108
NUREGAA-0030 Interational Agreement Report Assessment of RELAP5/MOD2 Code Using Loss of Offsite Power Transient Data of KNU #1 Plant Prepared by Bud-Dong Chung, Hho-Jung Kim Nuclear Safety Center Korea Advanced Energy Research Institute Young-Jin Lee Department of Nuclear Engineering Seoul National University Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 April 1990 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP) Published by U.S. Nuclear Regulatory Commission

NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

NUREGAA-0030

InterationalAgreement Report

Assessment of RELAP5/MOD2Code Using Loss of Offsite PowerTransient Data of KNU #1 Plant

Prepared byBud-Dong Chung, Hho-Jung KimNuclear Safety CenterKorea Advanced Energy Research Institute

Young-Jin LeeDepartment of Nuclear EngineeringSeoul National University

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommissionWashington, DC 20555

April 1990

Prepared as part ofThe Agreement on Research Participation and Technical Exchangeunder the International Thermal-Hydraulic Code Assessmentand Application Program (ICAP)

Published byU.S. Nuclear Regulatory Commission

Page 2: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

NOTICE

This report was prepared under an international cooperativeagreement for the exchange of technical information.; Neitherthe United States Government nor any agency thereof, or any oftheir employees, makes any warranty, expressed or implied, orassumes any legal liability or responsibility for any third party'suse, or the results of such use, of any information, apparatus pro-duct or process disclosed in this report, or represents that its useby such third party Would not infringe privately owned rights.

Available from

Superintendent of DocumentsU.S. Government Printing Office

P.O. Box 37082Washington, D.C. 20013-7082

and

National Technical Information ServiceSpringfield, VA 22161

Page 3: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

NUREG/IA-0030

Intemational'J Agreement Report

Assessment of RELAP5/MOD2Code Using Loss of Offsite PowerTransient Data of KNU #1 Plant

Prepared byBud-Dong Chung, Hho-Jung KimNuclear Safety CenterKorea Advanced Energy Research Institute

Young-Jin LeeDepartment of Nuclear EngineeringSeoul National University

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommissionWashington, DC 20555

April 1990

Prepared as part ofThe Agreement on Research Participation and Technical Exchangeunder the International Thermal-Hydraulic Code Assessmentand Appllcation Program (ICAP)

Published by

U.S. Nuclear Regulatory Commission

Page 4: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

NOTICE

This report is based on work performed.under the sponsorship of The Korea

Advanced Energy Institute of Korea. The information in this report has been

provided to the USNRC under the terms of an information exchange agreement

between the United States and Korea (Agreement on Thermal-Hydraulic Research

between the United States Nuclear Regulatory Commission and The Korea Advanced

Energy Research Institute, May 1, 1986). Korea has consented to the publication

of this report as a USNRC document in order that it may receive the widest

possible circulation among the reactor safety community. Neither the United

States Government nor Korea or any agency thereof, or any of their employees,

makes any warranty, expressed or implied, or assumes any legal liability of

responsibility for any third party's use, or the results of such use, or any

information, apparatus, product or process disclosed in this report or

represents that its use by such third party would not infringe privately

owned rights.

Page 5: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Acknowledgement

We would like to express our appreciations for the help of KNU #1

utility company (KEPCO) staffs in preparing the plant input deck. We

especially appriciate to Dr Sang Hoon Lee, president of the Nuclear

Safety Center, in organizing the project.. This assessment work was

sponsered by the Ministry of Science and Technology in Korea.

Page 6: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 7: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Abstract

This report presents a code assessment study based on a real plant

transient that occurred on June 9, 1981 at the KNU #1 ( Korea Nuclear

Unit Number 1 ). KNU #1 is a two-loop Westinghouse PWR plant of 587 Mwe.

The loss of offsite power transient occurred at the 77.5 X reactor power

with 0.5 %/hr power ramp. The real plant data were collected from

available on-line plant records and computer diagnostics.

The transient was simulated by RELAP5/MOD2/36.05 and the results were

compared with the plant data to assess the code weaknesses and

strengths. Some nodalizatlon studies were performed to contribute to

developing a guideline for PWR nodalization for the transient analysis.

i

Page 8: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Executive Summary

This report presents a code assessment study based on a real plant

transient that has occurred on June 9, 1981 at the KNU #1 (.Korea

Nuclear Unit Number 1 ). KNU #1 is a two-loop Westinghouse PWR plant of

587 Mwe. The loss of offsite power transient occurred at the 77.5 %

reactor power with 0.5 %/hr power ramp. The real plant data were

collected from available on-line plant recording and computer

diagnostics.

The transient was simulated by RELAP5/MOD2/36.05 and compared with

the plant data to assess the code weakness and strengths. Some

nodalization studies were performed to develop the guideline of PWR

nodalization for the transient analysis.

It was found that the'code gives stable steady-state results and

accurate predictions of the plant behavior for the transient,

indicating the excellent' capability'' of the code for this type

of transients. In 'particular, the calculated primary "thermal

behavior closely follows the'plant• data and 'th'is validates that the

relevant thermal-hydraulic and decay power model using previous

power history data in the RELAP5/MOD2 are correctly describing the

actual phenomena.

In the nodalization sensitivity study it was found that S/G noding

with junctions between bypass `plenum and Steam dome is preferred to

simulate the S/G water level decreasing and avoid the spurious level

peak at turbine trip.'

The pressurizer pressure increase is sensitive to the insurge flow.

It' is believed that :the interfaciail heat: transfer in a horizontal

stratified flow regime may be estimated low and the compression effect

due to insurge flow may be'high. '

,: .. ... i i

Page 9: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Contents

Executive Summary

Abstract

Acknowledgement

List of Tables

List of Figures

1. Introduction --------------------------------------------- 1

2. Plant Description --------------------------------------- 2

2.1 Reactor Coolant System ----------------------------------- 2

2.2 Configuration of Secondary System -------------------------- 3

2.3 Plant Diagnostics and Uncertainty Band ---------------------- 3

3. Plant Transient Description -------------------------------- 6

4. Code and Model Description for Plant Simulation----------------8

5. Base Case Result and Discussions ---------------------------- 13

6. Discussions on the Result of Nodalization Study ---------------- 22

7. Run Statistics ------------------------------------------- 30

8. Conclusion ---------------------------------------------- 33

9. References ---------------------------------------------- 34

Appendix. -------------------------------------------------- 35

iii

Page 10: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

List of Tables

Table 1. Sequence of Events for Plant Transient Simulation ---------- 7

Table 2. Simulated Initial Condition for Full Load Condition -------- 9

Table 3. Simulated Initial Condition for 77.5 % Power Condition ----- 9

iv

Page 11: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

List of Figures

Fig.1 Schematic Diagram of Reactor Coolant System for KNU #1 --------5

Fig.2 Nodalization of KNU #1 Power Plant ------------------------- 10

Fig.3 S/G Main Feedwater Flowrate and Simulated Boundary Condition- 11

Fig.4 Power History prior to Reactor Trip and Simulated Input ------ 12

Fig.5 S/G Narrow Range Water Level versus Time -------------------- 16

Fig.6 S/G Pressure versus Time ---------------------------------- 17

Fig.7 Loop Flowrate versus Time --------------------------------- 18

Fig.8 Loop Temperature versus Time ------------------------------- 19

Fig.9 Collapsed PZR Water Level versus Time ----------------------- 20

Fig.10 PZR Pressure versus Time ---------------------------------- 21

Fig.11 S/G Nodalization for Sensitivity Study ---------------------- 24

Fig.12 S/G Narrow Range Water Level ( case 2, case3, case4 ) -------- 25

Fig.13 S/G Narrow Range Water Level versus Time ( case2 ) ---------- 26

Fig.14 S/G Pressure versus Time ( case2 ) ----------------------- 27

Fig.16 PZR Pressure versus Time with Heat Loss through Wall --------- 29

Fig.17 Time Step Size and Courant Time Limit versus Real Time ------- 31

Fig.18 Total required CPU Time versus Real Time -------------------- 32

V

Page 12: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 13: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

.1. Introduction

The plant transient following a loss of offsite power have a

relatively high probability of occurrence and many studies were

performed about the accident sequence initiated by loss of offsite

power. We have experience of this event in 1981 at KNU # I PWR plant.

The event was initiated by loss of feedwater in one of two steam

generators. During the transient, the major plant data was recorded by

on-line computer data logging system and by strip charts. Although the

collected data is very limited according to the frequency of data

processing during the accident, the plant data is very useful for code

assessments because the scaling problem would be eliminated.

The loss of offsite power transient was simulated by

RELAP5/MOD2/36.05. The main objectives of simulation are to check the

code capability for such event and to give the guideline of PWR

nodalization for transient analysis.

The plant characteristics and the event of transient are described in

Section 2 and 3. The plant simulation model and nodalization are

included in section 4. The base case results are discussed in section 5

and the nodalization studies are discussed in section 6. A run statics

are included in section 7.

1

Page 14: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2. Plant Description

This section provides a description of the plant and principal system

relevant to understanding KNU # 1 loss of offsite power transient. Kori

Unit 1 is a Westinghouse 2-loop PWR rated at 587 Mwe and commissioned in

1978, for which BECTHEL was the architect/engineer [1].

2.1 Reactor Coolant System

A flow schematic of. the reactor coolant system (RCS) is presented in

Fig. 1. As shown in Figure 1 the RCS is equipped with 2 reactor coolantloops (A and B) composing each steam generator (PCSG1,PCSG2) and main

coolant pump (2P1A,2P1B). A 144 inches active core consists of 121 fuel

assembly with 179 fuel rods per assembly. The nominal core power is

1723.5 Mwt.

The reactor vessel has two inlet and outlet nozzles located in a

horizontal plane just below the reactor flange but above the top of the

core. Coolant enters the vessel through the inlet nozzles and flows

down the core barrel-vessel wall annulus, turns at bottom and flows

through the core to the outlet nozzles.

Two steam generators are vertical Westinghouse U-type Model 51. The

reactor coolant flows through the inverted U-tubes, entering and leaving

through the nozzle located in the hemispheric bottom head of the steam

generators. Steam is generated on the shell side and flows upward

through the moisture separators to the outlet nozzle at the top of the

vessel.

The reactor coolant pumps are identical single-speed centrifugal

units driven by air-cooled, three phase induction motors. The type of

pump is the Westinghouse Model W93-A. A flywheel the inertia of which

is 82,000 lb-ft 2 provides additional inertia to extend pump coast

down. The reactor coolant loop piping is specified in sizes

consistent with system requirements. The hot leg inside diameter is 29inches and the the inside diameter of the cold leg return line to the

reactor vessel is 27.5 inches. The piping between the steam generator

and the pump suction is increased to 31 inches inside diameter to reduce

the pressure drop and improve flow conditions to the pump suction.

2

Page 15: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

The pressurizer is a vertical, cylindrical vessel with hemispheric

top and bottom heads and it's total free volume is about 1000 ft?

Electrical heaters the maximum capacity of which capacity is 1,000

Kw,was installed through the bottom head of the vessel while the spray

nozzle, relief and safety valve connections are located in the top of

the vessel.

2.2 Configuration of Secondary System

The auxiliary feedwater system consists of two separate sections to

ensure delivery of auxiliary feedwater. One. section has two electric

motor-driven pumps and the other section a single steam turbine-driven

pump. The motor-driven pumps start automatically upon receipt of

two-out-of-three low-low water level signal in both steam generators.

The design flow of one pump is 215 gpm. The turbine-driven pump will be

operated upon the same logic of motor-driven pump, but only if one of

the motor-driven pumps does not operate. The design flow is about 410

gpm.

The steam supply line to the auxiliary feedwater pump turbine are

connected to the upstream of the main steam stop valves to provide adependable steam supply.

The steam dump system enables the nuclear supply system to follow

load changes which exceed 10 percent step or 5 percent per minute. The

steam dump system is designed to have a flow capacity of 40 percent of

the full load steam flow at full load steam pressure.

2.3. Plant Diagnostics and Uncertainty Bands.

There are three type of digital recordings from plant computer; the

computer daily logging sheet [2],pre-post trip review record [3]-and

sequence record of event [4]. Besides of these digital recording, there

are analog strip chart recordings the speed of which is 2 cm/hr. The

processing interval of daily logging'system is 1 hour. The trip review

record system keeps the data started from 2 minute before the reactor

trip to 3 minute after reactor trip. The processing frequency of the

3

Page 16: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

trip review record is 10 seconds during the above period.

It is believed that the short time behavior is more useful for the

loss of offsite power transient. Therefore the available data for code

assessment are pre-post trip review record and sequence of event record.

Trip review record contains important thermal-hydraulics parameters

measured in primary and secondary systems. The recorded parameter of

primary system are the ; reactor neutronic power, loop averaged

temperature, loop temperature difference, hot leg temperature, cold leg

temperature, pressurizer pressure,pressurizer level, loop flowrate, and

system pressure. The recorded secondary system parameters are steam

flowrates, feedwater flowrates, steam pressure,. narrow and wide range

water level of steam generators, and feedwater temperatures.

The evaluation of measurement uncertainty is quite difficult because

it contains the calibration error caused by the human"error. But in the

rough precision of engineering sense, the uncertainty band of

temperature sensors is estimated as 2.22 deg-K and that of pressure

sensors is estimated as 2.1 bars.

4

Page 17: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

4 II

1i4.: r Li

- I-

TnatafEbd SCCs

CA'

U '-C-. ~

*-.S.C S

* - ~j pACt-S-Ca-4~ l.a

Fig.1 schematic Diagram of Reactor Coolant System for KNU #1

Page 18: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

3. Plant Transient Description

Plant transient sequence is based upon the sequence of events

record from digital plant computer records. At around 11:00 AM on June

9, 1981, while operating at 77.5% reactor power and 447 MWe generator

power, the I/I converter (LM-461A) of the S/G-A level control system

mal-functioned generating a spurious signal that indicated high S/G-A

water level. This signal activated the closure of the S/G-A main

feedwater control valve(IFV-466) which subsequently caused the

steam/water flow mismatch signal to be generated. The resulting S/G low

level signal brought about the reactor/turbine trip at 11:05.20 AM. The

turbine-generator continued to operate for 30 seconds, as designed, and

then tripped at 11:05.50 AM. At the moment the generator trips,

automatic transfer to the offsite power supply (154KV) should have

occurred.- However, both the automatic and the manual transfer of Bus-A

failed, whereas Bus-B succeeded in automatic transfer to the offsite

power initially but also failed after 31 seconds. Both buses were open

at 11:06.21 AM.

Failure of Bus-A caused the RCP-A totrip at 11:05.55 AM immediately

followed by the actuation of the diesel generator-A (D/G-A) which

provides emergency power to safeguard Bus-A.The failure of Bus-B after

the initial successful transfer caused a loss of offsite power transient

for about 6 minutes from 11:06.21 AM. The failure of Bus-B caused the

RCP-B to trip at 11:06.23 AM and the D/G-B to begin supplying power to

safeguard Bus-B. After 6 minutes into the loss of offsite power

transient, at 11:11.52 AM, Bus-B recovered the offsite power and

subsequently the D/G-B was manually tripped. Despite the recovery of

offsite power in Bus-B, the RCP-B continued to remain tripped until it

was manually activated at 11:32 AM. Recovery of offsite power to Bus-A

was achieved much later and the RCP-A was re-activated at 19:16.

In summary, from 11:06.23 to 11:32, both RCPs were not in operation

causing a complete loss of reactor coolant flow accident for 26 minutes,

and from 11:05.51 to 11:06.21 and also from 11:32 to 19:16, only one RCP

was operating causing a partial loss of reactor coolant flow accident.

Major sequence of events of the transient is summarized in Table 1.

6

Page 19: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Table 1. Sequence of Events for Plant Transient Simulation

Real Time Elapsed Time Recorded Events Remarks(Hr.Min.Sec.) (sec)

0.0

50.0

11.05.20. 100.0

-77.5% Power Operation(0.5% /hr increase)

-Hal-function of I/Iconverter

-S/G-A MFWCV start toclose

-S/G-A Low Level &Flow mismatch causeReactor/Tubine Trip

-Unit on line Breaker52/MT-345 Open

-Safegard Bus-Boperation

-RCP #1 TripDue to Tansfer Failin Bus-A

-Safegard Bus-AOperation

11.05.51.

11. 05. 52.

131.0

132.0

Steady StateCalculation

AccidentStarts

Simulationas input time

Loss of OnsitePower (345KV)

Transfer toOffsite Power(154KV)

Simulationas input time

Start ofStationBlackoutSequenceLoading

Simulationas input time

CalculationStop

11.05.55

11.05.57

135.0

137.0

11.06.23 163.0

300.0

392.0

-RCP #2 TripDue to Transfer Failin Bus-B

-Restore the failure ofOffsite Power Transfer

11.11.52

7

Page 20: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

4. Code and Input Model Description for Plant Simulation

The Code used was RELAP5/MOD2/CY36.05 and was processed on a CDC

machine CYBER 170-875. The input deck was prepared by KAERI in

cooperation with a utility company of KNU #1. The nodalization

philosophy is based on the guideline of RELAP5 code manual [5] and the

detailed data for specific volumes and junctions are based on the design

or drawing values for KNU # 1.

The resulted nodalization is shown in Fig. 2. The nodalization

divides the whole system into 114 volumes including 11 boundary volumes,

124 junctions and 79 heat slabs. Each steam generator is modeled with 8

heat slabs for U-tubes and 13 volumes including a steam separator. The

outlets of both S/Gs are connected to form a single volume, 'steam

head', which is then connected to two time-dependent volumes that act as

the pressure boundary conditions for the steam generators.

The steady-state calculations were carried out to provide the initial

conditions for the transient analyses. The transient was occurred at

77.5 Z power condition. However plant conditions needed for starting a

calculation are not known. Meanwhile the design values based on the full

load condition are available. Thus it is necessary to calculate the

steady state for the full power condition first, and next for the 77.5

power condition by reducing the power from full load condition.

The simulated initial conditions along with the desired plant

steady-state data for both power cases are summarized in Table 2 and

Table 3. Generally the simulated values are in excellent agreement with

the desired values. In the process of obtaining the desired value, it

was necessary to adjust the total heat transfer area of steam

generators.

During the transient the most thermal hydraulic parameters were

determined by calculation but some parameters were taken from boundary

conditions.

One of these is the feedwater. In the initial stages of the plant

transient, the main feedwater flow rate was automatically controlled by

the MFWCV(Main Feed Water Control Valve) following the mal-function of

the S/G level indicator. Since the actual automatic operation of the

MFWCV is difficult to identify, the feedwater flowrate shown in Fig. 3

8

Page 21: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

is assumed based on the plant data so as to correctly simulate the plant

thermal hydraulic behavior.

The decay power strongly depends on the history of power operation.

The transient occurred during the 'escalation of power after the

performance test. Thus the 4-day power history prior to reactor trip

was used as input values, shown in Fig. 4. The resulted decay power is

estimated as 94 % of decay power for infinite operation.

Table. 2 Simulated Initial Conditions for Full Load Condition

Parameters Simulated Desired

Core Thermal Power (MW) 1,723.0 1,723.5PZR Pressure (MPa) 15.51 15.50PZR Level (%) 47.60 47.60Hot Leg Temperature (K) 589.45 589.36Cold Leg Temperature (K) 556.06 555.89Loop Coolant Flowrate (kg/sec) 4,686.50 4,687.50Main Feedwater Flowrate (kg/sec) 473.00 473.00Feedwater Temperature (K) 496.30 496.30Steam Flowrate (kg/sec) 472.64 473.10S/G Pressure (MPa) 5.52 5.55S/G Narrow Range Level' () 44.01 44.00S/G Mass Inventory (kp) 44,612.3 44,776.7U-tube Heat Transfer Area (m ) 5,214.4 4,784.5U-tube Heat Transfer Rate (Mw) 1,728.8 1,728.5Recirculation Ratio 2.50 2.50

Table. 3 Simulated Initial Conditions for 77.5.% Power Condition

Parameters 'Simulated Desired

Core Thermal Power (MW) 1,334.8 1,334.8PZR Pressure (MPa) 15.51 15.41PZR Level (W) 41.61 41.60Hot Leg Temperature (K) 583.06 583.10Cold Leg Temperature (K) 556.88 556.80Loop Coolant Flowrate (kg/sec) 4,688.28 4,686.50Main Feedwater Flowrate (kg/sec) 356.75 356.70Feedwater Temperature (K) 484.80 484.80Steam Flowrate (kg/sec) 357.00 356.70S/G Pressure (MPa) 5.896 -S/G Narrow Range Level (W) 44.02 44.00S/G Mass Inventory (kg) 49,783.4 -

U-tube Heat Transfer Area (m ) 5,214.4 4,784.5U-Tube Heat Transfer Rate (MW) 1,340.9 1,339.8Recirculation Ratio 3.36 -

9

Page 22: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

-L

Fig.2 Nodalizatlon of KNU #1 Power Plant

Page 23: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientREALP5/MOD2/CY36.05 Simulation

500

400

-.- Simulated Input (-- Simulated Input (0 Plant Data ( LoopA Plant Data ( Loop

Loop A )Loop B )A)B)

00a,N0'

C4 J0L

0

*00C

Iz~

C,NC,,

A A A A A A• A Aj

v -. v-,

300

200 -

A

100

0 -J I ~T I I I I I I I I

04 040

s o80

1 2 T120 160 200 240 280

Time ( seconds )

Fig.3 S/G Main Feedwater Flowrate and Simulated Boundary Conditiofl

Page 24: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

1.7

1.6

1.5

V

0.

1.3

1.2

1.1

1

0.9

-110 -90 -70 -50 -30

Time ( Hours )

Fig.4 Power History prior to Reactor Trip and Simulated Input

-10

Page 25: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

5. Base Case Results and Discussions

Analyses were performed following the sequence described in Table 1.

During the simulation time (300 seconds), the major events of sequence

were the reactor trip and reactor coolant pump trip, which are not related

to thermal hydraulic phenomena. Therefore the time of major events were

treated as input values. The simulated thermal-hydraulic parameters are

compared with the plant transient data, which are deduced from the

computer trip review sheet. The plant transient occurred during power

escalation, and hence most parameters were not in stabilized.condition

which led to difficulties in deciding the appropriate initial value.

Hence, the unreasonable plant data were ignored and the initial values

were chosen either by an averaging process, or in some cases, from the

design values-specified in the FSAR of KNU #1.

As can be seen in Fig. 3, the feedwater flow was decreased by

malfunction:of the level detector, and it result in the water level

decreasing. The S/G water level was obtained not by the pressure

difference method, as used in the actual plant measurement, but by

calculating the collapsed water volume deduced from the void fraction.

This is because the pressure difference method, when used in the

simulation, often gave rise to a doubtful level oscillation. The

calculated S/G water levels do not agree with the plant data as shown in

Fig. 5. Moreover the spurious level peak was calculated at the turbine

trip. This was caused by the nodalization of steam generator, and the

details are discussed in section 6.

Since the two loops of the S/G secondary side are connected .via a

single common head and because the main steam isolation valve (MSIV) does

not operate in these analyses, the pressure variations in S/G-A and B are

identical as shown in Fig. 6. Following the reactor/turbine trip, the S/G

pressure rapidly increases as the turbine stop valve closes. Normally,

the turbine trip causes the steam dump valve to open, but in this

transient, due to the loss of offsite power it remains closed. In the

plant transient analysis, the S/G pressure starts to decrease as the

supply of the auxiliary feedwater, actuated by the S/G low-low level

signal, reaches its maximum capacity (155.94 sec) so that the secondary

13

Page 26: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

heat removal capability begins to overcome the reactor decay power; The

calculated S/G pressure variation up to the peak pressure agrees quite

well with the plant data. In the analyses, PORVs(Power Operated Relief

Valves) were simulated to open at 7.033 MPa (1020 psia). But the supply

of the auxiliary feedwater alone provides sufficient secondary heat

removal capability without the operation of the PORVs.

The primary loop coolant flowrate versus time is shown in Fig. 7, and

as shown in Table 1 and Table 2, the reactor coolant pump-A(RCP-A) was

tripped at 135sec and the RCP-B at 163sec. A rapid reduction in the

RCS flowrate in the loop-A due to the pump trip caused the frictional

resistance of the reactor vessel to decrease. Consequently the loop-B

coolant flowrate increased until the subsequent trip of the RCP-B

leading to the rapid reduction of loop-B flowrate. Meanwhile, the

loop-A flowrate increases, due to the same reason as described above,

just before flow reversal occurred and then decreased slowly. After 200

second, both loops showed an identical trend in the flow coastdown, and

the natural circulation began to be established due to the hot-cold leg

temperature difference. The overall trend in the calculated loop

flowrates is in excellent agreement with the plant data as can be seen

in Fig. 7.

Fig. 8 shows the RCS temperature variations and one can note that

the hot leg temperature variations for both loops are identical in

spite of different RCP trip times. This is reasonable since the

present simulation is based on a single channel model for the

core, allowing complete liquid mixing. Immediately after the

reactor/turbine trips the hot leg temperature decreases rapidly,

whereas the cold leg temperature increased due to the reduction in

the heat removal capability of the S/G secondary side. After the

RCP-A trip, loop-A hot leg temperature has little effect on the cold

leg temperature due to delay in fluid transport, and hence the cold

leg temperature stays at the saturation temperature corresponding

to the S/G-A pressure. Similarly, the loop-B cold leg temperature

also ceases its increase following the RCP-B trip. Afterwards, the cold

leg temperatures slowly decrease as the S/G pressure decreases.

The flow coastdown due to both ROP trips and the decay heat

increase the hot-cold leg temperature difference until the establishment

14

Page 27: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

of the natural circulation in the primary side. As this hot-cold

temperature difference increases a driving force for heat transfer from

primary to the secondary side increases. Recognizing above trend in the

temperature variations, one can note that the hot leg temperature

increases until the stable natural circulation is fully

established, and afterwards it decreases along with the cold leg

temperature. The simulated cold leg temperature agrees well with the

plant data whereas the hot leg temperature behavior is rapid. It is

caused by the plant measurement method which use RTD system. The RTD

measurement depends strongly on the coolant flowrate, thus

measurement was delayed by the pump coastdown. For comparison

purpose the lag measure unit was simulated and the output from this

unit showed good agreements with the data. For a time constant of a lag

unit, it was estimated as 20 seconds.

The pressurizer level, shown in Fig. 9, is higher compared with the

plant data. One of the causes may be a difficulty with calculating

the accurate volume of the PZR bottom, in which the complex structures

and PZR heaters are located. Another cause is a difficulty with

predicting upper head temperature of reactor vessel. It is believed that

the upper head temperature is between the hot leg temperature and the

cold leg temperature due to 3 dimensional flow distribution in the upper

part of the core. Using one dimensional code such as RELAPS, It is

impossible to predict the upper head temperature correctly. If we

consider the bypass flow through upper head nozzles, the predicted

temperature should be same as the cold leg temperature. Thus the

contraction effect due to RCS cool down may be under predicted and it

results in the overprediction of pressurizer level.

The pressurizer pressure, shown in Fig. 10, has a similar trend as

the pressurizer level and is higher also as compared with plant data.

But the slope of pressure increase in the heatup phase is much higher.

It may be due to the treatment of pressurizer vessel wall. If we

consider the heat losses to atmosphere through the pressurizer vessel

wall, the improved result was obtained. The details will be discussed in

section 6.

15

Page 28: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

0.7

0.6

0.5

0.4at

0

0

z0.3

0.2

0.1

0

0 40 80 120 160 200 240 280

Time ( seconds )

Ftg.5 S/G Narrow Range Water Level versus Time

Page 29: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power Transient

RELAP5/MOD2/CY36.05 Simulation

"-J (0.2

U)

7

6.9

6.8

6.7

6.6

6.5

6.4

6.3

6.2

6.1.

6

5.9

5.80 40 80 120 160 200

Time ( seconds )

Ftg.6 S/G Pressure versus Time

240 280

Page 30: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power Transient

6

5

OD

ale-

30.

Cj

0

LO

4

3

2

I.

0

0 40 80 120 160 200 240 280

Time ( Seconds )

Flg.7 Loop Flowrate versus Time

Page 31: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientREALP5/MOD2/CY36.05 Simulation

WL

0

E0L0

0.00.0o,

586

584

582

580

578

576

574

572

570:

568

566

564

562

560

558

556

0 40 80 120 160 200 240 280

Time ( seconds )

Fig.8 Loop Temperature versus Time

Page 32: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

0.5

0.4

0.3

00 130

-j

0.2

0.1

0

0 40 80 120 160 200 240

Time ( seconds )

Fig.9 Collapsed PZR Water Level versus Time

280

Page 33: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

U)C

N.

U)y

(L

15.6

15.5

15.4

15.3

15.2

15.1

15

14.9

14.8

14.7

14.6

14.5

0 40 80 120 160 200

Time ( seconds )

Fig.10 PZR Pressure versus Time

240 280

Page 34: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

6. Discussion on the result of nodalization study

As shown in Fig. 5, the calculated S/G water levels did not decrease

although the feedwater was decreasing. Moreover the spurious level peak

was calculated at the turbine trip. The calculation results may have

depended on the nodalization of steam generator, thus a study of

nodalization for steam generator was performed.

As shown in Fig. 11, there was no junctions between bypass plenum (

volume 172 ) and steam dome ( volume 180) in the base case ( Case 1). So

there was no steam pass for feedback of pressure spike at the turbine

trip, and the pressure buildup at steam dome (volume 180) drove the flow

of liquid into the volume 172 through separator (volume 171). This

resulted in a spurious level peak. The water level decrease following

decrease of feedwater flow was not simulated well because the flow

stagnation occurred in volume 172.

Three different nodalizations ( Case2, Case3, and Case4) were tested

to evaluate the effect of junction orientation. As shown in Fig. 12, the

effect of the junction orientation is negligible, and thus the

comparisons of case 2 with the base case were done in this paper.

As shown in Fig. 13, the level decreasing is well predicted and the

spurious level peak disappeared by connecting the cross flow junctions

between bypass plenum volume ( volume 187) and steam dome volume (

volume 180). The case 2 nodalization had a little effect on the pressure

of steam generators (Fig. 14), and no effect on the primary side

parameters.

As shown in Fig. 10, the pressurizer pressure was predicted high. The

main reason is the high prediction of pressurizer water level as

described in section 5. But the other reason is the treatment of the

heat losses through the pressurizer vessel wall. At the normal operating

condition, the proportional heaters are partially kept on to compensate

the heat losses. The amount is estimated as 167 KW. As shown in Fig. 15,

the pressurizer heater is simulated as heat slab and shut off at the

time of loss of offsite power. The heat loss through wall ia simulated

as boundary condition of the wall heat slab and remains constant during

the whole transient. As in Fig. 16 the pressure increase due to the

insurge flow is much higher than the plant data, although the improved

22

Page 35: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

result was obtained compared with the base case. It is believed that the

interface heat transfer in horizontal stratified flow regime may be

estimated low, and thus the compression effect may be high.

23

Page 36: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

( CASE 1 ) ( CASE 2 )

( CASE 3 ) ( CASE 4 )

Fig.11 S/G Nodalization for Sensitivity Study

24

Page 37: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

0.5

0.4

0.3

(Il-J

0.2

0.1

0

0 40 80 120 160 200 240 280

Time ( seconds )

Fig.12 S/G Narrow Range Water Level ( case 2, case3, case4 )

Page 38: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

U,-J

U,0)Ca

0LL.0z

NC/)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 40 80 120 160 200 240 280

Time ( seconds )

Fig.13 S/G Narrow Range Water Level versus Time ( case2 )

Page 39: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

"-J

a.

L- C

a-

7

6.9

6.8

6.7

6.6

6.5

6.4

6.3

6.2

6.1

6

5.9

5.8

0 40 80 120 160 200

Time ( seconds )

Fig.14 S/G Pressure versus Time ( case2 )

240 280

Page 40: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

SRV SRV

INSULATION

BOUNDARY

HEAT LOSS

BOUNDARY

PROPORTIONAL

HEATER Z

PZR MODEL WITHOUT HEATERS PZR MODEL WITH HEATERS

Fig.-15 Pressurizer Model with Heat Loss

Page 41: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

(0

00a-

..

U)

(L

15.6

15.5

15.4

15.3

15.2

15.1

15

14.9

14.8

14.7

14.6

14.5

0 40 80 120 160 200 240

Time ( seconds )

Fig.16 PZR Pressure versus Time with Heat Loss through Wall

280

Page 42: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

7. Run Statistics

In order to compare the run times with other organization it should

be mentioned that the computer type used is CDC CYBER 170-875 which has

one unified extended memory unit. and the operating system is the NOS

2.6.1 level 700. As shown in Fig. 17 the time step size is mainly

governed by the minimum Courant limit time. The Courant limit time

increases due to the flow coastdown after the trip of reactor coolant

pumps. The requested maximum time step size is 1.0 second. Thus the

time step varies between the maximum time step and the Courant limit.

The total CPU time Is shown in Fig. 18. In the figure it runs faster

than the real time after the coastdown of flow. It is due to the

increase of Courant time limit resulting in an increase of time step

size as shown in Fig..17.

The total CPU time required for simulation of the whole transient 300

seconds is 455.276 seconds and the total number of time steps is 3095.

The input processing time is 7.87 second and the number of volumes is

118. Thus the grind time is 1.22 mili-second ; the grind time = (total

CPU time - Input processing time)/(Number of time step X Nunmer of

Volume) = (455.276-7.87)/(3095 X 118) = 0.00122.

30

Page 43: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

0

U)

V)

0.

E

1.5

1.4

1.3

1.2

1..1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 40 80 120 160 200 240 280

Real 'ime ( seconds )

Fig.17 Time Step Size and Courant Time Limit versus Real Time

Page 44: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

KNU #1 Loss of Offsite Power TransientRELAP5/MOD2/CY36.05 Simulation

500

400

CA)

0)

C00

EF-

0.

300

,o00

100

0

0 200 400

Real 'ime ( seconds )

Fig.18 Total required CPU Time versus-Real Time

Page 45: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

8. Conclusion

An analysis of KNU #1 Loss of Offslte Power transient was carried out

using the RELAP5/MOD2. It was found that the code gives stable

steady-state results and accurate predictions for most of the plant

behavior associated with the transient, indicating the excellent

capability of the code for this type of transients. The

establishment of stable natural circulation due to the hot-cold leg

temperature difference after both reactor trips is confirmed.

In particular, the calculated primary thermal behavior closely

follows the plant data and this validates that the relevant

thermal-hydraulic and decay power model in the RELAP5/MOD2

correctly describes the actual phenomena.

In the nodalization sensitivity study it was found that S/G noding

with junctions between bypass plenum and steam dome is preferred. This

nodalization allowed the simulation of the S/G water level decrease and

avoided the spurious level peak at turbine trip.

The pressurizer pressure increase is sensitive to the insurge flow.

It is believed that the interfacial heat transfer in a horizontal

stratified flow regime may be estimated low and that the compression

effect due to insurge flow may be high.

33

Page 46: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

9. Reference

1. "Final Safety Analysis Report, Kori Nuclear Power Plant Unit No.1",

Korea Electric Company.

2. Computed Daily Log Sheet of KNU1, on June 9, 1981.

3. Computed Post Trip Review Sheet of KNU1, 11:00 on June 9, 1981.

4. Computer Sequence of Events Record of KNU1, 11:00 on June 9, 1981.

5. Ransom, V.H., et al., "RELAP5/MOD2 Code Manual ; Volume 2 ",

NUREG/CR-4312, EGG-2396, December 1985.

34

Page 47: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

Appendix

The input file for steady/transient run of KNU #1 Loss of Offsite

Power Transient is given. The geometric data and performance data was

prepared in cooperation with the utility company ( KEPCO ) of KNU #1

Plant. The input file is the CASE2 input which contains the

specific steam generator nodalization as discussed Th section 6. The

job control card at the top of input file is for KAERI computer system

(CDC CYBER-170, NOS operating system).

35

Page 48: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

/JOBBRUN,T777./USERATTACH,REL36KX.ATTACH,STH2XT.RFL,CM=350000,EC=200.REDUCE(-)FILE,RSTPLT,SBF=NO.FILE,RSTIN,SBF= NO.DEFINE,PLOTFL=BBASEP2.REL36KX(,*PL=90000)SKIP,JOB4.EXIT.ENDIF,JOB4.DAYFILE,DAYLEE.REPLACE,DAYLEE./EOR=KORI UNIT 1 STATION BLACK-OUT AT 77.5% POWER TRANSIENT(14/NOV/1981)*------------------------------------------------------------------*

* FILENAME IS "BBASE2" (1985.DEC.10) - BASE CAL. BY LEE* ORIGINAL LOSS COEFF. BUT MODIFICATION OF PUMP DATA* ATTACH PZR PRESSURE, & CORE KINETIS DATA* S/G NODALIZATION STUDY 2 (CASE 2)----------------------------------------------------------------- 7-*

* STANDALONE REACTOR **------------------------------------------------------------------*------------------------------------------------------------------- *

* ----------------------------------------------------------------* MISCELANOUS CONTROL CARDS

----------------------------------------------------------------------

100

101

102104

105

PROBLEM TYPE OPSTDY-ST/TRANSNTNEW TRANSNT

INP-CHK/RUNRUN

INP-UNIT OUT-UNIT OUTPUT-UNITBRITISH BRITISH

NOACTIONTIME 1 TIME 2

1.0 2.0*------------------------------------------- ---------------------------

* TIME STEP CONTROL CARDS-----------------------------------------------------------------------

* EDND.T MIN.DT MAX.DT CNTL MINOR.ED MAJOR.ED RESTRT201 300.0 1.E-7 1.00 14003 1 050 4000*202 800.0 1.E-7 .1.00 2 1 1 100 4000*------------------------- 7 -------- 7-------------------- -----------------* MINOR EDIT REQUEST.*

0----------------------------------------------------------------301 P 301010000

36

Page 49: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343

TEMPFPTEMPFPTEMPFPTEMPFPTEMPFPTEMPFTEMPFMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJMFLOWJ

301010000356010000356010000335010000335010000335020000335020000335030000335030000620010000220010000201010000300010000300020000325010000325020000355030000345010000355020000220020000120020000621000000

RKTPOWRKFIPOWRKGAPOWRKREACCNTRLVAR,051CNTRLVAR,052CNTRLVAR,057CNTRLVAR,058CNTRLVAR,061CNTRLVAR,062CNTRLVAR,067CNTRLVAR,068CNTRLVAR,060CNTRLVAR,070CNTRLVAR,122CNTRLVAR,300CNTRLVAR,401CNTRLVAR,402CNTRLVAR,403CNTRLVAR,404

0000

*------------------------------------------------------------* TRIP DATA

------------------------------------------ w----------------

501502503504*588

TIME 0 GE NULLTIME 0 GE NULLTIME 0 GE NULLTIME 0 GE NULL

CNTRLVAR 057 LE

0 9999.0 L * CPU LIMIT0 0.0 L * INITIALIZATION0 50.00 L * ACCIDENT.ACTUATION0 9999.0 L * MSIV CLOSURE

NULL 0 0.25 L * RX/TBN TRIP

37

Page 50: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* REPLACE RX TRIP B588 TIME,O GE589 CNTRLVAR 05590 CNTRLVAR 10592 TIME 0 GE601 588 AND594 TIME 0 GE595 TIME 0 GE

IY TIME 89.2.18NULL,O 100.00 L * RX/TBN TRIP

7 LE NULL 0 0.11 L *S/G L-L (AUX. FEED))1 LE NULL 0 554. L *MAIN FEED ISOLATION

TIMEOF 589 9999.0 L *STEAM DUMP503 L

TIMEOF 601 35. L * BROKEN LOOP P1TIMEOF 601 63. L * INTACT LOOP P1

UMP TRIPUMP TRIP

*=== CORE COMPONENTS ===* ---------------------------------------------------------------

* HYDRODYNAMIC COMPONENT*--------------------------------------------------------------------

* COMPONENT 300: REACTOR UPPER DOWNCOMER BRANCH* ------------------------------------------------------

*

30000003000001300010130002003001101300210130012013002201

RX-U-DO BRANCH2 121.559 1.965 0. 0. -90. -1.965 0. 1.3473 2299.7 542.71300000000 308000000 21.559 0.4 0.4 001300010000 301000000 21.559 0.3 0.3 00163.597 0.0 0.020611.0 0.0 0.0

00

O0O0

-----------------------------------------------------------* COMPONENT 301: REACTOR MID DOWNCOMER BRANCH-----------------------------------------------------------

3010000 RX-M-DO BRANCH3010001 1 13010101 18.6475 2.0 0. 0. -90. -2. 0. 0.591 003010200 3 2298.9 542.713011101 301010000 315000000 18.6475 0.3 0.3 00003011201 20611.0 0.0 0.0

------------------------------------------------------*COMPONENT 315: REACTOR LOWER DOWNCOMER ANNULUS

*

*

31500003150001315010131502013150301315030231503033150601315070131507023150703315080131509013151001

RX-L-DO517.93417.9341.084.03.239-90.0-1.08-4.0-3.2390.0 0.5680.3 0.300

PIPE

145

4

54

51455

5

38

Page 51: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

31511013151201315120231512033151204315120531513003151301

0000333331

2298.32298.12298.A2298.(2298.E

4542.71

542.71542.71542.71542.71

0.0 " 0.0

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

12

345

20611.0 4-----------------------------------------------------------*COMPONENT 322: REACTOR MID LOWER PLENUM--------------------------------------------------------------------

*

3220000322000132201013220200322110132221013223101322120132222013223201

RX-M-LP3

BRANCH1

79.639 2.8 0. 0. -90. -2.8 0. 0.3 2297.8 542.71315010000 322000000 17.934 1.3322000000 325000000 46.684 3.2322010000 321000000 31.118 0.020611.0 0.0 0.020611.0 0.0 0.00.0 0.0 0.0

00

200

1.32 01003.200 0100

0.0 0000

* COMPONENT 321: REACTOR BOTTOM LOWER PLENUM-----------------------------------------------------------

*

321000032101013210200

RX-B-LP SNGLVOL31.118 2.283 0. 0. -90. -2.2833 2298.7 542.55

0. 1.219 00

* COMPONENT 325: REACTOR TOP LOWER PLENUM--------------------------------------------------------------------

*

32500003250001325010132502003251101325210132512013252201

RX-T-LP2

BRANCH1

46.684 3.239 0. 0.3 2295.0 542.70325010000 335000000325010000 320000000

19995.0 0.0616.65 0.0

90. 3.239 0. 1.753 00

26.938 4.1 5.4 01000.834 7.0970 7.0970 0100

0.00.0

X...........................................................................* COMPONENT 335: ACTIVE CORE *X ---------------------------------------------------- x

335000033500013350101335030133504013350601335070133508013350901

CORE30.0

PIPE

4.0108.09290.04.05.E-52.0 2.0

333333.0.0402

2

39

Page 52: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

33510013351101335120133512023351203335130033513013351302

0000003331

2286.22276.52272.7

559.49575.63591.04

32

000

000

0.0.0.

123

19995.019995.0

0.0 0.0 10.0 0.0 2

-----------------------------------------------------------*COMPONENT 340: CORE TOP--------------------------------------------------------------------

*

34000003400001340010134002003401101340210134012013402201

CORE-TOP BRANCH2 136.582 1.08 0. 0. 90.3 2263.4 590.95335010000 340000000 2340010000 344000000 3

19995.0 0.019995.0 0.0

1.08 0. 0.0402 00

6.9386.582

0.00.0

5.41.0

4.6 01001.0 0100

-----------------------------------------------

* COMPONENT 320: CORE BYPASS *m ------------------------------------------------------

3200000320000132001013200201320030132003023200601320070132007023200801320090132010013201101320120132012023201203320120432013003201301

CORE-BY1411. 92740.8344.01.0890.04.01.080.07.09700000003 243 2,3 23 2

PIPE

4334434

0.1247.0970

43

43

~91.7~83.0274.2?65.8

545.48550.41556.96558.59

0.00.00.00.0

0.00.00.00.0

*0.00.00.00.0

1234

1616.65 0.0 0.0 3

* COMPONENT 344: BOTTOM UPPER PLENUM---------------------------------------------------------------------------

*

344000034400013440101344020034411013442101

RX-B-UP3

BRANCH1

49.7375 2.0 0. 0. 90. 2. 0. 0.76263 2262.3 589.97320010000 344000000 0.834 7.0970344010000 345000000 49.7345 0.0

00

7.0970 01000.0 0000

40

Page 53: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

3443101344120134422013443201

337010000616.6520675.063.574

344000000 1.2670.0 0.0

0.0 0.00.0 0.0

0.86 0.86 0100

* COMPONENT 345: MID UPPER PLENUM------------------------------------------------------

*

345000034500013450101345020034511013452101345310134512013452201IAKionl

RX-M-UP3 1

'BRANCH

54.657 1.965 0. 0. 90. 1.9653 2261.8 589.97345010000 310000000 54.657345010000 101000000 4.587345010000 201000000 4.587 (0.0 .0,0 0.010334.0 0.0 0.01AnAlq A n Annn

0. 0.838 00

).0).050.05

0.00.050.05

000001000100

---------------------------------------------------------------* COMPONENT 310: REACTOR TOP UPPER PLENUM

---------------------------------------------------------------

3100000 RX-T-UP SNGLVOL3100101 54.659 5.804 0. 0. 90. 5.804 0. 0.836 003100200 3 2260.9 575.19* ------------------------------------------------------*COMPONENT 308: REACTOR TOP DOWNOOMER

---------------------------------------------------------------------------

*

*

308000030801013080200

RX-T-DO SNGLVOL26.004 6.146 0. 0. 90. 6.146 0. 1.6253 2300.4 543.70

00

* COMPONENT 355: REACTOR UPPER HEAD *X---------------------------------------------------------------3550000355000135501013550200355110135521013553101355120135522013553201

RX-U-HD3 1

BRANCH

69.927 2.476 0.0 0.0 90.03 2259.4 543.89308010000 355000000 0.0247356010000 355010000 40.016355010000 337000000 1.26763.563 0.0 0.00.0 0.0 0.063.563 0.0 0.0

2.476 0.0 2.309 00

11.00.00.86

11.00.00.86

010000000100

* COMPONENT 337:REACTOR GUIDE TUBES---------------------------------------------------------------

3370000 GID-TUB SNGLVOL3370101 1.267 12.587 0. 0. -90. -12.587 0. 0.2213370200 3 2261.0 545.90* ------------------------------------------------------* COMPONENT 356: REACTOR UPPER HEAD DOME

*

00

*

41

Page 54: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

3560000 RX-UH-D SNGLVOL3560101 40.016 2.804 0. 0. -90. -2.804 0. 7.1379 003560200 3 2258.5 588.09---------------------------------------------------------------------

*HEAT STRUCTURE INPUT---------------------------------------------------------------------*--------------------------------------------------- -------

* HEAT STRUCTURE 301: REACTOR VESSEL WALL (DOWNCOMER) *-----------------------------------------------------------

13010000 8 3 2 1 5.513010100 0 113010101 1 5.51313010102 1 6.05213010201 5 113010202 6 213010301 0.0 213010401 541.2 313010501 308010000 0 1 1 6.146 113010502 300010000 0 1 1 1.965 213010503 301010000 0 1 1 2.0 313010504 315010000 0 1 1 1.08 413010505 315020000 0 1 1 4.0 513010506 315030000 0 1 1 4.0 613010507 315040000 0 1 1 4.0 713010508 315050000 0 1 1 3.239 813010601 0 0 0 1 6.146 113010602 0 0 0 1 1.965 213010603 0 0 0 1 2.0 313010604 0 0 0 1 1.08 413010605 0 0 0 1 4.0 713010606 0 0 0 1 3.239 813010701 0 0.0 0.0 0.0 813010801 0 1.62 3.010 6.146 113010802 0 1.347 2.495 1.965 213010803 0 0.591 2.158 2.0 313010804 0 0.568 2.0758 1.08 413010805 0 0.568 2.0758 4.0 713010806 0 0.568 2.0758 3.239 8-----------------------------------------------------------

* HEAT STRUCTURE 300: CORE BARREL *-----------------------------------------------------------

13000000 8 2 2 1 4.541713000100 0 113000101 1 4.687513000201 5 113000301 0.0 113000401 541.26 213000501 310010000 0 1 1 6.146 113000502 345010000 0 1 1 1.965 2

42

Page 55: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

130005031300050413000505130005061300050713000508130006011300060213000603130006041300060513000606130006071300060813000701130008011300080213000803130008041300080513000806130009011300090213000903130009041300090513000906

344010000 0 1 1-320040000 0 1 .1320030000 0 1 1320020000 0 1 1320010000 0 1 1325010000 0 1 1308010000 0 1 1300010000 0 1 1301010000 0 1 1315010000 0 1 1315020000 0 1 1315030000 0 1 1315040000 0 1 1315050000 0 1 10 0.0 0.0 0.00 0.836 7.6620 0.838 7.6610 0.763 6.9710 0.028 0.3210 0.028 0.3210 1.753 6.5440 1.62 3.5320 1.347 2.9280 0.591 2.5330 0.568 2.4360 0.568 2.4360 0.568 2.436

2.01.084.04.04.03.2396.1461.9652.01 .084.04.04.03.239

6.1461.9652.01.084.03.2396.1461.9652.01.084.03.239

34567812345678812347812347.8

* HEAT STRUCTURE 320: BYPASS (CORE BAFFLE AND GUIDE THIMBLES) *X---------------------------------------------------------------1320000013200100132001.011320020113200301132004011320050113200502132005031320050413200601132006021320060313200604132007011320080113200802132008031320080413200901

42 20150.0.550.03350100003350200003350300003400100003200100003200200003200300003200400000 0.00 0.0400 0.0400 0.0400 0.0400 0.123

1 0.0910846

11.92

01 001 001 001 00 100 1001 001 00.0 0.00.376,0.3760.3760.3760.157

21214.961214.961214.96328.0391283.861283.861283.86346. 642

4.04.04.01.084.0

12341234412

41

43

Page 56: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

132009021320090313200904

000

0.1230.1230.123

0.1570.1570.157

4.04.01.08

234

HEAT STRUCTURE 333: ACTIVE CORE *

1333000013330100133301011333010213330103133302011333020213330203133303011333030213330303133303041333040113330402133304031333040413330405133304061333050113330601133306021333060313330701133307021333070313330901

3 80 13131230.9551.0851.2750.02361.02159.01607.0874.0730.0651.00 0

2 1 0.0

0.0152460.0155580.017583

3471237123458

0 0 0.0335010000 0 1335020000 0 1335030000 0 11000 0.333331000 0.333341000 0.33333

000

9571.4889571. 4889571. 488

0.0 0.00.0 0.00.0 0.0

312312330 0.0402 0.04503 4.0

HEAT STRUCTURE 356: UPPER HEAD DOME-----------------------------------------------------------

13560000 1 3 3 1 5.52613560100 0 113560101 2 5.9739613560201 5 113560202 6 213560301 0.0 213560401 590.0 313560501 356010000 0 1 1 0.27 113560601 0 0 0 1 0.27 113560701 0 0.0 0.0 0.0 113560801 0 7.1379 7.1379 2.804 1

------------------------------------------------------*HEAT STRUCTURE 355: UPPER HEAD-----------------------------------------------------------

*

*

13550000 1 3 2 1 5.00833

44

Page 57: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

13550100135501011355020113550202135503011355040113550501135506011355070113550801

0 12560.0590.0355010000 0 1 10 0 0 10 0.0 0.0 0.00 2.3089 10.454

5.551012232.4762.476

2.476

1111

* HEAT STRUCTURE 310: UPPER CORE SUPPORT PLATE *1

13100000 1 2 1 1 0.013100100 0 113100101 1 0.341713100201 5 113100301 0.0 113100401 600.0 213100501 310010000 0 1 0 56.397 113100601 355010000 0 1 0 56.397 113100701 0 0.0 0.0 0.0 113100801 0 2.3089 2.8795 7.51 113100901 0 0.836 2.251 7.51 1* ------------------------------------------------------*HEAT STRUCTURE 337: GUIDE TUBES WALL-----------------------------------------------------------

*

1337000013370100133701011337020113370301133704011337050113370502133705031337050413370601133706021337060313370604133707011337080113370802133708031337080413370901133709021337090313370904

4 2 20 1150.0590.03370100003370100003370100003370100003550100003100100003450100003440100000 0.00 0.22110 0.22110 0.22110 0.22110 2.30890 0.8360 0.838060 0.7626

1 0.11055

000000000.0

11111111

00000000

0.0

0.311943711264.594133.03945.04245.844182.268375.402127.097129.36

2.8185.8041.9652.02.8185.8041.9652.0

12341234412341234

0.22110.22110.22110.22114.32453.38033.38013.0757

45

Page 58: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* HEAT STRUCTURE 321: BOTTOM LOWER PLENUM* (VESSEL WALL AND INTERNAL)*-------------------------------------------------------- --13210000 1 3 3 1 5.52613210100 0 113210101 2 5.8697913210201 5 113210202 6 213210301 0.0 213210401 543.667 313210501 321010000 0 1 1 0.265 113210601 0 0 0 1 0.265 113210701 0 0.0 0.0 0.0 113210801 0 1.219 1.219 2.283 1

------------------------------------------------------* HEAT STRUCTURE 322: TOP LOWER PLENUM* ( VESSEL WALL AND INTERNAL )

--------------------------------------------------------------------

**

**

1322000013220100132201011322020113220202132203011322040113220501132206011322070113220801

10256

3 3 1 5.5261

0.0543.66732201000000 0.00 2.7!

5.869791223

0.3170.317

0.02.80

0 10 0

0.095 2.795

11

1111

------------------------------------------------------------------- *------------------------------------------- ;--------- ---------------- *

* STANDALONE STEAM GENERATOR (BROKEN LOOP-A) *--------------------------------------------------------- ---------- *------------------------------------------------------------------- *

* -----------------------------------------------------------------* MINOR EDIT REQUEST

------------------------------------------------------------------------------ ----

351352353354355356357358359360361362

PPPPPPPPTEMPFTEMPFMFLOWJMFLOWJ

170010000170050000171010000172010000174010000185010000285010000700010000120010000220010000191000000291000000

46

Page 59: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

363 MFLOWJ 185010000364 MFLOWJ 285010000365 MFLOWJ 701000000366 MFLOWJ 703000000367 MFLOWJ 102030000368 MFLOWJ 171010000369 MFLOWJ 171020000370 MFLOWJ 171030000371 MFLOWJ 174010000372 MFLOWJ 174020000373 MFLOWJ 178000000374 MFLOWJ 170020000375 VOIDG 170010000376 VOIDG 171010000377 VOIDG 172010000378 MFLOWJ 184000000379 MFLOWJ 271010000380 MFLOWJ 271020000381 MFLOWJ 271030000382 MFLOWJ 274010000383 MFLOWJ 274020000384 MFLOWJ 278000000385 MFLOWJ 270020000386 VOIDG 270010000387 VOIDG 271010000388 VOIDG 272010000389 MFLOWJ 284000000393 CNTRLVAR 121394 CNTRLVAR 101395 CNTRLVAR 102396 MFLOWJ 182000000.397 MFLOWJ 282000000398 MFLOWJ 186000000399 MFLOWJ 286000000

--------------------------------------------------------------------* HYDRODYNAMIC COMPONENT*------------------------------------------------------------------------------------------------------------------------------------

* COMPONENT 105: BROKEN LOOP STEAM GENERATOR INLET PLENUM *-----------------------------------------------------------

1050000 B-SG-IP SNGLVOL1050101 24.0015 6.7417 0.0 0. 90. 1.704 0. 0.000 001050200 3 2239.9 589.85-----------------------------------------------------------

* COMPONENT 106: BROKEN LOOP STEAM GENERATOR INLET PLENUM ** TO PRIMARY TUBE JUNCTION *-----------------------------------------------------------

1060000 B-IP-TUB SNGLJUN Vi. N1060101 105010000 108000000 11.0988 0.69 0.69. 01001060201 1 10334.0 0.0 0.0

47

Page 60: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* COMPONENT 108: BROKEN LOOP STEAM GENERATOR TUBES----------------------------------------------------------

10800001080001108010110802011080301108030210803031080401108060110806021080603108060410807011080702108070310807041080801108090110810011081101108110210811031081201108120210812031081204108120510812061081207108120810813001081301

B-SG-TUB8

PIPE

11.098811.09889.913.4499.910.090.040.0-40.0-90.09.912.196-2.196-9.910.0 00.0 0000000000000003 22:3 22:3 223 223 223 223 223 22'110334.0

873588345834588783470.00.00.00.00.00.00.00.0

.0646

.0

32.425.518.714.313.012.512.111.7

576.83567.20559.91557.48555.25550.29545.96542.22

0.00.00.00.00.0.0.00.00.0

0.0.0.0.0.0.0.0.

12345678

0.0 0.0 7

* COMPONENT 109: BROKEN LOOP STEAMTO PRIMARY OUTLET

GENERATOR PRIMARY TUBESPLENUM

**

X---------------------------------------------------------------109000010901011090201

B-TU-OP SNGLJUN108010000 110000000 11.0988.1 10334.0 0.0 0.0

0.69 0.69 0100

I----------------------------------------------------------------------------

* COMPONENT 110: BROKEN LOOP STEAM GENERATOR OUTLET PLENUM *A ------------------------------------------------------

110000011001011100200

B-SG-OP SNGLVOL24.0015 6.74173 2211.4

0.0 0. -90. -1.704 0. 0. 00542.22

w --------- T--- BOE-OO-TAMGNR------ATOR-OUTLET-PL---------rCOMPONENT ill: BROKEN LOOP STEAM GENERATOR OUTLET PLENUM

:*

48

Page 61: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

TO PUMP SUCTION LEG

1110000 B-SG-O-P SNGLJUN1110101 110010000 112000000 5.2414 0.000 0.000 01001110201 1 10334.0 0.0 0.0-----------------------------------------------------------

COMPONENT 174: BROKEN LOOP STEAM GENERATOR MID DOWNCOMER-----------------------------------------------------------

1740000 BSG-M-DO BRANCH1740001 21740101 60.3 6.752 0. 0. -90. -6.752 2.42189E-5 0. 001740200 3 857.37 501.7301741101 172000000 174000000 60.3 1.0 1.0 00001742101 174010000 176000000 19.352 0.1 0.1 00001741201 1.7223 -4.2282 0.01742201 3.6356 3.6356 0.0

------------------------------------------------------COMPONENT 176: BROKEN LOOP STEAM GENERATOR BOTTOM DOWNCOMER

-----------------------------------------------------------

1760000 BSG-B-DO PIPE1760001 41760101 19.352 11760102 7.0965 41760201 7.0965 31760301 2.196 11760302 9.91 41760401 0.0 41760601 -90.0 41760701 -2.196 11760702 -9.91 41760801 5.E-5 0.0 41760901 0.1 0.1 31761001 00 41761101 0000 31761201 3 858.84 501.740 0 0 0 11761202 3 860.39 501.740 0 0 0 21761203 3 863.68 501.760 0 0 0 31761204 3 866.98 501.770 0 0 0 41761301 9.9140 9.9140 0.0 11761302 9.9139 9.9139 0.0 21761303 9.9139 9.9139 0.0 3*-----------------------------------------------------------*'COMPONENT 178: BROKEN LOOP STEAM GENERATOR BOTTOM DOWNCOMER* TO RISER JUNCTION *-----------------------------------------------------------

1780000 BSG-D-RI SNGLJUN1780101 176010000 170000000 2.8700 1.000 1.000 01001780201 0 9.9146 11.069 0.0

------------------------------------------------------* COMPONENT 170: BROKEN LOOP STEAM GENERATOR EVAPORATOR RISER *

49

Page 62: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1700000 B-SG-RIS PIPE1700001 51700101 54.893 31700102 47.164 41700103 77.79 51700201 54.893 21700202 47.164 41700301 9.91 31700302 2.196 41700303 6.752 51700401 0.0 51700601 90.0 51700801 5.E-5 0.0 51700901 2.5 2.5 31700902 1.0 1.0 41701001 00 51701101 0000 .41701201 0 860.41 512.17 1115.8 0.32765 0.0 11701202 0 858.74 516.09 1114.6 0.72765 0.0 21701203 0 857.84 516.37 1114.2 0.83908 0.0 31701204 0 857.26 516.30 1114.1 0.84332 0.0 41701205 0 856.94 516.25 1114.0 0.83804 0.0 51701301 1.8407 6.0283 0.0 11701302 4.1842 6.1268 0.0 21701303 7.5892 9.3246 0.0 31701304 7.5386 10.473 0.0 4*---------------------------------------------------------*COMPONENT 171: BROKEN LOOP STEAM GENERATOR SEPERATOFR-------------------------------------------------------------------

1710000 B-SG-SEP SEPARATR1710001 31710101 97.070 6.937 0. 0. 90. 6.937 0.0 4.667 011710200 0 855.70 516.05 1113.9 .5001711101 171010000 180000000 63.8 0.86410.864 10201712101 171000000 172000000 30.000 0.0 0.0 10001713101 170010000 171000000 77.790 21.0 21.0 10001711201 6.7470 6.7470 0.01712201 1.9472 7.5366 0.01713201 4.5731 6.6075 0.0-----------------------------------------------------------

* COMPONENT 172: BROKEN LOOP STEAM GENERATOR TOP DOWNCOMER-----------------------------------------------------------

1720000 BSG-T-DO SNGLVOL1720101 88.87 6.937 0. 0. 90. 6.937 0. 4.014 011720200 0 855.70 516.05 1113.9 .500-----------------------------------------------------------

* COMPONENT 180: BROKEN LOOP STEAM GENERATOR STEAM DOME----------------------------- --------------------------

1800000 B-SG-DOt4 PIPE

0.000.00

*€

50

Page 63: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

180000118001011800301180040118006011800701180080118010011801201

163.800007.20950.090.07.20950.0002 855

11

11111

0.0 0.0 0,0

0.0

.10 1.0000 1;9 ------------------------------------------------------

1870000187000118701011870200187110118721011871201187220118800001880001

1880101188020018811011881201

B-SG-DOM BRANCH2 150.0 7.2095 0. 0.2 855.10 1.0172010000 187000000187000000 1800000000.0 0.0 0.00.0 0.0 0.0

90. 7.2095 0. 0. 00

50.0 0.204.0 0.

0.0.

00000003

B-SG-DOM BRANCH

63.8 7.2095 0. 0. 90.2 855.00 1.0180010000 188000000 63.80.0 786.65 0.0

7.2095 0. 0.

0.0 0.0 0000

00

COMPONENT 185: STEAM LINE-----------------------------------------------------------

1850000 B-SG-SL BRANCH1850001 1 11850101 5.585 137.0 0. 0. 0. 0. 0. 2.667 001850200 2 853.64 1.00001851101 188010000 185000000 5.585 0.0 0.0 00001851201 0.0000 786.65 0.0------------------------------------------ :-----------------

COMPONENT 186: MAIN STEAM ISOLATION VALVE-----------------------------------------------------------

1860000 B-MSIV VALVE1860101 185010000 700000000 5.585 0.0 0.0 01001860201 1 0.0 786.65 0.01860300 MTRVLV1860301 501 504 0.2 '1.0 0.0

------------------------ ---------------------------*COMPONENT 191: PORV-----------------------------------------------------------

*

*

*

19100001910101191020019102011910202

B-PORV TMDPJUN185000000 1920000001 503 P 1850100000.0 0.0 0.01019.0 0.0 0.0

1.0

0.00.0

51

Page 64: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1910203 1021.0 0.0 109.7 0.0*

1920000 B-PORV TMDPVOL1920101 1.0 0.0 100.0 0.01920200 31920201 0.0 14.7 100.0

0.0 0.0 0.0 0.0 00

*-------------------------------------------------------------** COMPONENT 193 SAFETY VALVES

--------------------------------------------------------

1930000 B-SRV TMDPJUN1930101 185000000 194000000193020019302011930202193020319302041930205193020619302071930208193020919302101930211

1 00.01089.01091.01102.01104.01116.01118.01129.01131.01143.01145.0

P 1850100000.00.00.00.00.00.00.00.00.00.00.0

0.00.0

219.4219.4443.0443.0670.8670.8901.3901.3

1134.7

1.0

0.00.00.00.00.00.00.00.00.00.00.0

1940000 B-SRV TMDPVOL194010119402001940201

1.0 0.0 100.0 0.030.0 14.7 100.0

0.0 0.0 0.0 0.0 00

X ------------------------------------------------------

* COMPONENT 183: BROKEN LOOP MAIN FEEDWATER SOURCE VOLUME **-----------------------------------------------------------1830000 B-MFW TMDPVOL1830101 10.0 0.0 100.0 0. 0. 0. 0. 0. 001830200 31830201 0.0 500.0 413.0

--------------------------------------------------*COMPONENT 184: BROKEN LOOP MAIN FEEDWATER JUNCTION

*---------------------------------------------------------------------------

*

184000018401011840200184020118402021840203184020418402051840206

B-MFW-J183000000

TMDPJUN174000000

1 503-1.0

0.00010.020.030.040.0

786.65786.65630.00391.20340.00290.70

0.00.00.00.00.00.0

5.0

0.00.00.00.00.00.0

52

Page 65: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

18402071840208184020918402101840211

50.060.070.0

81.1010000.00

270.000.000.000.000.00

0.00.00.00.00.0

0.00.00.00.00.0

*----------------------------------------------------------* COMPONENT 181:BROKEN LOOP AUXILIARY FEEDWATER* SOURCE VOLUME-----------------------------------------------------------

1810000 B-AFEED TMDPVOL1810101 1.0 0.0 100.0 0. 0. 0. 0. 0. 001810200 31810201 0.0 500.0 100.0-----------------------------------------------------------

* COMPONENT 182: BROKEN AUX-FEED WATER JUNCTION* ------------------------------------------------------*MOTOR DRIVEN + TBN DRIVEN

**

*

182000018201011820200182020118202021820203

B-FEED-J1810000001

TMDPJUN1740000005890.0 0.00.0 0.00.0 0.0

1.0

0.020.050.0

0.00.058.08

* .HEAT STRUCTURE INPUT------------------------------------------------------------------------------------------------------------------------------------

* HEAT STRUCTURE 108: STEAM GENERATOR U-TUBES *

1108100011081100110811011108120111081301110814011108150111081502110815031108150411081505110815061108150711081508110816011108160211081603110816041108160511081606

8 4 2 1 0.0322920 13 0.0364584 30.0 3520.0 4108010000 0108020000 0108030000 0108040000 0108050000 0108060000 0108070000 0108080000 0170010000 0170020000 0170030000 0170040000 0170040000 0170030000 0

111111111111

1

0'0

.000000000000

8382.14698382.14698382.14692917.18392917.18398382.14698382.14698382.14699463.53009463.53009463.53003293.53063293.53069463. 5300

12

345678123456

53

Page 66: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

110816071108160811081701110818011108180211081803110819011108190211081903

170020000 0170010000 00 0.0 0.0 0.(

1 0 9463.53001 0 9463.5300

000000

0.06460.06460.06460.126180.1190.12618

0.0646 9.910.0646 3.4490.0646 9.910.12618 9.910.1215 3.4490.12618 9.91

788358358

------------------------------------------------------

* CONTROL VARIABLE 51 BROKEN LOOP STEAM GENERATOR*SECONDARY SIDE MASS INVENTORY*---------------------------------------------------------------------------

**

2050510020505101205051022050510320505104205051052050510620505107

BSG-MAS SUM0.0 544.0 RHO

544.0 RHO525.252 RHO616.5 RHO42.498 RHO70.3265 RHO

1611.200 RHO

0.062428170010000170030000170050000172010000176010000176030000180010000

0.0 1544.0103.572608.83407.14570.326570.3265

RHORHORHORHORHORHO

170020000170040000171010000174010000176020000176040000

---------------------------------------------------------------

--------------------------------------------------- --

CONTROL VARIABLE 52: BROKEN LOOP STEAM GENERATORSECONDARY SIDE WATER VOLUME INVENTORY *

*

2050520020505201205052022050520320505204205052052050520620505207

IBG-VOF SUM 1.000000 0.0 10.0 544.0

544.0525.252616.542.49870.3265

1611.200

VOIDFVOIDFVOIDFVOIDFVOIDFVOIDFVOIDF

170010000170030000170050000172010000176010000176030000180010000

544.0103.572608.83407.14570.326570.3265

VOIDFVOIDFVOIDFVOIDFVOIDFVOIDF

170020000170040000171010000174010000176020000176040000

* CONTROL VARIABLE 53: BROKEN LOOP STEAM GENERATOR* WIDE RANGE SECONDARY SIDE WATER VOLUME INVENTORY.*-----------------------------------------------------------

*

2050530020505301205053022050530320505304

WBWRVOF SUM 1.0000000.0 616.5 VOIDF 172010000

42.498 VOIDF 17601000070.3265 VOIDF 176030000

1611.200 VOIDF 180010000

0.0 1407.14570.326570.3265

VOIDFVOIDFVOIDF

174010000176020000176040000

CONTROL VARIABLE 54: BROKEN LOOP STEAM GENERATOR*NARROW RANGE SECONDARY SIDE WATER VOLUME INVENTORY

**

2050540020505401

BNR-VOF0.0 616.5

SUM 1.000000VOIDF 172010000

0.0 1108.178 VOIDF 174010000

54

Page 67: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20505500 XXC3 SUM 1.3797-03 0.8 1 3 0.0 1.020505501 -552.33 1.00 CNTRLVAR,53*-------------------------------------------------------------------------20505600 XXC4 SUM 1.3797-03 0.44 1 3 0.0. 1.020505601 0.000 1.00 CNTRLVAR,54-------------------------------------------------------------------------

NARROW RANGE LEVEL REDUCED FROM WIDE RANGE WATER VOLUME20505700 BWR-LEVL FUNCTION 1.0 0.44 1 3 0.0 1.020505701 CNTRLVAR,55 501

------------------------------------------------------------------------NARROW RANGE LEVEL REDUCED FROM NARROW RANGE WATER VOLUME

20505800 BNR-LEVL FUNCTION 1.0 0.44 1 3 0.0 1.020505801 CNTRLVAR,56 501---------------------------------------------------------------------

S/G FLUID VOLUME FROM BOTTOM20505900 BSGVOL SUM 0.0003498 0.66 120505901 0.0 1.0 CNTRLVAR,52*----------------------------- ---------------------------------------

S/G WATER LEVEL FROM BOTTOM20506000 BSGLVL FUNCTION 44.942 39.2 120506001 CNTRLVAR,59 502

*------------------------------------------------------------------------

* GENERAL TABLE DECK

------------------------------------------------------------------------* NARROW RANGE WATER LEVEL VERSUS NR WATER VOLUME20250100 NORMAREA20250101 0.0 0.020250102 0.149 0.150020250103 1.00 0.730

----------------------------------------------------------------S/G VOLUME VS. LEVEL

20250200 NORMAREA20250201 0.0 0.020250202 0.215 0.66220250203 0.266 0.71020250204 0.592 0.86020250205 1.0 1.0

------------------------------------------------------------------- ** STANDALONE STEAM GENERATOR (INTACT LOOP-B) *------------------------------------------------------------------- *------------------------------------------------------ -------------- *

*----------------------------------------------------------------* MINOR EDIT REQUEST

55

Page 68: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

---- H-----R ------NAM-----C---COMPONENT----------------------------------------------------------------------------

*---------------------------------------------------------------

* COMPONENT 205: INTACT LOOP STEAM GENERATOR INLET PLENUM*-------------------------------------------------------- --

2050000 I-SG-IP SNGLVOL2050101 24.0015 6.7417 0.0 0. 90. 1.704 0. 0.0002050200 3 2239.9 589.85

*

00

* COMPONENT*

206: INTACT LOOP STEAM GENERATOR INLET PLENUMTO PRIMARY TUBE JUNCTION

**

x..................................................-............206000020601012060201

I-IP-TUB SNGLJUN205010000 208000000 11.0988 0.69 0.691 10334.0 0.0 0.0

0100

-----------------------------------------------------------* COMPONENT 208: INTACT LOOP STEAM GENERATOR TUBES

--------------------------------------------------*

208000020800012080101208020120803012080302208030320804012080601208060220806032080604208070120807022080703208070420808012080901208100120811012081102208110320812012081202208120320812042081205208120620812072081208

I-SG-TUB811.098811.09889.913.4499.910.090.040.0-40.0

-90.09.912.196-2.196-9.910.0 0.(0.0 OC000000000000003 22323 222.3 22183 22143 22133 22123 22123 2211

PIPE

873588345834588783470.00.00.00.00.00.00.00.0

)646

2.4

5.53.74.3.,0

2.5

. 11.7

576.83567.20559.91557.48555.25550.29545.96542.22

0.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.0

12345678

56

Page 69: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20813002081301

110334.0 0.0 0.0 7

X---------------------------------------------------------------* COMPONENT 209: INTACT LOOP STEAM GENERATOR PRIMARY TUBES

TO PRIMARY OUTLET PLENUM**

A ------------------------------------------------------

209000020901012090201

I-TU-OP SNGLJUN208010000 210000000 11.09881 10334.0 0.0 0.0

0.69 0.69 0100

X ------------------------------------------------------

COMPONENT 210: INTACT LOOP STEAM GENERATOR OUTLET PLENUM-----------------------------------------------------------

2100000 I-SG-OP SNGLVOL2100101 24.0015 6.7417 0.0 0. -90. -1.704 0. 0. 002100200 3 2211.4 542.22

* COMPONENT 211: INTACT LOOP STEAM GENERATOR OUTLET PLENUMTO PUMP SUCTION LEG

*€

2110000 I-SG-O-P SNGLJUN2110101 210010000 212000000 5.2414 0.000 0.000 01002110201 1 10334.0 0.0 0.0

OC------------------------------------------------------*COMPONENT 274: BROKEN LOOP STEAM GENERATOR MID DOWNCOMER *

X---------------------------------------------------------------27400002740001274010127402002741101274210127412012742201-----------*COMPONENT

BSG-M-DO BRANCH260.3 6.752 0. 0. -90. -6.752 2.42189E-5 0.3 857.37 501.730272000000 274000000 60.3 1.0 1.0 0000274010000 276000000 19.352 0.1 0.1 00001.7223 -4.2282 0.03.6356 3.6356 0.0

00

276: BROKEN LOOP STEAM GENERATOR BOTTOM DOWNCOMER *X...........................................................................27600002760001276010127601022760201276030127603022760401276060127607012760702276080127609012761001

BSG-B-DO4

PIPE

19.3527.09657.09652.1969.910.0-90.0-2.196-9.915.E-50.100

1431444

434

14

0.00.1

57

Page 70: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

27611012761201276120227612032761204276130127613022761303

00003 858.84 501.7403 860.39 501.7403 863.68 501.7603 866.98 501.7709.9140 9.9140 0.09.9139 9.9139 0.09.9139 9.9139 0.0

30000

0000

0000

1234123

* COMPONENT 278: BROKEN LOOP STEAMTO RISER JUNCTION

GENERATOR BOTTOM DOWNCOMER *

2780000 BSG-D-RI SNGLJUN2780101 276010000 270000000 2.8700 1.000 1.0002780201 0 9.9146 11.069 0.0

--------------------------------------------------- --*COMPONENT 270: BROKEN LOOP STEAM GENERATOR EVAPORATOR-----------------------------------------------------------

0100

RISER *

27000002700001270010127001022700103270020127002022700301270030227003032700401270060127008012700901270090227010012701101270120127012022701203270120427012052701301270130227013032701304

B-SG-RIS554.89347.16477.7954.89347.1649.912.1966.7520.090.05.E-52.51.0000000

PIPE

345243455553454

1115.81114.61114.21114.11114.0

0.02.51.0

0 860.41 512.170 858.74 516.090 857.84 516.370 857.26 516.300 856.94 516.251.8407 6.0283 0.04.1842 6.1268 0.07.5892 9.3246 0.07.5386 10.473 0.0

0.327650.727650.839080.843320.83804

0.00.00.00.00.012

34

12345

* --------------------------------------------------- --

* COMPONENT 271: BROKENLOOP STEAM GENERATOR SEPERATOR *X...........................................................................

271000027100012710101

B-SG-SEP SEPARATR397.070 6.937 0. 0. 90. 6.937 0.0 4.667 01

58

Page 71: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2710200271110127121012713101271120127122012713201

0 855.70 516.05 1113.9 .500271010000 280000000 63.8 0.864 0.864271000000 272000000 30.000 0.0 0.0270010000 271000000 77.790 21.0 21.06.7470 6.7470 0.01.9472 7.5366 0.04.5731 6.6075 0.0

102010001000

0.000.00

COMPONENT 272: BROKEN LOOP STEAM GENERATOR TOP DOWNCOMER-----------------------------------------------------------

2720000 BSG-T-DO SNGLVOL2720101 88.87 6.937 0. 0. 90. 6.937 0. 4.014 012720200 0 855.70 516.05 1113.9 .500*------------------------------------------ ----------------

* COMPONENT 280: BROKEN LOOP STEAM GENERATOR STEAM DOME-----------------------------------------------------------

2800000 B-SG-DOM PIPE2800001 12800101 63.80000 12800301 7.2095 12800401 0.0 12800601 90.0 12800701 7.2095 12800801 0.0 0.0 12801001 00 12801201 2 855.10 1.0000 0.0 0.0 0.0 1*-------------------------------------------------------

*

*

2870000287000128701012870200287110128721012871201287220128800002880001

2880101288020028811012881201

B-SG-DOM BRANCH2 150.0 7.2095 0. 0.2 855.10 1.0272010000 287000000287000000 2800000000.0 0.0 0.00.0 0.0 0.0

B-SG-DOM BRANCH1 1.63.8 7.2095 0. 0.2 855.00 1.0280010000 2880000000.0 786.65 0.0

90. 7.2095 0. 0. 00

50.0 0. 0.204.0 0. 0.

00000003

90. 7.2095 0. 0. 00

63.8 0.0 0.0 0000

* COMPONENT 285: STEAM LINE-----------------------------------------------------------

*

28500002850001285010128502002851101

I-SG-SL1 1

BRANCH

5.585 137.0 0. 0. 0. 0. 0. 2.667 002 853.64 1.0000288010000 285000000 5.585 0.0 0.0 0000

59

Page 72: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2851201 0.0000 786.65 0.0

COMPONENT 286: MAIN STEAM ISOLATION VALVE-----------------------------------------------------------

2860000 I-MSIV VALVE2860101 285010000 700000000 5.585 0.0 0.0 01002860201 1 0.00 786.65 0.02860300 MTRVLV2860301 501 504 0.2 1.0 0.0

------------------------------------------------------*COMPONENT 291: PORV

--------------------------------------------------------------------

*

$

291000029101012910200291020129102022910203

I-PORV TMDPJUN185000000 2920000001 503 P 1850100000.0 0.0 0.01019.0 0.0 0.01021.0 0.0 109.7

1.0

0.00.00.0

----------------------------------------------------------------------------------

2920000292010129202002920201

I-PORV TMDPVOL1.0 0.0 100.0 0.030.0 14.7 100.0

0.0 0.0 0.0 0.0 00

COMPONENT 293 SAFETY VALVES±----------------------------------------------------------------------

2930000 I-SRV TMDPJUN2930101 185000000 294000000293020029302012930202293020329302042930205293020629302072930208293020929302102930211

1 00.01089.01091.01102.01104.01116.01118.01129.01131.01143.01145.0

P 1850100000.00.00.00.00.00.00.00.00.00.00.0

0.00.0

219.4219.4443.0443.0670.8670.8901.3901.3

1134.7

1.0

0.00.00.0

-0.00.00.00.00.00.00.00.0

--------------------------------------------------------------------------2940000294010129402002940201

I-SRV TMDPVOL1.0 0.0 100.0 0.030.0 14.7 100.0

0.0 0.0 0.0 0.0 00

* COMPONENT 283: INTACT LOOP MAIN FEEDWATER SOURCE VOLUME *

60

Page 73: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2830000 I-MFW TMDPVOL2830101 10.0 0.0 100.0 0. 0. 0. 0. 0. 002830200 32830201 0.0 500.0 413.0-----------------------------------------------------------

* COMPONENT 284: INTACT LOOP MAIN FEEDWATER JUNCTION-----------------------------------------------------------

2840000 I-MFW-J TMDPJUN2840101 283000000 274000000 5.02840200 1 5902840201 -1.00 786.650 0.0 0.02840202 0.0 786.65 0.0 0.02840203 10.0 0.0 0.0 0.02840204 10000. 0.0 0.0 0.0----------------------------------------------------------- *

* COMPONENT 281:INTACT LOOP AUXILIARY FEEDWATER* SOURCE VOLUME

------------------------------------------------------2810000 I-AFEED TMDPVOL2810101 1.0 0.0 100.0 0. 0. 0. 0. 0. 002810200 32810201 0.0 500.0 100.0-----------------------------------------------------------

* COMPONENT 282: INTACT AUX-FEED WATER JUNCTION* ------------------------------------------------------*MOTOR DRIVEN + TBN DRIVEN

*

*•

*

282000028201012820200282020128202022820203

I-FEED-J TMDPJUN281000000 2740000001 5890.0 0.0 0.0 0.020.0 0.0 0.0 0.050.0 58.08 0.0 0.0

1.0

---------------------------------------------------------------------* HEAT STRUCTURE INPUT

---------------------------------------------------------------------

* HEAT STRUCTURE 208: STEAM GENERATOR U-TUBES *

12081000120811001208110112081201120813011208140112081501120815021208150312081504

8 4 2 1 0.0322920 13 0.0364584 30.0 3520.0- 4208010000 0 1208020000 0 1208030000 0 1208040000 0 1

0000

8382.14698382.14698382.14692917.1839

1234

61

Page 74: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

12081505120815061208150712081508120816011208160212081603120816041208160512081606120816071208160812081701120818011208180212081803120819011208190212081903

208050000 0208060000 0208070000 0208080000 0270010000 0270020000 0270030000 0270040000 0270040000 0270030000 0270020000 0270010000 00 0.0 0.'0 0.06460 0.06460 0.06460 0.126180 0.1190 0.12618

1 .1.641.641.64

000000000000

9.91

2917.18398382.14698382.14698382. 14699463. 53009463. 53009463. 53003293. 53063293. 53069463.53009463.53009463. 5300

5678123456788358358

3.4499.91

0.12618 9.910.1215 3.4490.12618 9.91

--------------------------------------------------------------------- **CONTROL VARIABLE 300 :U-TUBE HEAT TRANSFER RATE

--------------------------------------------------------------------- *20530000 UT-HEAT sum 1.OE-6 0.0 120530001 0.0 1.0 Q 10801000020530002 1.0 Q 10802000020530003 1.0 Q 10803000020530004 1.0 Q 10804000020530005 1.0 Q 10805000020530006 1.0 Q 10806000020530007 1.0 Q 10807000020530008 1.0 Q 10808000020530009 1.0 Q 20801000020530010 1.0 Q 20802000020530011 1.0 Q 20803000020530012 1.0 Q 20804000020530013 1.0 Q 20805000020530014 1.0 Q 20806000020530015 1.0 Q 20807000020530016 1.0 Q 208080000------------------------------------------------------------------------------------------------------------------------------------------

* LOOP A-B INTERCONNECTION---------------------------------------------------------------------*COMPONENT 700 ; STEAM HEAD

*---------------------------------------------------- I---------------

7000000 STHEAD SNGLVOL7000101 5.585 0.0 100.0 0. 0. 0. 0. 0. 107000200 2 849.39 1.0I--------------------------------------------------------------------------

62

Page 75: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* COMPONENT 701; TURBINE STOP VALVE

7010000 TBNSTOP VALVE7010101 700010000 702000000 5.585 0. 0. 01007010201 1 0.0 1573.3 0.07010300 MTRVLV7010301 501 601 0.2 1.0 0.0----------------------------------------------------------------------

* COMPONENT 702; TBN*---------------------------------------------------------------------

7020000 TBN TMDPVOL7020101 5.585 0.0 100.0 0. 0. 0. 0. 0. 007020200 27020201 0.0 850.00 1.0

-----------------------------------------------------------------* CONTROL SYSTEM INPUT DATA------------------------------------------------------------------------------------------------------------------------------

* CONTROL VARIABLE 61: INTACT LOOP STEAM GENERATOR ** SECONDARY SIDE MASS INVENTORY *

--------------------------------------------------20506100 ISG-MAS SUM 0.062428 0.0 120506101 0.0 544.0 RHO 270010000 544.0 RHO 27002000020506102 544.0 RHO 270030000 103.572 RHO 27004000020506103 525.252 RHO 270050000 608.83 RHO 27101000020506104 616.5 RHO 272010000 407.145 RHO 27401000020506105 42.498 RHO 276010000 70.3265 RHO 27602000020506106 70.3265 RHO 276030000 70.3265 RHO 27604000020506107 1611.200 RHO 280010000

---------------------------------------------------------------

CONTROL VARIABLE 62: INTACT LOOP STEAM GENERATOR* -SECONDARY SIDE WATER VOLUME INVENTORY

**

2050620020506201205062022050620320506204205062052050620620506207

ISG-VOF0.0 544.0

544.0525.252616.542.49870.3265

1611.200

SUM 1.000000 0.0 1VOIDFVOIDFVOIDFVOIDFVOIDFVOIDFVOIDF

270010000270030000270050000272010000276010000276030000280010000

544.0103.572608.83407.14570.326570.3265

VOIDFVOIDFVOIDFVOIDFVOIDFVOIDF

270020000270040000271010000274010000276020000276040000

* CONTROL VARIABLE 63: INTACT LOOP STEAM GENERATOR ** .WIDE RANGE SECONDARY SIDE WATER VOLUME INVENTORY *-----------------------------------------------------------

20506300205063012050630220506303

IWR-VOF0.0 616.5

42.49870.3265

IUMVOIDFVOIDFVOIDF

1.000000 0.0 1* 272010000 407.145 VOIDF 274010000* 276010000 70.3265 VOIDF 276020000

:276030000 70.3265 VOIDF 276040000

63

Page 76: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

.20506304 1611.200 VOIDF 280010000!

* CONTROL VARIABLE 64: INTACT LOOP STEAM GENERATOR* NARROW RANGE SECONDARY SIDE WATER VOLUME INVENTORY-- - - - - - - - - - -- - - - - - - - - -----------

**

2050640020506401

INR-VOF0.0 616.5

SUm 1.000000VOIDF 272010000

0.0 1108.178 VOIDF 274010000

--------------------------- 7 --------- 7 ---------- -------------------- ------

20506500 XXC3 SUM 1.3797-03 0.8 1 '3 0.0 1.020506501 -552.33 1.00 CNTRLVAR,63*-------------------------------------------------------------------------20506600 *XXC4 SUM 1.3797-03 0.44 1 3' 0.0 1.0'20506601 0.000 1.00 CNTRLVAR,64--------------------------------------------------- 7----------------------

* NARROW RANGE LEVEL REDUCED FROM WIDE RANGE WATER VOLUME20506700 IWR-LEVL FUNCTION 1.0 0.44 1 3 0.0 1.020506701 CNTRLVAR,65 501

------------------------------------------------ :------------------------* NARROW RANGE LEVEL REDUCED FROM NARROW RANGE WATER VOLUME20506800 INR-LEVL FUNCTION' 1.0 0.44 1 3 0.0 1.020506801 CNTRLVAR,66 501*

-----------------------------------------------------------------------* S/G LIQUID VOLUME FROM BOTTOM20506900 ISGVOL SUM 0.0003498 0.66 120506901 0.0 1.0 CNTRLVAR,62---------------------------------------------------------- --------- --

S/G WATER LEVEL FROM BOTTOM20507000 ISGLVL FUNCTION 44.942 39.2 120507001 CNTRLVAR,69 502* -----------------------------------------------------------------

------------------------------------------------------------------- **-------------------------------------------------------- ----------- *

* ~REACTOR COOLANT SYSTEM*---------------------------------------- ------------------ 7---------*------------------------------------------------------ -------- *

*COMPONENT 101; BROKEN LOOP HOT LEG #1 VOLUME----------------------------------------- --------------- *

*

IU IuuuU

10101011010200

D--L--I QULVUL

4.587 0.0 39.68243 2244.0 589.86

0. 0." 0. 0.' 2.417 00

* COMPONENT 102; BROKEN LOOP HOT LEG #2 VOLUME--- ------------ -- - ---------- ---------------------

10200001020001

B-HL;-2 BRANCH3 1

'64

Page 77: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

10201011020200102110110221011023101102120110222011023201

4.587 0.3 2243,10101000(

S1020 1000(

63001000(10334.010334.00.0000

.0 40.0 0.

.7 589.87) 1020000000 103000000

1020000000.0 0.00.0 0.0

0.0 0.0

0. 0. 0. 2.417

4.5874.5870.7854

0.00.21.92

0.00.21.70

00

000000000100

--------------------------------------------------------- ** COMPONENT 103; BROKEN LOOP HOT LEG,#3 VOLUME

----------------------------------------------------

00103000010301011030200

B-HL-3 SNGLVOL4.587 0.0 31.89333 2240.3 589.85

0. .90.0 5.144 0. 2.417

*COMPONENT 104; BROKEN LOOP HOT LEG 3 TO INLET PLENUM-------------------------------------------------------- *

*

104000010401011040201

B-HL-IP SNGLJUN103010000 1050000001 10334.0 0.0

4.587 0.25 0.250.0

0100

--------------------------------------------------------- ** COMPONENT 112; BROKEN LOOP PUMP SUCTION LEG

. . . .. ...------------------------------------------------------*

1120000 B-P-SUC PIPE1120001 31120101 5.2414 31120201 5.2414 21120301 15.456 11120302 11.886 21120303 4.5 31120401 0.0 31120601 -90.0 1

S1120602 0.0. 2,1120603 90.0 31120701 -15.456 11120702 0.0 21120703 4.5 31120801 0.0 2.583 31120901 0.0 0.0. 21121001 00 31121101 0000 2..1121201 3 2202.4 542.18 0.0 0.0 0.0 1.1121202 3 2204.7 542.20 0.0 0.0 0.0 21121203 3 2203.8 542.19 0.0 0.0 0.0 31121300 11121301 10334.0 0.0 0.0 2..*- -----------------------------------------------------*COMPONENT 114; BROKEN LOOP REACTOR COOLANT PUMP.VOLUME

*

*

1140000 B-PUMP PUMP

65

Page 78: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

114010111401021140103114010811401091140200114020111402021140301114030211403031140310

0.0 5.812 57.00.0 90.0 5.81200112010000 5.2414 0.0116000000 .4.1247 0.03 2258.3 542.531 10334.0 0.0 0.01 10334.0 0.0 0.00 0 0 -1 -1-594 01190.0 1.0 98214.00 310.0 0.0 1925.0 0.1.0E6 1190.0 -1.0

0.0 01000.0 0100

4.93 32668.85 82000.00 0.0 0.0

COMPONENT 116; BROKEN LOOP COLD LEG PIPIG 1*-----------------------------------------------------------------

*

116000011601011160200

B-CL-1 SNGLVOL4.1247 0.0 19.68433 2293.2 542.68

0. 0. 0. 0. 2.292 00

--------------------------------------------------------- **COMPONENT 120; BROKEN LOOP COLD LEG PIPING 2

*-----------------------------------------------------------------±

*

12000001200001120010112002001201101120210112012011202201

B-CL-2 BRANCH2 14.1247 0.0 56.4362 0. 0. 0. 0. 2.292 003 2292.8 542.68116010000 120000000 4.1247 0.0 0.0 0000120010000 300000000 4.1247 0.0044 0.004410334.0 0.0 0.010334.0 0.0 0.0

0100

COMPONENT 201; INTACT LOOP HOT LEG #1 VOLUME--------------------------------------------------------- *

*

201000020101012010200

I-HL-1 SNGLVOL4.587 0.0 39.68243 2244.0 589.86

0. 0. 0. 0. 2.417. 00

* COMPONENT 202; INTACT LOOP HOT LEG #2 VOLUME------------------------------------------------------------------ *

*

20200002020001202010120202002021101202210120212012022201

I-HL-2 BRANCH2 14.587 0.0 40.0 0.3 2243.7 589.87201010000 202000000202010000 20300000010334.0 0.0 0.010334.0 0.0 0.0

0. 0. 0. 2.417 00

4.587 0.0 0.0 00004.587 0.2 0.2 0000

* COMPONENT 203; INTACT LOOP, HOT LEG #3 VOLUME--------------------------------------------------------- *

:*

2030000 I-HL-3 SNGLVOL

66

Page 79: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20301012030200

4.587 0.0 31.8933 0.3 2240.3 589.85

90.0 5.144 0. 2.417 00

--------------------------------------------------------- ** COMPONENT 204; INTACT LOOP HOT LEG-3 TO INLET PLENUM

---------------------------------------------------- *

204000020401012040201

I-HL-IP SNGLJUN203010000 205000000 4.5871 10334.0 0.0 0.0

0.25 0.25 0100

--------------------------------------------------------- ** COMPONENT 212; INTACT LOOP PUMP SUCTION LEG--------------------------------------------------------- *

2120000 I-P-SUC PIPE2120001 32120101 5.2414 32120201 5.2414 22120301 15.456 12120302 11.886 22120303 4.5 32120401 0.0 32120601 -90.0 12120602 0.0 22120603 90.0 32120701 -15.456 12120702 0.0 22120703 4.5 32120801 0.0 2.583 32120901 0.0 0.0 22121001 00 32121101 0000 22121201 3 2202.4 542.18 0.0 0.0 0.0 12121202 3 2204.7 542.20 0.0 0.0 0.0 22121203 3 2203.8 542.19 0.0 0.0 0.0 32121300 12121301 10334.0 0.0 0.0 2*------------------------------------------------------------------±

"*1

* COMPONENT 214; INTACT LOOP REACTOR COOLANT PUMP VOLUME *X ----------------------------------------------------- A

2140000214010121401022140103214010821401092140200214020121402022140301214030221403032140310

I-PUMP PUMP0.0 5.812 57.00.0 90.0 5.81200212010000 5.2414 0.01 0.0216000000 4.1247 0.0' 0.03 2258.3 542.531 10334.0 0.0 0.01 10334.0 0.0 0.0114 114 114 -1 -1 ý595 01190.0 1.0 98214.00 314.930.0 0.0 1925.0 0.01.0E6 1190.0 -1.0

01000100

32668.850.0 0.0

82000.0

67

Page 80: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

--------------- --------------

*COMPONENT 216; INTACT LOOP COLD LEG PIPIG 1-------------------- m-------------------------------------*

*

21600002160101•16Nl•Af

I-CL-14.1247

SNGLVOL0.0 19.6843. .0. 0. 0. 0. 2.292 00

---------------------------------------------------------*

*COMPONENT 220; INTACT LOOP COLD LEG PIPING 2------------------------------------------------------------------------

*

22000002200001220010122002002201101220210122012012202201

I-CL-22 1

BRANCH

4.1247 0.0 56.4362 0. 0.3 2292.8 542.68216010000 220000000 4.1247220010000 300000000 4.124710334.0 0.0 0.010334.0 0.0 0.0

). 0. 2.292 00

0.0 0.0 00000.0044 0.0044 0100

---------------------------------------------------------** COMPONENT 620; PRESSURIZER (LOCATED AT BROKEN LOOP)* CHECK #1023101 .

- - - - - - - - - - - - - - - - - - - - - - - - - - -

*

620000062000016200101620010262001036200301620030262003036200401620060162008016200901620100162011016201201620120262012036201204620120562012066201207620120862013006201301

PREZ PiI824.92636.79424.9263.943.64 73.94 80.0-90.00.0 0.0000.0 ,0.00000002 2250.2 2250.2 2250.2 2250.2 2250.2 2251.2 2252.2 2253.

PE

78'

1

1

8887.7

13469766

87

1.01.01.01.0

0.14840.0:0.00.0

0.00.00.00.00.0,0.00.00.0

0.00.00.00.00.00.00.00.0

0.0,0.00.00.00.00.00.00.0

*12

3456..78

10.0 0.0 0.0 7

---------------------------------------------------------** COMPONENT 621; PRESSURIZER TO SURGELINE JUNCTION

----------------------------------------------------*

62100006210101

PRZ-SUR620010000

SNGLJUN630000000 0.7854 6.19 7.655 0100

68

Page 81: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

6210201 1 0.0 0. 0 0. 0.6 2 1 0 2 0 1-1-0. 0-0. 0-0. 0

C CMPONENT 630; PRESSURIZER SURGE LINE----------------------------------------------------

6300000 PRZ-SUR PIPE6300001 36300101 0.7854 36300301 8.125 16300302 22.567 36300401 0.0 36300601 -90.0 16300602 0.0 36300701 -8.125 16300702 0.0 36300801 0.0 1.0 36301001 00 36301101 0000 26301201 3 2255.2 636.66 0.0 0.0 0.0 16301202 3 2256.3 624.03 0.0 0.0 0.0 26301203 3 2256.3 609.74 0.0 0.0 0.0 36301300 16301301 0.0 0.0 0.0 2I ------------------------------------------ ±

*

* TIME DEPENDENT VOLUME FOR PRESSURIZER SAFETY VALVE *

6400000 PZRSRV TMDPVOL6400101 1.0 0.0 100.0 0. 0. 0. 0. 0. 006400200 36400201 0.0 14.700 100.0

----------------------------------------------------* TIME DEPENDENT JUNCTION FOR PZR SAFETY VALVES

------------------------------------------------------------------ *=

641000064101016410200641020164102026410203

PZRSRV TMDPJUN640000000 620000000 1.0

1 0 P 6200100000.0 0.0 0.0 0.0

2499.0 0.0 0.0 0.02501.0 211.2 0.0 0.0

*6400000 SS-VOL TMDPVOL*6400101 1.0 0.0 100.0 0. 0. 0. 0. O. 00*6400200 2*6400201 0.0 2250.0 1.000

**---------------------------------------------------------------------*6410000 SS-JUN SNGLJUN*6410101 640000000 620000000 1.0 0.0 0.0 0000*6410201 1 0.0 0.0 0.0

-----------------------------------------------------------*----------------------------------------------------- ------------------------

= HEAT STRUCTURE INPUT

69

Page 82: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

---------------- ----------------

* HEAT STRUCTURE 101: INTACT LOOP HOT LEG----------------------------------------------------------- *

11010000 1 2 2 1 2.41711010100 0 111010101 1 3.283311010201 5 111010301 0.0 111010401 601.45 211010501 101010000 0 1 1 8.6506 111010601 0 0 0 1 8.6506 111010701 0 0.0 0.0 0.0 111010801 0 2.417 2.417 8.6506 1----------------------------------------------------------- *

* HEAT STRUCTURE 102: INTACT LOOP HOT LEG 2--------------------------------------------------------------- *

11020000 1 2 2 1 2.41711020100 0 111020101 1 2.885411020201 5 111020301 0.0 111020401 601.45 211020501 102010000 0 1 1 8.7203 111020601 0 0 0 1 8.7203 111020701 0 0.0 0.0 0.0 111020801 0 2.417 2.417 8.7203 1--------------------------------------------------------------- *

HEAT STRUCTURE 103: INTACT LOOP HOT LEG 3--------------------------------------------------------------- *

11030000 1 2 2 1 2.41711030100 0 111030101 1 2.852411030201 5 111030301 0.0 111030401 601.45 211030501 103010000 0 1 1 6.953 111030601 0 0 0 1 6.953 111030701 0 0.0 0.0 0.0 111030801 0 2.417 2.417 6.953 1* --------------------------------------------------------*HEAT STRUCTURE 105: INTACT LOOP S/G INLET PLENUM

