18
Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical Mathematics (INM) Russian Academy of Sciences, Moscow Corresponding e-mail: [email protected]

Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Embed Size (px)

Citation preview

Page 1: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Numerical modelling of possible catastrophic climate changes

E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov

Institute of Numerical Mathematics (INM) Russian Academy of Sciences, Moscow

Corresponding e-mail: [email protected]

Page 2: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

COUPLED ATMOSPHERE-OCEAN GSM (INMCM3.0)

AGCMFinite difference model has spatial resolution of 5° in longitude and 4° in latitude

and 21 levels in sigma-coordinates from the surface up to 10 hPa. In radiation absorption of water vapour, clouds, CO2, O3, CH4, N2O, O2

and aerosol are taken into account. Solar spectrum is divided by 18 intervals, while infrared spectrum is divided by 10 intervals.

Deep convection, orographic and non-orographic gravity wave drag are considered in the model. Soil and vegetation processes are taken into account.

Non-flux-adjusted coupling

OGCM:Global ocean σ-model with resolution is 2.5°x2°x33 including sea ice

thermodynamics.Coupling includes interactive river runoff.

Global ocean general circulation model as ocean component of the climate system model: characteristics of global ocean circulation simulated in experiments under IPCC scenarios.

Page 3: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

The results of the experiments carried out according to IPCC scenario. (Also presented in the IPCC Fourth Assessment Report)

IPCC scenario of time evolution of CO2, CH4, N2O, SOL,VLC

Page 4: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Model climate in 20th century.

Meridional heat transport averaged for 1980-1999. Mean sea level evolution

Global temperature anomaly in 1871-2000, 10-yr moving average (thick line is observations, thin line is model)

Page 5: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

The first SVD modes of SLP (top) and SST (bottom) in the North Atlantic region in winter for the model (left) and observations (right) for 1950-1999.

Model climate in 20th century.

Page 6: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Model climate in 20th century: El-Nino reproducing.

Power spectra of SST anomaly in Nino 3 region (5°N–5°S,150°W–90°W)

Root mean square (RMS) of SST anomaly for 1950-1999. INMCM3.0.

Page 7: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Multi-model mean of annual mean surface warming (surface air temperature, in °C) for the A1B scenario 2080–2099. Stippling denotes where the multi-model ensemble mean exceeds the intermodel standard deviation.

INMCM3.0 annual mean surface warming (surface air temperature, in °C) for the A1B scenario 2080–2099.

Climate changes according IPCC scenario A1B:

Page 8: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

ΔT

(2081-2100)–

(1981-2000)

DEC-FEB

JUN-AUG

Page 9: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Time series of globally averaged (left) surface warming (surface air temperature, in °C) and(right) precipitation (in %) from the various IPCC models for the scenarios (top) A2, (middle) A1B and (bottom) B1 scenario. Values are annual means, relative to the 1980–1999 average from the corresponding 20th century simulations, with any linear trends in the corresponding control run simulations removed. Shown in black are the multi-model (ensemble) mean series.

Climate changes according IPCC scenarios:

Page 10: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Projected global average sea level rise (m) due to thermal expansion during the 21st century relative to 2000 under SRES scenarios a) A1B, b) A2 and c) B1.

Climate changes according IPCC scenarios:

Page 11: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

September arctic sea ice area (106 km2) in control run (blue), 20c3m(green), B1 (yellow), A1B (orange) and A2 (red)

Page 12: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

ΔT DJF

(2101-2200)-

(1901-2000)

ALL MONTHS

WARM

MONTHS

COLD

MONTHS

Page 13: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

ΔT JJA

ALL

MONTHS

WARM

MONTHS

COLD

MONTHS

Page 14: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

ΔP/P

MAY-SEP

ALL MONTHS

WET MONTHS

DRY MONTHS

Page 15: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Change of vegetation period length (top) and number of frost days (bottom)

(2081-2100) – (1981-2000) A1B

Page 16: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

Change of maximum dry period, days (top) and number of days with P>10 mm

(2081-2100) – (1981-2000) A1B.

Page 17: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical

PERMAFROST

1981-2000

2081-2100 B1

2081-2100 A2

Page 18: Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical