W/m

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLA08/89.

19-12 NX Nastran Verification Manual

Page 355: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

19.5 Wall-ConvectionThis test is a steady-state heat transfer analysis of a 1D wall with fixed convection. It providesthe input data and results for benchmark test TPLL03/89 from "Guide de validation desprogiciels de calcul de structures."

Test Case Data and Information

Input Files

htpl03.dat

Units

SI

Material Properties

• λ = 1.0 W/m °C

Finite Element Modeling

• 1 linear quadrilateral thin shell (CQUAD4) element

• 4 grid points

The thin shell element thickness is set to 1 m.

The mesh is shown in the following figure:

NX Nastran Verification Manual 19-13

Page 356: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions

• Convection on internal surface

hA = 20.0 W/m2 °C

TA = –20.0 °C

• Convection on external surface

hB = 10.0 W/m2 °C

TB = 500.0 °C

• Convection coefficient is defined as

energy / (length * time * temperature) in the current system of units.

The boundary conditions are shown in the following figure:

19-14 NX Nastran Verification Manual

Page 357: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature Results

Grid point # Temperature /Flux

Bench Value NX Nastran

Grid point 2 TA (°C) 21.71 21.71

Grid point 4 TB (°C) 416.6 416.6

Grid point 1 (W/m2) 834.2 834.3

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLL03/89.

NX Nastran Verification Manual 19-15

Page 358: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

19.6 Wall-Fixed TemperaturesThis test is a steady-state heat transfer analysis of a 1D wall with fixed temperatures. Itprovides the input data and results for benchmark test TPLL01/89 from "Guide de validation desprogiciels de calcul de structures."

Test Case Data and Information

The mesh is shown in the following figure:

Input Files

htpl01.dat

Units

SI

Material Properties

• λ = 0.75 W/m °C

Finite Element Modeling

• 5 linear beam (CBAR) elements

• 6 grid points

19-16 NX Nastran Verification Manual

Page 359: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions

• Internal temperature Ti = 100 °C

• External temperature Te = 20 °C

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature results (°C)

Grid point # Length: x (m) Bench Value NX Nastran

Grid point 1 0 100.0 100.0

Grid point 3 0.01000 84.00 84.00

Grid point 4 0.02000 68.00 68.00

Grid point 5 0.03000 52.00 52.00

Grid point 6 0.04000 36.00 36.00

Grid point 2 0.05000 20.00 20.00

The flux calculated with NX Nastran is exact:

= 1200 Ω / μ2

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No. TPLL01/89.

NX Nastran Verification Manual 19-17

Page 360: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

19.7 L-PlateThis test is a steady-state heat transfer analysis of a 2D L-plate with fixed temperatures. Itprovides the input data and results for benchmark test TPLP01/89 from "Guide de validation desprogiciels de calcul de structures."

Test Case Data and Information

Input Files

htpp01a.dat - linear quadrilateral thin shell elements

htpp01b.dat - parabolic quadrilateral thin shell elements

Units

SI

Material Properties

• λ = 1.0 W/m °C

Finite Element Modeling

• Test 1 – 12 linear quadrilateral thin shell (CQUAD4) elements

• Test 2 – 12 parabolic quadrilateral thin shell (CQUAD8) elements

The mesh is shown in the following figure:

19-18 NX Nastran Verification Manual

Page 361: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions• AF side

Set temperature to 10 °C

• DE side

Set temperature to 0 °C

Solution TypeSOL153 — Steady State Heat Transfer

Results

Temperature results (°C)

Node Bench Value NX Nastran CQUAD4 NX Nastran CQUAD88 7.869 7.924 7.882

NX Nastran Verification Manual 19-19

Page 362: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

Node Bench Value NX Nastran CQUAD4 NX Nastran CQUAD89 5.495 5.613 5.519

10 2.816 2.885 2.834

19 8.018 8.043 8.015

18 5.680 5.821 5.665

20 2.881 2.963 2.877

17 8.514 8.425 8.518

6 6.667 6.667 6.667

16 2.972 3.148 2.962

21 9.001 8.992 9.107

15 8.640 8.356 8.668

14 9.316 9.189 9.282

5 9.009 8.773 8.961

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.TPLP01/89.

19-20 NX Nastran Verification Manual

Page 363: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

19.8 Orthotropic SquareThis test is a steady-state heat transfer analysis of a square plate with orthotropic conductionand convection. It provides the input data and results for benchmark test TPLP02/89 from"Guide de validation des progiciels de calcul de structures."

Test Case Data and Information

Input Files

htpp02.dat

Units

SI

Material Properties

• λx = 1.00 W/m °C

• λx =.75 W/m °C

Finite Element Modeling

• 100 linear quadrilateral thin shell (CQUAD4) elements

• 121 grid points

The thin shell element thickness is set to 1 m.

The mesh is shown in the following figure:

NX Nastran Verification Manual 19-21

Page 364: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions

• Flux density y = 60 W/m2 for face y = –0.1. (Entry)

• Flux density y = –60 W/m2 for face y = 0.1. (Exit)

• Convection on the faces X = –0.1 and x = 0.1:

– h = 15.0 W/m2 °C

• Linear variation of the external temperatures:

– Te = 30 – 80y on the face x = –0.1

– Te = 15 – 80y on the face x = 0.1

• Convection coefficient is defined as:

– Energy / (length * time * temperature)

• Flux density is defined as:

– Energy / (length * time) in the current system of units

The boundary conditions are shown in the following figure:

19-22 NX Nastran Verification Manual

Page 365: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature Results

Point Bench Value (°C) NX Nastran (°C)0 22.50 22.50

A 35.00 34.80

B 26.00 25.80

C 10.00 10.20

D 19.00 19.20

E 30.50 30.50

F 18.00 18.00

G 14.50 14.50

H 27.00 27.00

Flux Results (W/m2)

Grid Point Bench Value NX Nastran

61 X 45.00 45.00

61 Y 60.00 59.55

NX Nastran Verification Manual 19-23

Page 366: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.TPLP02/89.

19-24 NX Nastran Verification Manual

Page 367: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

19.9 Hollow Sphere - Fixed Temperatures, ConvectionThis test is a steady-state heat transfer analysis of a 3D sphere with fixed temperatures andconvection. It provides the input data and results for benchmark test TPLV02/89 from "Guide devalidation des progiciels de calcul de structures."

• Ri = 0.30 m

• Re = 0.35 m

Test Case Data and Information

Input Files

htpv02.dat

Units

SI

Material Properties

• λ = 1 W/m °C

Finite Element Modeling

• 500 linear brick (CHEXA) and linear wedge (CPENTA) elements

• 766 grid points

The test is executed on 1/8 mapped meshed sphere.

The mesh is shown in the following figure:

NX Nastran Verification Manual 19-25

Page 368: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

Boundary Conditions

• Convection on internal surface

hi = 30 W/m2 °C

Ti = 100 °C

• Set external surface temperature Te to 20 °C

The load sets are shown in the following figure:

Solution Type

SOL 153 — Steady State Heat Transfer

19-26 NX Nastran Verification Manual

Page 369: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

Results

Temperature results (°C)

Radius r (m) Bench Value NX Nastran

0.3000 65.00 64.88

0.3100 54.84 54.75

0.3200 45.31 45.25

0.3300 36.36 36.33

0.3400 27.94 27.92

0.3500 20.00 20.00

Flux results (W/m2): (X-direction)

Radius r (m) Bench Value NX Nastran

0.3000 1050. 1013.

0.3100 983.4 981.4

0.3200 922.9 921.2

0.3300 867.5 866.3

0.3400 817.5 816.3

0.3500 771.4 792.4

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.TPLV02/89.

NX Nastran Verification Manual 19-27

Page 370: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

19.10 Hollow Sphere with Two Materials - ConvectionThis test is a steady-state heat transfer analysis of a 3D sphere with two materials andconvection. It provides the input data and results for benchmark test TPLV04/89 from "Guide devalidation des progiciels de calcul de structures."

• Ri = 0.30 m

• Rm = 0.35 m

• Re = 0.37 m

Test Case Data and Information

Input Files

htpv04a.dat (CHEXA & CPENTA) elements

htpv04b.dat (CTETRA) elements

htpv04c.dat (CTRIAX6) elements

Units

SI

Material Properties

• Material 1: λ1 = 40.0 W/m °C

• Material 2: λ2 = 20.0 W/m °C

Finite Element Modeling

• Test 1 - 700 solid linear brick (CHEXA) & solid linear wedge (CPENTA) elements

• Test 2 - 2192 solid parabolic tetrahedron (CTETRA) elements

• Test 3 - 8 axisymmetric parabolic (CTRIAX6) elements

19-28 NX Nastran Verification Manual

Page 371: NX Nastran Verification Manual

Stationary Thermal Tests — Heat Transfer Analysis

The test is executed on a 1/8 meshed sphere

The meshes are shown in the following figure:

Boundary Conditions

• Convection on internal surface:

hi = 150.0 W/m2 °C

Ti = 70 °C

• Convection on external surface:

he = 200.0 W/m2 °C

Te = –9 °C

NX Nastran Verification Manual 19-29

Page 372: NX Nastran Verification Manual

Chapter 19 Stationary Thermal Tests — Heat Transfer Analysis

The boundary conditions are shown in the following figure:

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature Rresults

TemperatureFlux (°C)

Bench Value NX NastranLinear brick

NX NastranParabolicTetrahedron

NX Nastranaxisymmetric

Ti 25.06 N1 25.02 N19 25.06 N2 24.98

Tm 17.84 N556 17.84 N9 17.84 N6 17.72

Te 13.16 N778 13.18 N5 13.15 N5 13.15

i (W/m2) 6741. N1 6487. N19 5865. N2 6390.

m (W/m2) 4952. N556 4931. N9 4765. N6 5148.

e (W/m2) 4431. N778 4531. N5 4551. N5 4547.

φ = φ * 4 * π * R2

So: φ = 4931.20 * 4 * π * 0.352 = 7590.00 W

Flux is in the x direction

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.TPLV04/89.

19-30 NX Nastran Verification Manual

Page 373: NX Nastran Verification Manual

Chapter

20 Thermo-mechanical Tests —Linear Statics Analysis

20.1 Orthotropic CubeThis test is a steady-state heat transfer analysis of a 3D cube with convection and flux density. Itprovides the input data and results for benchmark test TPLV07/89 from "Guide de validation desprogiciels de calcul de structures."

