293
NUEVAS METODOLOGÍAS ANALÍTICAS PARA LA DETERMINACIÓN DE ANTIOXIDANTES ALIMENTARIOS NEW ANALYTICAL METHODOLOGIES FOR FOOD ANTIOXIDANT DETERMINATION Tesis Doctoral Álvaro Andreu Navarro Noviembre 2011

Nuevas metodologías analíticas para la determinación

Embed Size (px)

Citation preview

  • NUEVAS METODOLOGAS ANALTICAS

    PARA LA DETERMINACIN DE ANTIOXIDANTES ALIMENTARIOS

    NEW ANALYTICAL METHODOLOGIES FOR FOOD ANTIOXIDANT

    DETERMINATION

    Tesis Doctoral lvaro Andreu Navarro

    Noviembre 2011

  • TTULO:Nuevas metodologas analticas para la determinacin de

    antioxidantes alimentarios

    AUTOR: lvaro Andreu Navarro

    Edita: Servicio de Publicaciones de la Universidad de Crdoba. 2012Campus de RabanalesCtra. Nacional IV, Km. 396 A14071 Crdoba

    www.uco.es/[email protected]

  • !

  • TTULO DE LA TESIS: NUEVAS METODOLOGAS ANALTICAS PARA LA DETERMINACIN DE ANTIOXIDANTES ALIMENTARIOS

    DOCTORANDO/A: LVARO ANDREU NAVARRO

    INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS (se har mencin a la evolucin y desarrollo de la tesis, as como a trabajos y publicaciones

    derivados de la misma).

  • NDICE

  • NDICE Objeto / Aim Introduccin Captulo 1: Herramientas Analticas

    Captulo 2: Innovaciones en la determinacin

    cromatogrfica de antioxidantes en alimentos

    Captulo 3: Innovaciones en la determinacin no

    cromatogrfica de antioxidantes en alimentos

  • Captulo 4: Nuevas investigaciones con nanopartculas de oro

    Captulo 5: Discusin de resultados

    Discussion of the results

    Conclusiones / Conclusions Anexo

  • OBJETO AIM

  • OBJETO

  • AIM

  • INTRODUCCIN

  • ANTIOXIDANTES ALIMENTARIOS

  • Figura 1

    Figura 1.

    1. Antioxidantes naturales

    Figura 2

  • Figura 2.

    R1

    R2

    R3 R1=R2=R3=OH: cido glico R1=R2=OH, R3= - : cido protocatecuico

    Flavonoides cidos hidroxibenzoicos

    Gallotaninas (ej. pentagalloyglucosa)

    R1

    R2

    cidos hidroxicinmicos

    R1=OH: cido cumrico R1=R2=OH: cido cafeico

    Estilbenos (ej. Resveratrol)

  • Figura 2.

    Figura 3

    Figura 3

    Tabla 1.

    R1

    R2

    R2 R2

    Proantocianidinas (R1, R2=H, OH) (ej. Dmero de procianidina tipo-B,

    R1=OH, R2=H)

    Lignanos (ej.

  • Figura 3.

    CATEQUINAS ANTOCIANINAS

    FLAVONAS FLAVONOIDES

    FLAVANONAS ISOFLAVONAS

  • Tabla 1.

    Tabla 2

  • Tabla2.

  • 2. Antioxidantes sintticos

    FLUORIMETRA DE LARGA LONGITUD DE ONDA

  • Figura 4

  • Figura 4.

    Figura 4

  • Figura 5

    Figura 6

    Figura 5.

    Figura 6.

  • LUMINISCENCIA SENSIBILIZADA DE LANTNIDOS

    1)

  • 2)

    3)

    4)

    5)

  • Tabla 3

  • Tabla3.

    DISPERSIN DE LA RADIACIN

  • SISTEMAS DE FLUJO

    Figura 7 A

    Figura 7 B)

  • Figura 7.

  • Figura 8

    Figura 8.

  • QUIMIOMETRA

  • Bibliografa

  • CAPITULO 1HERRAMIENTAS ANALTICAS

  • 1. Estndares y reactivos

    Compuesto Pureza Suministro

  • o

    o

    o o

    2. Sistemas FIA

  • 3. Instrumentacin

    4. Aparatos

  • 5. Programas informticos

  • CAPITULO 2

    INNOVACIONES EN LA DETERMINACIN CROMATOGRFICA DE ANTIOXIDANTES EN

    ALIMENTOS

  • -

    J. Agric. Food Chem.

    -

    J. Sep. Sci

    -

    Chromatographia

    -

    Food. Chem

  • Analytical innovations in the detection of phenolics in wines

    Pietro Russo, lvaro Andreu-Navarro, Mara-Paz Aguilar-Caballos, Juan-Manuel Fernndez-Romero, Agustina Gmez-Hens

  • Introduction.

    1

    118

    15, 715, 18

    16, 17

    16

    19

    1, 3178,

  • 12 2

    8, 12

    18

    1, 311, 1317

    pp

    cis trans

    n

    1, 3, 8,

  • 10, 12, 14

    1. Materials and methods

    1.1.

    1.2.

    p

    p

  • cistrans

    transtrans

    1.3.

    Figure 1

    Table 1

  • Figure 1.

  • Table 1

    Conditioning step

    1.4.

    cis trans

    1.5. Estimation of LODs

    20y

  • 1.6.

    2. Results and discussion

    2.1.

    18

    Table 2

  • Table 2

    Table 2

  • 2.2.

    2.3.

    21

    22, 2324

    Table 1p

    Table 1

  • 2.4.

    Figure 2

    Figures 3 4

    Figure 3

  • [Tb(III)], M

    0.000 0.002 0.004 0.006 0.008 0.010

    Area

    0

    20

    40

    60

    80

    100

    2

    1

    39

    5

    4

    711

    8,12

  • Figure 3.

  • Time (min)0 5 10 15 20

    IL

    0

    3

    6

    9

    1

    2

    34 5 7

    8 9 1112

    Figure 4.

    2.5.

    Table 3

    20117,

    19

    r

    Table 4

  • Tabl

    e 3

    1.

    7910

    -900

    0.06

    45

    0.0

    003

    0.5

    0.

    1 0.

    9999

    5

    3.43

    10-9

    000.

    1608

    0

    .000

    3 0.

    6

    0.1

    0.99

    992

    6.

    2650

    -200

    00.

    0176

    0

    .000

    2 0.

    30

    0.0

    9 0.

    9990

    15

    7.

    5150

    -100

    00.

    0862

    0

    .000

    9 1.

    5

    0.4

    0.99

    9114

    10.0

    50-2

    000

    0.05

    38

    0.0

    004

    0.7

    0.

    3 0.

    9994

    17

    11.9

    510

    -900

    0.04

    54

    0.0

    001

    0.45

    0

    .04

    0.99

    993

    12

    .77

    300-

    5000

    0.00

    269

    0.

    0000

    5 -0

    .1

    0.1

    0.

    9976

    114

    13.8

    210

    0-20

    000.

    0140

    0

    .000

    2 0.

    4

    0.2

    0.99

    8940

    17.3

    550

    -200

    00.

    0221

    0

    .000

    2 0.

    4

    0.1

    0.99

    9615

    17.9

    510

    0-20

    000.

    0036

    1

    0.00

    004

    0.03

    0

    .03

    0.99

    8629

  • Tabl

    e 3

    (*th

    e lo

    wer

    lim

    it of

    dyn

    amic

    rang

    e fo

    r eac

    h ph

    enol

    ic is

    its L

    OQ

    ). Ita

    lics:

    fluor

    imet

    ric m

    etho

    d

  • Tabl

    e 4

  • 2.6.

    Figures 5 6

    Time (min)0 5 10 15 20 25 30

    mAU

    0

    10

    20

    30

    116 1315

    324 nm

    Time (min)0 5 10 15 20 25 30

    mAU

    0

    40

    80

    120

    160280 nm1

    7 89 1012

    Time (min)0 5 10 15 20 25 30

    mAU

    0

    40

    80

    120 256 nm

    2 3 5

    14

  • Figure 5.