*-----------------------------------------------------------------

*

*

*

*

11050000110501001105010111050201110503011105040111050501

1 2 3 10, 11 5.7315 10.0 1601.41 2105010000 0

5.2342

12

1 1 0.25 1

70

Page 83: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

110506011105070111050801

000

0 0 1 0.25 10.0 0.0 0.0 1

5.5281 5.5281 6.7417 1

HEAT STRUCTURE 110: INTACT LOOP S/G OUTLET PLENUM-------------------------------------------------------------

11100000 1 2 3 1 5.234211100100 0 111100101 1 5.734211100201 5 111100301 0.0 111100401 540.99 211100501 110010000 0 1 1 0.25 111100601 0 0 0 1 0.25 111100701 0 0.0 0.0 0,0 111100801 0 5.5281 5.5281 6.7417 1*---------------------------------------------------------------

HEAT STRUCTURE 112: INTACT-LOOP PUMP SUCTION LEG*---------------------------------------------------------------

11120000 3 2 2 1 2.58311120100 0 111120101 1 3.03811120201 5 111120301 0.0 111120401 541.0 211120501 112010000 0 1 1 15.456 111120502 112020000 0 1 1 11.886 211120503 112030000 0 1 1 4.5 311120601 0 0 0 1 15.456 111120602 0 0 0 1 11.886 211120603 0 0 0 1 4.5 311120701 0 0.0 0.0 0.0 311120801 0 2.583 2.583 15.456 111120802 0 2.583 2.583 11.886 211120803 0 2.583 2.583 4.5 3*-------------------------------------------------------------*

HEAT STRUCTURE 116: INTACT LOOP COLD LEG 1*-------------------------------------------------------------*11160000 1 2 2 1 2.291711160100 0 111160101 1 2.739611160201 5 111160301 0.0 111160401 541.2 211160501 116010000 0 1 1 4.7723 111160601 0 0 0 1 4.7723 111160701 0 0.0 0.0 0.0 111160801 0 2.292 2.292 4.7723 1

--------------------------------------------------------* HEAT STRUCTURE 120: INTACT LOOP COLD LEG 2

*

*

*

*

71

Page 84: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

11200000 1 2 2 1 2.291711200100 0 111200101 1 3.000611200201 5 111200301 0.0 111200401 541.2 211200501 120010000 0 1 1 13.6825 111200601 0 0 0 1 13.6825 111200701 0 0.0 0.0 0.0 111200801 0 2.292 2.292 13.6825 1*-------------------------------- ;---------------------------** HEAT STRUCTURE 201: BROKEN LOOP HOT LEG 1----------------------------------------------------------- *

12010000 1 2 2 1 2.41712010100 0 112010101 1 3.283312010201 5 112010301 0.0 112010401 601.45 212010501 201010000 0 1 1 8.6506 112010601 0 0 0 1 8.6506 112010701 0 0.0 0.0 0.0 112010801 0 2.417 2.417 8.6506 1*----------------------------------------------------------*

* HEAT STRUCTURE 202: BROKEN LOOP HOT LEG 2----------------------------------------------------------- *

12020000 1 2 2 1 2.41712020100 0 112020101 1 2.885412020201 5 112020301 0.0 112020401 601.45 212020501 202010000 0 1 1 8.7203 112020601 0 0 0 1 8.7203 112020701 0 0.0 0.0 0.0 112020801 0 2.417 2.417 8.7203 1,-------------------------------------------------------------* HEAT STRUCTURE 203: BROKEN LOOP HOT LEG 3----------------------------------------------------------- *

*

*

*

12030000120301001203010112030201120303011203040112030501120306011203070112030801

1 2 2 1 2.4170 115

2.85241

0.0 1601.45 220301000000 0.00 2.417

0 1 1 6.9530 0 1 6.9530.0 0.02.417 6.953

1111

72

Page 85: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* HEAT STRUCTURE 205: BROKEN LOOP S/G INLET PLENUM*-------------------------------------------------------------12050000 1 2 3 1 5.234212050100 0 112050101 1 5.734212050201 5 112050301 0.0 1.12050401 606.41 212050501 205010000 0 1 1-. 0.25 112050601 0 0 0 .1 0.25 112050701 0 0.0 0.0 0.0 .112050801 0 5.5281 5.5281 6.7417 1---------------------------------------------- 7 ------------

HEAT STRUCTURE 210: BROKEN LOOP S/G OUTLET PLENUM*-------------------------------------------------------------12100000 1 2 3 1 5.234212100100 0 112100101 1 5.734212100201 5 112100301 0.0 112100401 540.99 212100501 210010000 0 1-.1 0.25. 112100601 0 0 0 1 0.25 112100701 0 0.0 0.0 :0.0. 112100801 0 5.5281 5.5281 6.7417 1---------------------------------------------------------------

HEAT STRUCTURE 212: BROKEN LOOP PUMP SUCTION LEG- -----------------------------------------------------------

12120000 3 2 2 1 2.58312120100 0 112120101 1 3.03812120201 5 112120301 0.0 112120401 541.0 212120501 212010000 0 1 1 15.456 112120502 212020000 0 1 1 11.886 212120503 212030000 0 1 1 4.5 " 312120601 0 .0 0 1 -15.456 112120602 0 0 0 1 11.886 212120603 0 0 0 1 4.5 312120701 0 0.0 0.0 0.0 312120801 0 2.583 2.583 15.456 112120802 0 2.583 2.583 11.886 212120803 0 2.583 2.583 4.5 3

--------------------------------------------------------*HEAT STRUCTURE 216: BROKEN LOOP COLD LEG 1

*-------------------------------------------------------------

*

*

*

*

1216000012160100

1 2 2 10 1

2.2917

73

Page 86: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

12160101 1 2.739612160201 5 112160301 0.0 112160401 541.2 212160501 216010000 0 1 1 4.7723 112160601 0 0 0 1 4.7723 112160701 0 0.0 0.0 0.0 112160801 0 2.292 2.292 4.7723 1-------------------------------------------------------------*HEAT STRUCTURE 220: BROKEN LOOP COLD LEG 2

*---------------------------------------------------------

12200000 1 2 2 1 2.291712200100 0 112200101 1 3.000612200201 5 112200301 0.0 112200401 541.2 212200501 220010000 0 1 1 13.6825 112200601 .0 0 0 1 13.6825 112200701 0 0.0 0.0 0.0 112200801 0 2.292 2.292 13.6825 1------------------------------------------------ **HEAT STRUCTURE 620: PRESSURIZER*------------------------------------------------ *16200000 8 2 2 1 7.62516200100 0 116200101 1 8.016200201 5 116200301 0.0 116200401 652.5 216200501 620010000 0 1 1 3.94 116200502 620020000 0 1 1 3.64 216200503 620030000 0 1 1 3.64 316200504 620040000 0 1 1 3.64 416200505 620050000 0 1 1 3.64 516200506 620060000 0 1 1 3 .64 616200507 620070000 0 *1 1 3.64 716200508 620080000 0 1 1 3.94 816200601 0 0 0 1 3.94 116200602 0 0 0 1 3.64 216200603 0 0 0 1 3.64 316200604 0 0 0 1 3.64 416200605 0 0 0 1 3.64 516200606 0 0 0 1 3.64 616200607 0 0 0 1 3.64 716200608 0 0 0 1 3.94 816200701 0 .0.0 0.0 0.0 816200801 0 0.000 0.000 3.94 116200802 0 0.0 0.0 3.64 716200803 0 0.0 0.0 3.94 8

74

Page 87: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

-- - - - - - - - - - -- - - - - - - - - - ---

*HEAT STRUCTURE 630: PRESSURIZER SURGE LINE*--------------------------------------------------

*

16300000163001001630010116300201163003011630040116300501163005021630050316300601163006021630060316300701163008011630080216300803

3015

2 2 1 1.011.11

0.0 1635.0 2630010000 0630020000 0630030000 00 00 00 00 0.0 0.00 1.0 1.00 1.0 1.00 1.0 1.0

1 1 .

1 11 10 1

0 10 1

0.08.12522.56722.567

3.125-22.56722. 567

3.125?2.567?2.567

231233123

*------------------------------------------------------------------* CALCULATING TIME STEP INTERVAL*------------------------------------------------------------------20500100 Ti MULT 1.0 0.0 020500101 TIME 0

20500200 DELT SUM 1.0 0.0 020500201 0.0 1.0 CNTRLVAR 001 -1.0 CNTRLVAR 999

20599900 TO MULT 1.0 0.0 020599901 CNTRLVAR 001* --------------------------------------------------------------

* TRIP DATAý

591 CNTRLVAR 103 GE NULL 0 -1.OE-6 N

* MEASURED PZR LEVEL - BASED ON VOID FRACTIONx....................................................-....................................20512100205121012051210220512103

PZRLVL SUM 0.1666670.0 1.0 VOIDF

1.0 VOIDF1.0 VOIDF

0.4762 0620020000620040000620060000

31.01.01.0

0. 1.VOIDFVOIDFVOIDF

620030000620050000620070000

X --------------------------------------------------------------

* MEASURED2051220020512201205122022051220320512204

PZR WATER VOLUME.PZRVOF SUM i 1.00.0 98.2084

133.93133.93133.93

YOIDFVOIDFVOIDFVOIDF

476.2 0S.620010000* 620030000* 620050000* 620070000

133.93133.93133.9398.2084

VOIDFVOIDFVOIDFVOIDF

620020000620040000620060000620080000

* TO CALCULATE AUCTIONEERED T AVERAGE,

75

Page 88: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

v --------------------------------------------------------------

205101002051010120510102205102002051020120510202

205103002051030120510302

2051040020510401

.20510500

20510501

2051060020510601

2051070020510701

205108002051080120510802

2051090020510901

TAVG-A SUM-459.67

TAVG-B SUM-459.67

1.0 574.00.9 TEMPF0.9 TEMPF

1.0 574.00.9 TEMPF0.9 TEMPF

0101010000116010000

0201010000216010000"

HTX10.0

SUM 1.01.0

-1.0

0.0 0CNTRLVARCNTRLVAR

101102

HTX2591

TRIPUNIT. 1.0 1.0 0

HTX3 SUM 1.0 0.0 01.0 -1.0 CNTRLVAR 104

HTX4 MULT 1.0 0.0 0CNTRLVAR 104 CNTRLVAR 101

HTX5 MULT 1.0 574.0 0CNTRLVAR 105 CNTRLVAR 102

TAVG-H SUM 1.0 574.0 00.0 1.0 CNTRLVAR 106

1.0 CNTRLVAR 107

DELTEM SUM 1.0 0.0 0-574.0 1.0 CNTRLVAR 108

---------------------------------------------------------------------* STEAM DUMP CONTROL

------------------------------------------------------------* TURBINE TRIP------------------------------------------- ---------------------------

* STEAM DUMP SIGNAL BY TURBINE TRIP* ------------------------------------------------------------- --*AUCTIONEERED TEMPERATURE LEAD LAG UNIT---------------------------------------------------------------------

2053110020531101

DENOM SUM1.0 0.5

1.0 1.0 0.CNTRLVAR 002

20531200 DT/2A SUM 1.0 0.0 020531201 0.0 0.5 CNTRLVAR 002

2053130020531301

VV SUM 1.0 0.0 00.0 3.0 CNTRLVAR 109• 1.0 CNTRLVAR 326

76

Page 89: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20531400 Wi SUm 1.0 0.0 020531401 0.0 1.0 CNTRLVAR 324 1.0 CNTRLVAR 109

20531500 V-YO SUm 1.0 0.0 020531501 0.0 1.0 CNTRLVAR 314 -1.0 CNTRLVAR 325

20531600 NUMER MULT 1.0 0.0 020531601 CNTRLVAR 312 CNTRLVAR 315*

20531700 NUMERT SUM 1.0 0.0. 020531701 0.0 1.0 CNTRLVAR 313 1.0 CNTRLVAR 316*

20531800 LEADLAG DIV 1.0 0.0 020531801 CNTRLVAR 311 CNTRLVAR 317

20531900 WV SUm 1.0 0.0 020531901 0.0 1.0 CNTRLVAR 324 1.0 CNTRLVAR 109

20532000 YY SUm 1.0 0.0 020532001 0.0 -1.0 CNTRLVAR 318 -1.0 CNTRLVAR 325

20532100 DEL SUM 1.0 0.0 020532101 0.0 1.0 CNTRLVAR 319' 1.0 CNTRLVAR 320

20532200 DELI MULT 1.0 0.0 020532201 CNTRLVAR 321 CNTRLVAR 312*

20532300 I1 SUm 1.0 0.0 020532301 0.0 1.0 CNTRLVAR 326 1.0 CNTRLVAR 322

20532400 VO MULT 1.0 0.0 020532401 CNTRLVAR 109

20532500 YO MULT 1.0 0.0 020532501 CNTRLVAR 318

20532600 10 MULT 1.0 0.0 020532601 CNTRLVAR 323

20532700 LEADAUC SUM 1.0 574.0 020532701 574.0 1.0 CNTRLVAR 318*------------- ---------------------------------------------------------

REFERNCE AVERAGE TEMPERATURE.*---------------------------------------- ----------------------------

20533100 TAV TRIPUNIT 1.0 0.0 020533101 588

20533200 TAVER SUM 1.0 574.0 020533201 574.0 -27.0 CNTRLVAR 331-,

-------------------------------------------- ------------------- --------------

77

Page 90: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

* TEMPERATURE ERROR (BROKEN LOOP)

2053410020534101* FACTOR20534200205342012053430020534301

20534400205344012053450020534501

TEMERR SUM 0.037037 0.0 0 3 0.00.0 1.0 CNTRLVAR 327 -1.0 CNTRLVAR 332

TO DETERMINE STEAM DUMP FLOWRATESTM-P MULT 1.45037E-4 805.0 0P 700010000

1.0

DELP SUM 1.26534E-3 1.0 0-14.7 1.0 CNTRLVAR 342

DELPFNC STDFNCTN 1.0 1.0SQRT CNTRLVAR 343

0

FACTOR MULTCNTRLVAR 341

1.0 0.0 0 3CNTRLVAR 344

0.0 1.0

* LAG= 20.0 SEC OF T-COLD OR T-HOT / LOOP A AND B

2054010020540101205402002054020120540300205403012054040020540401

TCOLDA20.00TCOLDB20.00THOT-A20.00THOT-B20.00

LAG 1.0 557.0 1TEMPF 120010000

LAG 1.0 557.0 1TEMPF 220010000

LAG 1.0 583.0 1TEMPF 101010000

LAG 1.0 583.0 1TEMPF 201010000

* COMPONENT 703: STEAM DUMP VALVE-----------------------------------------------------------

7030000 DUMP-V TMDPJUN7030101 700010000 704000000 5.5857030200 1 592 CNTRLVAR 3457030201 0.0 0.0 0.0 0.07030202 .1.0 0.0 834.56 0.0* --------------------------------------- ---------------*COMPONENT 704: CONDENSER-----------------------------------------------------------

*

*

7040000704010170402007040201

CONDEN TMDPVOL1.0 0.0 100.021.0 14.7 1.0

0. 0. 0. 0. 0. 00

* REACTIVITY DATA------------------------------------------------------------------------------------------------------------------------------------------

* TOTAL POWER VS. TIME------------------------------------------------------------------------------------------------------------------------------------

* SCRAM TABLE *

78

Page 91: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20210100 REAC-T 601* TIME DOLLAR20210101 0.0 0.020210102 0.2 -0.120520210103 0.4 -0.456720210104 0.6 -1.597820210105 0.8 -7.4854620210106 1.0 -9.630420210107 1.2 -10.699220210108 1.4 -11.228220210109 1.6 -11.521020210110 1.8 -11.713020210111 2.0 -11.867020210112 2.2 -11.929520210113 2.4 -11.989820210114 2.6 -12.050020210115 2.E20 -12.0500

* REACTOR KINETICS TYPE CARD30000000 POINT30000001 GAMMA-AC 1335.7E6 0.0 321.0000 1.030000002 ANS79-130000011 10130000401 0.0 50.0 HR30000402 2.6714+8 40.0 HR30000403 5.3428+8 30.0 HR30000404 8.0142+8 20.0 HR30000405 1.0186+9 10.0 HR30000406 1.3357+9 0.00 HR30000401 1.6378+9 50.0 HR30000402 1.3012+9 6.00 HR30000403 9.5657+8 12.0 HR30000404 9.6425+8 2.00 HR30000405 9.9680+8 2.00 HR30000406 1.0293+9 2.00 HR30000407 1.0619+9 2.00 HR30000408 1.0944+9 2.00 HR30000409 1.1270+9 2.00 HR30000410 1.1595+9 2.00 HR30000411 1.1921+9 2.00 HR30000412 1.2246+9 2.00 HR30000413 1.2237+9 6.00 HR30000414 1.2339+9 2.00 HR30000415 1.2542+9 2.00 HR30000416 1.2746+9 2.00 HR30000417 1.2950+9 2.00 HR30000418 1.3153+9 2.00 HR30000419 1.3357+9 1.00 HR*----------------------------------------------------------------------------

79

Page 92: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

*DENSITY REACTIVITY TABLE----------------------------------------------------------------------

*

30000300005013000050230000503300005043000050530000506300005073000050830000510930000510300005113000051230000513300005143000051530000516300005173000051830000519300005203000052130000522*30000523*30000502*30000503

300007013000070230000703

*DOPPLER

30000601300006023000060330000604300006053000060630000607300006083000060930000610300006113000061230000613

44.4981 0.0

DENSITY42. 281742.913643. 737044.507044.693944.702845. 054445. 232545. 406045. 579645. 753245. 917946. 087046. 251746. 411946. 572146.732446. 888149. 451753. 969257. 449660.160162. 0116

0.951.001.39

335010000335020000335030000

REACTIVITY (DOLLAR)-1.700-1.198-0.5990.000 44.5159 0.00.1500.2910.3§6.0.4840.5640.6430.7220.8020.8 720.9421.0131.075'1.1271.145.2.0373.3584.0184.4154.7670.0000.0000.000

00

0. 33330. 33340.3333

0.0.0!.

- --------------------------------- ---- --- -- -- ---- ---

REACTIVITY TABLE----------------------------------------

*

TEMPERATURE545.58.6.5628.0669.5711.0752.5794.0835.5877.0918.5960.0

1001.01043.0

(FUEL) REACTIVITY (DOLLAR)2.132.001.951.741.621 .481.371.251.131.020.920.820.72

80

Page 93: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

3000061430000615300006163000061730000618300006193000062030000621300006223000062330000624*30000601*30000602*30000603

300008013000080230000803

1084.51126.01167.51209.01250.51292.01333.51375.01400.01500.01600.0

545.01375.01600.0

333000133300023330003

0.620.530.430.330.190.160.070.00

-0.04-0.21-0.69

0.000.000.00

000

0.33330.33340.3333

0.0.0.

---------------------------------------------------------------------* HEAT STRUCTURE THERMAL PROPERTY DATA---------------------------------------------------------------------

------------------------------------------------------* COMPOSITION TYPE AND DATA FORMAT

------------------------------------------------------20100100 TBL/FCTN 1 1 * CORE FUEL20100200 TBL/FCTN 1 1 * CORE FUEL GAP20100300 TBL/FCTN .1 1 *CORE FUEL CLADDING20100400 TBL/FCTN 1- 1 INCONEL20100500 TBL/FCTN 1 1 * STAINLESS STEEL20100600 TBL/FCTN 1 1 * CARBON STEEL- -----------------------------------------------------------

* THERMAL CONDUCTIVITY DATA (BTU/SEC-FT/DEG F) AND* . VOLUMETRIC HEAT CAPACITY DATA (BTU/FT**3-DEG F)*-------------------------------------------------------------------------------

*--------- -------------------------------------------------* **.CORE FUEL..

--------------------------------------------------------------------

*

201001012010010220100103201001042010010520100106201001072010010820100109201001102010011120100112

TEMP188.6332.6440.6500.0650.0800.0950.01100.01250.01400.01500.01700.0

THERMAL CONDUCTIVITY1.284E-31.1235E-39.951E-49.2806E-47.4194E-47.4361E-46.7750E-46.2278E-45.7722E-45.3889E-45.0639E-44.7889E-4

81

Page 94: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2010011320100114201001152010011620100117201001182010011920100120201001212010012220100123

20100151201001522010015320100154201001552010015620100157201001582010015920100160201001612010016220100163201001642010016520100166

1850.02000.02150.02300.02450.02600.0ý3100.0>3600.04100.04600.05100.0

TEMP

32.0122.0212.0392.0752.02012.02732.03092.03452.03812.04352.04532.04712.04892.05144.08000.0

4.5528E-44.3556E-44.1861E-44.0472E-43.9306E-43.8389E-43.6750E-43.7028E-43.9056E-44.2722E-44.8056E-4

HEAT CAPACITY

34.4538.3540.9543.5546.8051.3552.6556.5563.0572.8089.7094.2598.15100.10101.40101.40

* CORE FUEL GAP-----------------------------------------------------------

*

2010020120100202

2010025120100252

TEMP

32.05400.0

TEMP32.05400.0

THERMAL CONDUCTIVITY

3.0487788E-43.0487788E-4

HEAT CAPACITY0.0000750.000075

-----------------------------------------------------------* FUEL CLADDING

-----------------------------------------------------------

*

2010030120100302

TEMP

32.0392.0

THERMAL CONDUCTIVITY

1.9267E-31.9267E-3

82

Page 95: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

20100303201003042010030520100306201003072010030820100309201003102010031120100312*

2010035120100352201003532010035420100355

752.01112.01472.01832.02192.02552.02912.03272.03632.03992.0

TEMP

0.01480.31675.01787.53500.0

2.2478E-32.7297E-33.0508E-33.5325E-34.0142E-34.8169E-35.7803E-37.0647E-38.8311E-31.0918E-3

HEAT CAPACITY

28.39234.47685.17634.37034.476

* INCONEL---------------------------------------------------------------------------

*

* TEMP THERMAL CONDUCTIVITY

2010040120100402

20100451201004522010045320100454

32.01050.0

TEMP

100.0400.0600.0800.0

2.1167E-34.0394E-3

HEAT CAPACITY

57.18061.14063.77066.410

* STAINLESS STEEL-----------------------------------------------------------

*

201005012010050220100503

*

2010055120100552201005532010055420100555

TEMP

32.01700.010000.0

TEMP

200.0300.0400.0500.0600.0

THERMAL CONDUCTIVITY

2.0833E-34.0294E-34.0294E-3

HEAT CAPACITY

57.11459.11861.12263.12664.629

83

Page 96: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2010055620100557201005582010055920100560

700.0800.01000.02000.010000.0

66.13067.13469.13880.16080.160

* CARBON STEEL--------------------------------------------------------------------

*

201006012010060220100603201006042010060520100606201006072010060820100609

2010065120100652201006532010065420100655

TEMP

80.0440.33;800.33.1160.33.1520.331880.332240.332600.332960.33.•

TEMP

80. 0.200.031600.07:2600.33.2960.33.

THERMAL CONDUCTIVITY

0.01126.0.010090.009080.008240.007560.007050.006700.006520.00649

HEAT CAPACITY

57.2957.2982.04104.71112.49!

*---------------------------- ;;----------------------------------------

*PUMP INPUT DATA*--------------------------------------------------------------------

11411001

11411011141102114110311411041141105114110611411071141201

1141200114120311412011141202

1141205

CURVE TYPE1V/A0.00.050.20.40.60.81.0TYPE

V/A0.00.050.20.40.6

CURVE REGIME1

H/A21.751.711.611.361.271.241.00REGIME

B/A20.950.950.950.950.97

HAN

BAN

84

Page 97: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1141206 0.8 1.021141207 1.0 1.0* TYPE REGIME HVN1141300 1 2* A/V H/V21141301 0.0 -1.551141302 0.05 -1.461141303 0.1 -1.371141304 0.2 -1.131141305 0.4 -0.651141306 0.54 -0.31141307 0.58 -0.21141308 0.64 -0.051141309 0.66 0.01141310 0.68 0.051141311 0.8 0.351141312 0.9 0.651141313 1.0 1.0* TYPE REGIME BVN1141400 2 2* A/V B/V21141401 0.0 -1.461141402 0.05 -1.31141403 0.1 -1.151141404 0.2 -0.871141405 0.4 -0.41141406. 0.54 -0.051141407 0.58 0.031141408 0.64 0.151141409 0.66 0.21141410 0.68 0.251141411 0.8 0.541141412 0.9 0.751141413 1.0

TYPE REGIME HAD1141500 1 3* V/A H/A21141501 -1.0 4.251141502 -0.8 3.581141503 -0.6 3.021141504 -0.4 2.501141505 -0.2 2.051141506 -0.05 1.81141507 0.0 1.75

TYPE REGIME BAD1141600 2 3* V/A B/A21141601 -1.0 3.101141602 -0.8 2.51141603 -0.6 1.92

85

Page 98: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1141604114160511416061141607

1141700

114170111417021141703114170411417051141706114170711418001141800114180211418011141802114180311418041141805

1141807

1143000

1143001

11430021143003114300411430051143006114300711430081143100

1143100

1143100

1143103

1143104114310511431061143107

1144100

-0.4-0.2-0.050.0TYPE1A/V-0.8-0.6-0.4-0.2-0.1-0.050.0TYPE2A/V-0.8-0.6-0.4

.'0.2-0.1-0.050.0EXTRAP INDIC0VOID FRACTION0.00.150.20.40.450.80.91.0

1.381.160.950.95REGIME4H/V23.582.952.41.951.751.701.65REGIME4B/V22.552.091.751.551.51.491.48

HEAD MULT.0.00.00.30.81.01.00.80.0

HVD

BVD

EXTRAP. INDIC0VOID0.00.30.40.50.80.91.0

TYPE1V/A

TORQUE MULT.0.00.00.41.01.00.80.0

REGIME1H/A2

HAN

86

Page 99: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1144101114410211441031144104114410511441061144107

1144200114420111442021144203114420411442051144206114420711442081144209

1144300

11443011144302114430311443041144305

1144400

1144401114440211444031144404114440511444061144407

0.00.030.20.40.60.81.0TYPE1A/V0.00.10.20.40.60.660.80.91.0TYPE2V/A0.00.40.60.81.0TYPE2A/V0.00.20.40.60.660.81.0

1.01.01.111.061.071.080.9REGIME2H/V20.00.050.170.250.250.260.30.580.9REGIME1B/A20.550.550.520.520.45REGIME2B/V20.00.030.040.070.080.140.45

HVN

BAN

BVN

* SEMISCALE TWO PHASE DIFFERENCE CURVES FOR HAD HVD BAD BND *

X---------------------------------------------------------------1144500

1144501114450211445031144504114450511445061144507

TYPE1V/A-1.0-0.9-0.8-0.7-0.6-0.5-0.4

REGIME3V/A2-1.16-1.24-1.77-2.36-2.79-2.91-2.67

HAD

87

Page 100: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

1144508 -0.251144509 -0.11144510 0.0* TYPE1144600 1* A/V1144601 -1.01144602 -0.91144603 -0.81144604 -0.71144605 -0.61144606 ý-0.51144607 -0.351144608 -0.21144609 -0.11144610 0.0* TYPE1144700 2* V/A1144701 -1.01144702 -0.81144703 -0.61144704 -0.41144705 -0.21144706 0.0* TYPE1144800 2* A/V1144801 -1.01144802 -0.81144803 -0.61144804 -0.41144805 -0.21144806 0.0

* TERMINATION CARD

.-1.69-0.50.0REGIME4H/V2-1.16-0.78-0.5-0.31-0.17-0.080.00.050.080.11REGIME3B/A20.620.680.530.460.490.54REGIME4B/V20.620.530.460.420.390.36

HVD

BAD

BVD

* PLOT DATA---------------------------------------------------------------------------------------------

2030010020300200203003002030040020300500203006002030070020300800203009002030100020301100

P 185010000P 285010000CNTRLVAR 57CNTRLVAR 67CNTRLVAR 58CNTRLVAR 68MFLOWJ 184000000MFLOWJ 284000000MFLOWJ 185010000MFLOWJ 285010000P 620010000

*

**********

S/GS/GS/GS/GS/GS/GS/GS/GS/GS/GPZR

A PRESS.B PRESS.A WIDE RANGE LEVELB WIDE RANGE LEVELA NARROW RANGE LEVELB NARROW RANGE LEVELA FEED FLOWB FEED FLOWA STEAM FLOWB STEAM FLOWPRESS.

88

Page 101: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

2030120020301300203014002030150020301600

CNTRLVAR 121TEMPF 120010000TEMPF 220010000CNTRLVAR 101CNTRLVAR 102

20301700 RKTPOW20301800 MFLOWJ 120301900 P 720302000 MFLOWJ 7(20302100 MFLOWJ 720302200 MFLOWJ 120302300 MFLOWJ 2!20302400 MFLOWJ 120302500 MFLOWJ 2;20302600 TEMPF 1(20302700 TEMPF 2(20302800 CNTRLVAR20302900 CNTRLVAR20303000 CNTRLVAR20303100 CNTRLVAR* TERMINATION CARD

082000000)0010000010000000300000091000000,9100000020020000,?0020000)1010000)1010000

401402403404.

* PZR LEVEL (W)* LOOP-A T-COLD* LOOP-B T-COLD* LOOP-A T-AVG* LOOP-B T-AVG.* POWER* AUX. FEEDWATER FLOW* STEAM HEADER PRESSURE* STEAM FLOW TO TURBINE* STEAM DUMP, FLOW* S/G A PORVý* S/G B PORV

* * LOOP-A RCS FLOW* LOOP-B RCS FLOW* LOOP-A T-HOT* LOOP-B T-HOT* LOOP-A T-COLD.* LOOP-B T-COLD* LOOP-A T-HOT* LOOP-B T-HOT.

89

Page 102: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 103: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER12.89) (Aured by NRC. Add Vol.. Suo. 1. Rw.,NRCM 11|02. aind Addendm Numtorl. if any.)N320.3202 BIBLIOGRAPHIC DATA SHEET

(See instructions on tie reverse)

2. TITLE AND SUBTITLE NUREG/1A-0030

3 DATE REPORT IUESHEDAssessment of RELAP5/MOD2 Code Using Loss of Offsite ,,ON .. . .=Power Transient Data of KNU #1 Plant April 1 1990

4. FIN OR GRANT NUMBER

5. AUTHOR(S) 6 TYPE OF REPORT

Bub-Dong Chung Young-Jin Lee TechnicalHho-Jung Kim 7. PER!'D COVERED ... ,

8. PERFORMING ORGANIZATION - NAME AND ADDRESS III NRC, Ptow•v,d, -oh Olhce orR*9,oh. U.S. Nuclear Reguloror Comm,ss,On. ana mashog sootesi io cont-atol Oorvw,nrnfe and mailing #dde'siI)

Korea Nuclear Safety Center (KNSC) Department of Nuclear Eng.Korea Advanced Energy Research Institute (KAERI) Seoul National UniversityP.O. Box 7, Daeduk-DanjiDaejon - Korea

9. SPONSOR ING ORGAN IZATION - NAME AND ADDA ESS III NRC. fy00 Sjne a, above . .1 contraC for. pwede NRC Oeuon. Of hce or Regon. U & Nuclear Aveularory Conrns.,oy,9. SPONSOR ING ORGAN IZATION - NAME AND ADDR ESS fit NVRC. tkae "3~ as &Dove". ,o cont,•ro,. Provide NRC D,vi,,o,. Office o, Re~i,. U.S. Nuckfteg Rulrory Comis,on.

and Mailing addesiI

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommissionWashington, DC 20555

10. SUPPLEMENTARY NOTES

11. ABSTRACT 120 .oo,os or to".

This report presents a code assessment study based on a rtransient that occurred on June 9, 1981 at the KNU #1 (KoUnit Number 1). KNU #1 is a two-loop Westinghouse PWR plThe Loss of offsite power transient occurred at the 77.5%with 0.5 %/hr power ramp. The real plant data were colleavailable on-line plant records and computer diagnostics.

eal plantrea Nuclearant of 587 Mwe.reactor power

cted from

The transient was simulated by RELAP5/MOD2/36.05 and the results werecompared with the plant data to assess the code weaknesses andstrengths. Some nodalization studies were performed to contribute todeveloping a guideline for PWR nodalization for the transient analysis.

12. KEY WORDS;DESCRIPTORS List *ows orOhrses that willasistnea•rhers on locating thereoort. I 13 AVAILABILITV STATEMENT

CODE ASSESSMENT STUDY OF RELAP5/MOD2 Unlimited14. SECURITY CLASSIFICATION

( Ta#s PagelU

Unclassified(This Report)

Uncl assified15. NUMBER OF PAGES

16 PRICE

NRC FORM 335 12419•

Page 104: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 105: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 106: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 107: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss
Page 108: NUREG/IA-0030, 'Assessment of RELAP5/MOD2 Code Using Loss

UNITED STATESNUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555

OFFICIAL BUSINESSPENALTY FOR PRIVATE USE, $300

SPECIAL FOURTH-CLASS RATEPOSTAGE Er FEES PAIDU USNRC 1

PERMIT No. G-67