Test Case Data and Information

Input Fileshtpv07.dat

UnitsSI

Material Properties• λx = 1.00 W/m °C

• λy = 0.75 W/m °C

• λz = 0.50 W/m °C

NX Nastran Verification Manual 20-1

Page 374: NX Nastran Verification Manual

Chapter 20 Thermo-mechanical Tests — Linear Statics Analysis

Finite Element Modeling

• 512 linear brick (CHEXA) elements

• 729 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Flux density y = 60 W/m2 for face y = –0.1 (Entry)

• Flux density y = –60 W/m2 for face y = 0.1 (Exit)

• Flux density z = 30 W/m2 for face z = –0.1 (Entry)

• Flux density z = –30 W/m2 for face z = 0.1 (Exit)

• Convection on the faces X = –0.1 and x = 0.1:

–h = 15.0 W/m2 °C

• Linear variation of the external temperatures:

–Te = 30 – 80y – 60z on the face x = –0.1

–Te = 15 – 80y – 60z on the face x = 0.1

20-2 NX Nastran Verification Manual

Page 375: NX Nastran Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

The boundary conditions are shown in the following figure:

Solution Type

SOL 153 — Steady State Heat Transfer

Results

Temperature results (°C)

Point Bench Value NX Nastran

(A) 35.00 34.70

(B) 26.00 25.70

(C) 10.00 10.30

(D) 19.00 19.30

S 30.50 30.40

F 18.00 18.00

M 14.50 14.60

H 27.00 27.00

N 29.00 29.00

P 20.00 20.00

J 4.000 4.600

I 13.00 13.60

E 16.50 16.60

R 41.00 40.40

Q 32.00 31.40

K 16.00 16.00

NX Nastran Verification Manual 20-3

Page 376: NX Nastran Verification Manual

Chapter 20 Thermo-mechanical Tests — Linear Statics Analysis

Point Bench Value NX Nastran

L 25.00 25.00

G 28.50 28.40

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.TPLV07/89.

20-4 NX Nastran Verification Manual

Page 377: NX Nastran Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

20.2 Thermal Gradient on a Thin PipeThis test is a thermo-mechanical linear statics analysis of a thin pipe with thermal gradient andplane strain. It provides the input data and results for benchmark test HSLA01/89 from "Guidede validation des progiciels de calcul de structures."

• Ri = 0.020 m

• Re = 0.025 m

Test Case Data and Information

Input Files

hsla01.dat

Units

SI

Material Properties

• E = 1.0 x 1011 Pa

• = 0.3

• Coefficient of expansion: α = 1.0 x 10–5/C°

Finite Element Modeling

• 1000 linear axisymmetric solid (CTRIAX6) elements

• 561 grid points

NX Nastran Verification Manual 20-5

Page 378: NX Nastran Verification Manual

Chapter 20 Thermo-mechanical Tests — Linear Statics Analysis

The mesh is shown in the following figure:

Boundary Conditions

• Articulate AB side

• Radial temperature with Ti = 100 °C, and Te = 0 °C.

The boundary conditions are shown in the following figure:

20-6 NX Nastran Verification Manual

Page 379: NX Nastran Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

Solution Type

SOL 101 Linear statics

Results

Point Stress Bench Value NX Nastran

r=Ri σr (Pa) –265x 0 –14.03 E6

σθ (Pa) –265y –74.07 E6 –79.84 E6

r = (Re + Ri) / 2 σr (Pa) –270x –3.950 E6 –3.908 E6

σθ (Pa) –270y 1.306 E6 1.469 E6

r = Re σr (Pa) –275x 0 –11.31 E6

σθ (Pa) –275y 68.78 E6 73.69 E6

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.HSLA01/89.

NX Nastran Verification Manual 20-7

Page 380: NX Nastran Verification Manual

Chapter 20 Thermo-mechanical Tests — Linear Statics Analysis

20.3 Simply-Supported ArchThis test is a thermo-mechanical linear statics analysis of a thin curved beam with thermalgradient and articulation. It provides the input data and results for benchmark test HSLL01/89from "Guide de validation des progiciels de calcul de structures."

• R = 10 m

• A = 144 x 10–4 m2

• I = 1.728 x 10–5 m4

Beam cross section:

Test Case Data and Information

Input Fileshsll01.dat

UnitsSI

Material Properties• E = 0.2 x 1011 Pa

• = 0.3

• Coefficient of expansion: α = 11.0 x 10–6/C°

Finite Element Modeling• 50 linear beam (CBAR) elements

20-8 NX Nastran Verification Manual

Page 381: NX Nastran Verification Manual

Thermo-mechanical Tests — Linear Statics Analysis

• 51 grid points

The mesh is shown in the following figure:

Boundary Conditions

• Articulate point A and B

• Top temperature Ts = 160 °C

• Middle temperature Tm = 100 °C

• Bottom temperature Ti = 40 °C

The boundary conditions are shown in the following figure:

Solution Type

SOL 101 — Linear Statics

NX Nastran Verification Manual 20-9

Page 382: NX Nastran Verification Manual

Chapter 20 Thermo-mechanical Tests — Linear Statics Analysis

Results

Point Force Moment Bench Value NX Nastran

θ = π/2 M 0 4.040 e–5

N 0 15.10

T –479.2 –527.6

θ = π/4 M 3388. 3729.

N –338.8 –373.2

T –338.8 –373.2

θ = 0 M 4792. 5277.

N –479.2 527.5

T 0 15.00

Post Processing

List the beam forces

• M - Z bending moment

• N - axial force

• T - Y shear force

References

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures.Paris, Afnor Technique, 1990. Test No.HSLL01/89.

20-10 NX Nastran Verification Manual

Page 383: NX Nastran Verification Manual

Part

VII Material Nonlinear (Plasticity)Verification Using StandardNAFEMS Benchmarks

Overview of the Material Nonlinear (Plasticity) Verification Using NAFEMS Test Cases . . 21-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

NX Nastran Verification Manual

Page 384: NX Nastran Verification Manual
Page 385: NX Nastran Verification Manual

Chapter

21 Overview of the MaterialNonlinear (Plasticity) VerificationUsing NAFEMS Test Cases

The purpose of this section is to verify the accuracy and robustness of NX Nastran. The plasticityverification uses test cases published by the National Agency for Finite Element Methods andStandards (NAFEMS) in Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. (See Reference.)

To perform the tests, input data is applied to single elements including plane strain elements,plane stress elements, axisymmetric solid elements, and solid elements. Results are tabulatedand compared to results published by NAFEMS.

The plasticity verification includes perfect plasticity and isotropic hardening tests. Within thesecategories, results for uniaxial, biaxial, and triaxial displacement tests are provided.

21.1 Understanding the Verification FormatThe format for the nonlinear section of the Solver Verification document looks somewhatdifferent from the linear section. Each test case in this section provides a brief description of thetest including input data. The results are then displayed in the form of a graph comparing NXNastran Nonlinear results published by NAFEMS for the same test case.

21.2 ReferenceThe following reference has been used in the NX Nastran Plasticity verification problems:

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987.

NX Nastran Verification Manual 21-1

Page 386: NX Nastran Verification Manual
Page 387: NX Nastran Verification Manual

Chapter

22 Test Cases

22.1 Plane Strain Elements - Perfect Plasticity TestsThis article provides input data and results for perfect plasticity tests including prescribeduniaxial and prescribed biaxial displacement tests. The tests were run on these plane stresselements:

• Linear triangle (CTRIA3) elements

• Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial andbiaxial displacement tests.

Test Case Data and Information

Input Filesnlspls89.dat (uniaxial)

nlspls90.dat (biaxial)

UnitsInch

AttributesLoad Control

Material Properties• E = 250000.0

NX Nastran Verification Manual 22-1

Page 388: NX Nastran Verification Manual

Chapter 22 Test Cases

• = 0.25

• σy = 5.0

• H = 0.0

• o = 0.000025 (strain at first yield)

Boundary Conditions

The following figure shows the plane strain elements and the boundary conditions applied toeach. The strain state is completely defined as a function of time since all degrees of freedom aresuppressed or prescribed.

These boundary conditions represent initial conditions only and do not illustrate the time historyof the applied conditions.

22-2 NX Nastran Verification Manual

Page 389: NX Nastran Verification Manual

Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

The following graph shows results of the uniaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults compared with NAFEMS test results for plane strain with perfect plasticity.

History Strain XX Strain YY Strain ZZ1 0.2500D–4 0D+00 0D+00

2 0.5000D–4 0D+00 0D+00

3 0.2500D–4 0D+00 0D+00

4 0D+00 0D+00 0D+00

10 increments per strain history step

NX Nastran Verification Manual 22-3

Page 390: NX Nastran Verification Manual

Chapter 22 Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results for plane strain with perfect plasticity.

HistoryStage

Strain XX Strain YY Strain ZZ

1 0.2500D–4 0D+00 0D–00

2 0.5000D–4 0D+00 0D–00

3 0.5000D–4 0.2500D–4 0D–00

4 0.5000D–4 0.5000D–4 0D–00

5 0.2500D–4 0.5000D–4 0D–00

6 0D+00 0.5000D–4 0D+00

7 0D+00 0.2500D–4 0D+00

8 0D+00 0D+00 0D+00

10 increments per strain history step

22-4 NX Nastran Verification Manual

Page 391: NX Nastran Verification Manual

Test Cases

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.3-2.25.

NX Nastran Verification Manual 22-5

Page 392: NX Nastran Verification Manual

Chapter 22 Test Cases

22.2 Plane Strain Elements - Isotropic Hardening TestsThis article provides input data and results for isotropic hardening tests including prescribeduniaxial and prescribed biaxial displacement tests. The tests were run on these plane strainelements:

• Linear triangle (CTRIA3) elements

• Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial andbiaxial displacement tests.

Test Case Data and Information

Input Files

nslpls91.dat (uniaxial)

nlspls92.dat (biaxial)

Units

Inch

Attributes

Load Control

Material Properties

• E = 250000.0

• = 0.25

• σy = 5.0

• H = 62500.0

• o = 0.000025 (strain at first yield)

22-6 NX Nastran Verification Manual

Page 393: NX Nastran Verification Manual

Test Cases

Boundary Conditions

The following figure shows the plane strain elements and the boundary conditions applied toeach. The strain state is completely defined as a function of time since all degrees of freedom aresuppressed or prescribed.

These boundary conditions represent initial conditions only and do not illustrate the time historyof the applied conditions.

NX Nastran Verification Manual 22-7

Page 394: NX Nastran Verification Manual

Chapter 22 Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results for plane strain with isotropic hardening.

History Strain XX Strain YY Strain ZZ1 0.2500D–4 0D+00 0D+00

2 0.5000D–4 0D+00 0D+00

3 0.2500D–4 0D+00 0D+00

4 0D–00 0D+00 0D+00

10 increments per strain history step

22-8 NX Nastran Verification Manual

Page 395: NX Nastran Verification Manual

Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the uniaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test result for plane strain with isotropic hardening.

HistoryStage

Strain XX Strain YY Strain ZZ

1 0.2500D–4 0D+00 0D+00

2 0.5000D–4 0D+00 0D+00

3 0.5000D–4 0.2500D–4 0D+00

4 0.5000D–4 0.5000D–4 0D+00

5 0.2500D–4 0.5000D–4 0D+00

6 0D–00 0.5000D–4 0D+00

7 0D–00 0.2500D–4 0D+00

8 0D–00 0D–00 0D+00

10 increments per strain history step

NX Nastran Verification Manual 22-9

Page 396: NX Nastran Verification Manual

Chapter 22 Test Cases

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.26 - 2.35.

22-10 NX Nastran Verification Manual

Page 397: NX Nastran Verification Manual

Test Cases

22.3 Plane Stress Elements - Perfect Plasticity TestsThis article provides input data and results for perfect plasticity tests including prescribeduniaxial and prescribed biaxial displacement tests. The tests were run on these plane strainelements:

• Linear triangle (CTRIA3) elements

• Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial andbiaxial displacement tests.

The following figure shows the geometry:

Test Case Data and Information

Input Files

nlspls61.dat (uniaxial test), linear quadrilateral (CQUAD4) elements

nlspls62.dat (uniaxial test), linear triangle (CTRIA3) elements

nlspls65.dat (biaxial test), linear quadrilateral (CQUAD4) elements

nlspls66.dat (biaxial test), linear triangle (CTRIA3) elements

Units

Inch

Material Properties

• E = 250000.0

• = 0.25

• σy = 5.0

• H = 0.0

• o = 0.2080126 x 10–4 (strain at first yield)

NX Nastran Verification Manual 22-11

Page 398: NX Nastran Verification Manual

Chapter 22 Test Cases

Boundary Conditions

The following figure shows the plane strain elements and the boundary conditions applied toeach. The strain state is completely defined as a function of time since all degrees of freedom aresuppressed or prescribed.

These boundary conditions represent initial conditions only and do not illustrate the time historyof the applied conditions.

22-12 NX Nastran Verification Manual

Page 399: NX Nastran Verification Manual

Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

The following graph shows results of the uniaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results for plane stress with perfect plasticity.

History Strain XX Strain YY Strain ZZ1 0.2080D–4 0D+00 -0.6934D–5

2 0.4160D–4 0D+00 -0.2538D–4

3 0.2080D–4 0D+00 -0.1835D–4

4 0.4235D–21 0D+00 -0.1128D–4

10 increments per strain history step

NX Nastran Verification Manual 22-13

Page 400: NX Nastran Verification Manual

Chapter 22 Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results.

HistoryStage

Strain XX Strain YY Strain ZZ

1 0.2080D–4 0D+00 -0.6934D–5

2 0.4160D–4 0D+00 -0.2528D–4

3 0.4160D–4 0.2080D–4 -0.4284D–4

4 0.4160D–4 0.4160D–4 -0.6513D–4

5 0D–00 0.4160D–4 -0.5035D–4

6 0D–00 0.1872D–4 -0.3871D–4

7 0D–00 0D–00 -0.1867D–4

10 increments per strain history step

22-14 NX Nastran Verification Manual

Page 401: NX Nastran Verification Manual

Test Cases

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.36 - 2.47.

NX Nastran Verification Manual 22-15

Page 402: NX Nastran Verification Manual

Chapter 22 Test Cases

22.4 Plane Stress Elements - Isotropic Hardening TestsThis article provides input data and results for isotropic hardening tests including prescribeduniaxial and prescribed biaxial displacement tests. The tests were run on the these plane stresselements:

• Linear triangle (CTRIA3) elements

• Linear quadrilateral (CQUAD4) elements

The material description and initial boundary conditions are the same for the uniaxial andbiaxial displacement tests.

The following figure shows the geometry:

Test Case Data and Information

Input Files

nlspls71.dat (uniaxial test), linear quadrilateral (CQUAD4) elements

nlspls72.dat (uniaxial test), linear triangle (CTRIA3) elements

nlspls75.dat (biaxial test), linear quadrilateral (CQUAD4) elements

nlspls76.dat (biaxial test), linear triangle (CTRIA3) elements

Units

Inch

Material Properties

• E = 250000.0

• = 0.25

• σy = 5.0

• H = 62500.0

• o = 0.2080126 x 10–4 (strain at first yield)

22-16 NX Nastran Verification Manual

Page 403: NX Nastran Verification Manual

Test Cases

Boundary Conditions

The following figure shows the plane strain elements and the boundary conditions applied toeach. The strain state is completely defined as a function of time since all degrees of freedom aresuppressed or prescribed.

These boundary conditions represent initial conditions only and do not show the time historyof the applied conditions.

NX Nastran Verification Manual 22-17

Page 404: NX Nastran Verification Manual

Chapter 22 Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

The following graph shows results of the uniaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results.

History Strain XX Strain YY Strain ZZ1 0.2080D–4 0D+00 -0.6934D–5

2 0.4160D–4 0D+00 -0.2249D–4

3 0.2080D–4 0D+00 -0.1555D–4

4 0.4235D–21 0D+00 -0.8619D–5

10 increments per strain history step

22-18 NX Nastran Verification Manual

Page 405: NX Nastran Verification Manual

Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the plane strain elements.

Results are exactly the same for both elements. The graph shows the NX Nastran Nonlinear testresults (points) compared to NAFEMS test results.

HistoryStage

Strain XX Strain YY Strain ZZ

1 0.2080D–4 0D+00 -0.6934D–5

2 0.4160D–4 0D+00 -0.2249D–4

3 0.4160D–4 0.2080D–4 -0.3569D–4

4 0.4160D–4 0.4160D–4 -0.5406D–4

5 0.2080D–4 0.4160D–4 -0.4712D–4

6 0D–00 0.4160D–4 -0.4102D–4

7 0D–00 0.2080D–4 -0.3408D–4

8 0D–00 0D–00 -0.2715D–4

10 increments per strain history step

NX Nastran Verification Manual 22-19

Page 406: NX Nastran Verification Manual

Chapter 22 Test Cases

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.47 - 2.58.

22-20 NX Nastran Verification Manual

Page 407: NX Nastran Verification Manual

Test Cases

22.5 Solid Element - Perfect Plasticity TestsThis article provides input data and results for perfect plasticity tests including prescribeduniaxial, biaxial, and triaxial displacement tests. The tests were run on the solid parabolicbrick element.

Test Case Data and Information

Input Files

nlspls08.dat

Units

Inch

Material Properties

• E = 250000.0

• = 0.25

• y = 5.0

• H = 0.0

• o = 0.000025 (strain at first yield)

Boundary Conditions

The following figure shows the parabolic brick (CHEXA) element and the boundary conditionsapplied to it. The strain state is completely defined as a function of time since all degrees offreedom are suppressed or prescribed.

These boundary conditions represent initial conditions only and do not show the time historyof the applied conditions.

NX Nastran Verification Manual 22-21

Page 408: NX Nastran Verification Manual

Chapter 22 Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 2.500E–5 0E+00 0E+00

4 0E+00 0E+00 0E+00

10 increments per strain history step

22-22 NX Nastran Verification Manual

Page 409: NX Nastran Verification Manual

Test Cases

The following graph shows results of the uniaxial displacement test for the solid brick element.It shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

NX Nastran Verification Manual 22-23

Page 410: NX Nastran Verification Manual

Chapter 22 Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the solid brick element. Thegraph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 5.000E–5 2.500E–5 0E+00

4 5.000E–5 5.000E–5 0E+00

5 2.500E–5 5.000E–5 0E+00

6 0E+00 5.000E–5 0E+00

7 0E+00 2.500E–5 0E+00

8 0E+00 0E+00 0E+00

- 10 increments per strain history step

22-24 NX Nastran Verification Manual

Page 411: NX Nastran Verification Manual

Test Cases

Triaxial Displacement Test — Applied Strain History

The following graph shows results of the triaxial displacement test for the solid brick element.The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS testresults.

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 5.000E–5 2.500E–5 0E+00

4 5.000E–5 5.000E–5 0E+00

5 5.000E–5 5.000E–5 2.500E–5

6 5.000E–5 5.000E–5 5.000E–5

7 2.500E–5 5.000E–5 5.000E–5

8 0E+00 5.000E–5 5.000E–5

9 0E+00 2.500E–5 5.000E–5

10 0E+00 0E+00 5.000E–5

11 0E+00 0E+00 2.500E– 5

NX Nastran Verification Manual 22-25

Page 412: NX Nastran Verification Manual

Chapter 22 Test Cases

History Strain XX Strain YY Strain ZZ12 0E+00 0E+00 0E+00

- 10 increments per strain history step

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.59-2.79.

22-26 NX Nastran Verification Manual

Page 413: NX Nastran Verification Manual

Test Cases

22.6 Solid Element - Isotropic Hardening TestsThis article provides input data and results for isotropic hardening tests including prescribeduniaxial, biaxial, and triaxial displacement tests. The tests were run on the solid parabolic brickelement (CHEXA), which has 20 grid points.

Test Case Data and Information

Input Filesnlspls09.dat

UnitsInch

Material Properties• E = 250000.0

• = 0.25

• y = 5.0

• H = 62500.0

• o = 0.000025 (strain at first yield)

Boundary ConditionsThe following figure shows the parabolic brick element and the boundary conditions applied toit. The strain state is completely defined as a function of time since all degrees of freedom aresuppressed or prescribed.

These boundary conditions represent initial conditions only and do not show the time historyof the applied conditions.

NX Nastran Verification Manual 22-27

Page 414: NX Nastran Verification Manual

Chapter 22 Test Cases

Results

Uniaxial Displacement Test — Applied Strain History

The following graph shows results of the uniaxial displacement test for the solid brick element.It shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 2.500E–5 0E+00 0E+00

4 0E+00 0E+00 0E+00

- 10 increments per strain history step

22-28 NX Nastran Verification Manual

Page 415: NX Nastran Verification Manual

Test Cases

Biaxial Displacement Test — Applied Strain History

The following graph shows results of the biaxial displacement test for the solid brick element. Thegraph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS test results.

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 5.000E–5 2.500E–5 0E+00

4 5.000E–5 5.000E–5 0E+00

5 2.500E–5 5.000E–5 0E+00

6 0E+00 5.000E–5 0E+00

7 0E+00 2.500E–5 0E+00

8 0E+00 0E+00 0E+00

- 10 increments per strain history step

NX Nastran Verification Manual 22-29

Page 416: NX Nastran Verification Manual

Chapter 22 Test Cases

Triaxial Displacement Test — Applied Strain History

The following graph shows results of the triaxial displacement test for the solid brick element.The graph shows the NX Nastran Nonlinear test results (points) compared to NAFEMS testresults.

History Strain XX Strain YY Strain ZZ1 2.500E–5 0E+00 0E+00

2 5.000E–5 0E+00 0E+00

3 5.000E–5 2.500E–5 0E+00

4 5.000E–5 5.000E–5 0E+00

5 5.000E–5 5.000E–5 2.500E–5

6 5.000E–5 5.000E–5 5.000E–5

7 2.500E–5 5.000E–5 5.000E–5

8 0E+00 5.000E–5 5.000E–5

9 0E+00 2.500E–5 5.000E–5

10 0E+00 0E+00 5.000E–5

11 0E+00 0E+00 2.500E–5

22-30 NX Nastran Verification Manual

Page 417: NX Nastran Verification Manual

Test Cases

History Strain XX Strain YY Strain ZZ12 0E+00 0E+00 0E+00

- 10 increments per strain history step

References

Hinton, E., and Ezatt, M.H. Fundamental Tests for Two and Three Dimensional, Small Strain,Elastoplastic Finite Element Analysis. East Kilbride, Glasgow, UK: National Agency for FiniteElement Methods and Standards, April, 1987 pp. 2.80-2.92.

NX Nastran Verification Manual 22-31

Page 418: NX Nastran Verification Manual
Page 419: NX Nastran Verification Manual

Part

VIII Geometric NonlinearVerification Using StandardNAFEMS Benchmarks

Overview of the Geometric Nonlinear Verification Using NAFEMS Test Cases . . . . . . . . . 23-1

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

NX Nastran Verification Manual

Page 420: NX Nastran Verification Manual
Page 421: NX Nastran Verification Manual

Chapter

23 Overview of the GeometricNonlinear Verification UsingNAFEMS Test Cases

This section verifies the accuracy and robustness of the arc-length method of NX Nastran. Thegeometric nonlinear verification uses test cases published by the National Agency for FiniteElement Methods and Standards (NAFEMS) in NAFEMS Non-Linear Benchmarks and AReview of Benchmark Problems for Geometric Non-linear Behaviour of 3-D Beams and Shells.(See References.)

23.1 Understanding the Verification FormatEach test case includes the following information.

• Test case data and information:

- Units

- Material properties

- Finite element modeling information

- Boundary conditions (loads and restraints)

- Solution type

• Results — time history versus Load Factor plots are presented. (Note that in NX Nastran,the load factor is displayed as "eigenvalue".)

• Reference

23.2 ReferenceThe following references have been used for these verification problems:

• NAFEMS Non-Linear Benchmarks. Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.

• NAFEMS, A Review of Benchmark Problems for Geometric Non-Linear Behaviour of 3-DBeams and Shells (Summary) (Glasgow: NAFEMS, Ref. R0024.)

NX Nastran Verification Manual 23-1

Page 422: NX Nastran Verification Manual
Page 423: NX Nastran Verification Manual

Chapter

24 Test Cases

24.1 Straight Cantilever with End MomentThis test is a nonlinear analysis of a single row of equal-sized elements. This document providesthe input data and results for NAFEMS Non-linear Benchmarks NL5.

Test attributes:

• Bending action only

• Initially straight elements

• Load control

Test Case Data and Information

Input Filesnfnl05a.dat (load control)

nfnl05b.dat (arc-length control)

UnitsSI

Material Properties• E = 210 x 109 N / m2

NX Nastran Verification Manual 24-1

Page 424: NX Nastran Verification Manual

Chapter 24 Test Cases

• = 0.0

SI

Finite Element Modeling

32 linear beam (CBEAM) elements

Boundary Conditions

• U = V = = 0 at point B

• Concentrated load at Point A applied in equal increments up to a maximum value of M L/ 2 E I = 1.0

Solution Type

SOL 106 — Geometric Nonlinear

• Loading method — arc-length control.

• Adaptive search control:

– Initial increment factor = 0.05

– Target number of iterations = 6

24-2 NX Nastran Verification Manual

Page 425: NX Nastran Verification Manual

Test Cases

– Maximum number of splits = 3

– Max increment factor = 1

– Number of reporting steps = 18

Geometric nonlinear 2

• Loading method — load control.

• 6 equal steps.

Results

Normalizing Constants

• 2 E I / L = 3436.12 x 103 Nm

• L = 3.2 m

• 2 = 6.28319

Graphs of Results

• Free end axial displacement vs. Load Factor

NX Nastran Verification Manual 24-3

Page 426: NX Nastran Verification Manual

Chapter 24 Test Cases

• Vertical displacement at grid point 33 vs. Load Factor

24-4 NX Nastran Verification Manual

Page 427: NX Nastran Verification Manual

Test Cases

• Rotational displacement at grid point 33 vs. Load Factor

References

National Agency for Finite Element Methods and Standards, NAFEMS Non-Linear Benchmarks(Glasgow: NAFEMS, Oct., 1989., Rev. 1). Test No. NL5.

NX Nastran Verification Manual 24-5

Page 428: NX Nastran Verification Manual

Chapter 24 Test Cases

24.2 Straight Cantilever with Axial End Point Load - Brick ElementsThis test is a nonlinear analysis of a straight cantilever with an axial end point load, madeup of a single row of straight elements. This document provides the input data and resultsfor NAFEMS Non-linear Benchmarks NL6.

Attributes of this test are:

• Combined bending and membrane action.

• Presence of bifurcation.

• Initially straight elements.

• Load control.

Test Case Data and Information

Input Files

nlsarg07.dat

Units

SI

Material Properties

• E = 210 x 109 N/m2

• = 0.0

24-6 NX Nastran Verification Manual

Page 429: NX Nastran Verification Manual

Test Cases

Finite Element Modeling

256 solid parabolic brick (CHEXA) elements.

Boundary Conditions

• U = V = θ = 0 at point B.

• Concentrated load at Point A applied in increments up to a value of PL2 / EI = 22.493.

Solution Type

SOL 106 — Geometric Nonlinear

Results

Normalizing Constants:

• EI / L2 = 170898 N

• L + 3.2 m

• = 3.14159

NX Nastran Verification Manual 24-7

Page 430: NX Nastran Verification Manual

Chapter 24 Test Cases

Graphs of results:

• X-displacement at cantilever end point vs. Load Factor.

24-8 NX Nastran Verification Manual

Page 431: NX Nastran Verification Manual

Test Cases

• Y-displacement at cantilever end point vs. Load Factor

Reference

National Agency for Finite Element Methods and Standards. NAFEMS Non-Linear Benchmarks.Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.

NX Nastran Verification Manual 24-9

Page 432: NX Nastran Verification Manual

Chapter 24 Test Cases

24.3 Straight Cantilever with Axial End Point Load - BEAM ElementsThis test is a nonlinear analysis of a single row of straight elements. This document provides theinput data and results for NAFEMS Non-linear Benchmarks NF6.

Test Case Data and Information

Input Filesnlsarp01.dat

UnitsSI

Material Properties• E = 210 x 109 N/m2

• = 0.0

Finite Element Modeling32 linear (CBEAM) elements

24-10 NX Nastran Verification Manual

Page 433: NX Nastran Verification Manual

Test Cases

Boundary Conditions

• U = V = θ = 0 at point B.

• Concentrated load at Point A applied in increments up to a value of PL2 / EI = 22.493or P = –3.85 x 106 N

Solution Type

SOL 106 — Geometric Nonlinear

Results

Normalizing Constants:

• EI / L 2 = 170898 N

• π = 3.14159

NX Nastran Verification Manual 24-11

Page 434: NX Nastran Verification Manual

Chapter 24 Test Cases

Graphs of results:

• X-displacement at grid point 33 vs. Load Factor

24-12 NX Nastran Verification Manual

Page 435: NX Nastran Verification Manual

Test Cases

• Y-displacement at grid point 33 vs. Load Factor

NX Nastran Verification Manual 24-13

Page 436: NX Nastran Verification Manual

Chapter 24 Test Cases

• Rz-displacement at grid point 33 vs. Load Factor

Reference

National Agency for Finite Element Methods and Standards, NAFEMS Non-Linear Benchmarks.Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL6.

24-14 NX Nastran Verification Manual

Page 437: NX Nastran Verification Manual

Test Cases

24.4 Lee’s Frame Buckling ProblemThis test is a nonlinear analysis of a single row of straight elements. This document provides theinput data and results for NAFEMS Non-linear Benchmarks NF7. Attributes of this test are:

Test Case Data and Information

Input Files

nlsarg01.dat

Units

SI

Material Properties

• E = 71.74 x 109 N/m2

• = 0.0

NX Nastran Verification Manual 24-15

Page 438: NX Nastran Verification Manual

Chapter 24 Test Cases

Finite Element Modeling

20 linear beam (CBEAM) elements

Boundary Conditions

• U = V = 0; θ ≠ 0 at points B and C

• Concentrated load at Point A applied incrementally using arc-length constraint withautomatic adjustment of arc length (P = –20000 N)

Solution Type

SOL 106 — Geometric Nonlinear

24-16 NX Nastran Verification Manual

Page 439: NX Nastran Verification Manual

Test Cases

Results

Normalizing Constants EI / L2 = 996.389 N, L = 1.2 m

Graphs of results: Y-displacement at grid point 13 vs. Load Factor

Reference

National Agency for Finite Element Methods and Standards. NAFEMS Non-Linear Benchmarks.Glasgow: NAFEMS, Oct., 1989., Rev. 1. Test No. NL7.

NX Nastran Verification Manual 24-17

Page 440: NX Nastran Verification Manual

Chapter 24 Test Cases

24.5 Large Displacement Elastic Response of a Hinged SphericalShell Under Uniform Pressure LoadingThis test is a nonlinear analysis of a hinged spherical shell element under uniform pressureloading. This document provides the input data and results for A Review of Benchmark Problemsfor Geometric Non-Linear Behaviour of 3-D Beams and Shells (Summary) 3DNLG-7.

Test Case Data and Information

Input Files

nlsarg05.dat

Units

SI

Material Properties

• E = 69

• = 0.3

Finite Element Modeling

• The shell midsurface is defined in terms of the global Cartesian coordinate system where Z =2.0285 x 10 –4 [X (1570 – X) + Y (1570 – Y)].

24-18 NX Nastran Verification Manual

Page 441: NX Nastran Verification Manual

Test Cases

Boundary Conditions

• Evenly distributed follower pressure load normal to shell surface. Maximum pressure = 0.1.Pressure follows the deformation of the shell surface.

Solution Type

SOL 106 — Geometric Nonlinear

• Loading method:

– Arc-length control

• Adaptive search control:

– Initial increment factor = 0.3

– Target number of iterations = 6

– Maximum number of splits = 3

– Maximum increment factor = 1

– Number of reporting steps = 18

NX Nastran Verification Manual 24-19

Page 442: NX Nastran Verification Manual

Chapter 24 Test Cases

24.6 ResultsMagnitude displacement at grid point 145 vs. Load Factor

24.7 Reference• National Agency for Finite Element Methods and Standards. A Review of Benchmark

Problems for Geometric Non-Linear Behaviour of 3-D Beams and Shells (Summary) Glasgow:NAFEMS, Ref. R0024. Test No. 3DNLG-7

24-20 NX Nastran Verification Manual