    Figure 5

    1Figure 6

    Time (min)

    0 5 10 15 20 25 30

    mAU

    -5

    0

    5

    10

    15

    20

    16

    18

    365 nm

  • Figure 6

    Tables 5 6

    Y Xr Y X

    cis

    2

    Time (min)

    0 5 10 15 20

    IL

    0

    4

    8

    12

    1

    2

    3 5

    7

    8 1112

  • Tabl

    e 5.

  • Tabl

    e 6.

  • Table 7

    3, 6, 13, 14, 166, 13, 14

    3

  • Table 7.

  • References

    Anal. Chim. Acta 563

    Food Chem. 94

    J. Chromatogr., A 1038

    Anal. Chim. Acta 563

    Food Control 16

    J. Chromatogr., A 1040

    J. Chromatogr., A 1052

    Food Chem.

    Food Chem. 64

    Eur. Food Res. Technol. 224

    J. Agric. Food Chem. 51

    J. Chromatogr., A 912

    Anal. Chim. Acta 513

    J. Chromatogr., A 1049

    Food Chem. 89

    J. Chromatogr., A 973

  • J. Chromatogr., A 1085

    J. Sep. Sci. 29

    J. Chromatogr., A 1066

    Anal. Chem. 55

    Trends Anal. Chem. 21

    J. Agric. Food Chem. 54

    Anal. Chim. Acta 578

    Analyst 122

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    91

    Usefulness of terbium-sensitized luminescence detection for the chemometric classification of wines

    by their content in phenolic compounds A. Andreu-Navarro, P. Russo, M.P. Aguilar-Caballos, J.M. Fernndez-Romero and A. Gmez-Hens (*)

  • 92

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    93

    Introduction

  • 94

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    95

    1. Experimental

    1.1. Wine samples

    1.2. LC-separation and photometric/fluorimetric detection

  • 96

    2. Results and discussion

    2.1. Analytical features

    Table 1

  • Tabl

    e 1

    1.

    7910

    -900

    0.06

    45

    0.0

    003

    0.5

    0.

    1 0.

    9999

    5

    3.43

    10-9

    000.

    1608

    0

    .000

    3 0.

    6

    0.1

    0.99

    992

    6.

    2650

    -200

    00.

    0176

    0

    .000

    2 0.

    30

    0.0

    9 0.

    9990

    15

    7.

    5150

    -100

    00.

    0862

    0

    .000

    9 1.

    5

    0.4

    0.99

    9114

    10.0

    50-2

    000

    0.05

    38

    0.0

    004

    0.7

    0.

    3 0.

    9994

    17

    11.9

    510

    -900

    0.04

    54

    0.0

    001

    0.45

    0

    .04

    0.99

    993

    12

    .77

    300-

    5000

    0.00

    269

    0.

    0000

    5 -0

    .1

    0.1

    0.

    9976

    114

    13.8

    210

    0-20

    000.

    0140

    0

    .000

    2 0.

    4

    0.2

    0.99

    8940

    17.3

    550

    -200

    00.

    0221

    0

    .000

    2 0.

    4

    0.1

    0.99

    9615

    17.9

    510

    0-20

    000.

    0036

    1

    0.00

    004

    0.03

    0

    .03

    0.99

    8629

  • Tabl

    e 1

    Com

    poun

    d Re

    tent

    ion

    time

    (min

    ) D

    ynam

    ic ra

    nge*

    (n

    g m

    L-1 )

    Slop

    e

    SD

    y-

    inte

    rcep

    t S

    D

    r2 LO

    D

    (ng

    mL-

    1 )tra

    ns-R

    esve

    ratro

    l 22

    .86

    10-7

    500

    0.13

    782

    0.

    0000

    3 0.

    2

    0.08

    0.

    9999

    2 Q

    uerc

    etin

    23

    .52

    200-

    3500

    0.

    097

    0.

    001

    -5

    2

    0.99

    9560

    ci

    s-Re

    sver

    atro

    l 23

    .67

    100-

    5000

    0.

    0595

    0

    .000

    3 -1

    .7

    0.7

    0.

    9999

    35

    Kae

    mpf

    erol

    24

    .84

    50-2

    000

    0.08

    92

    0.0

    005

    3.1

    0.

    5 0.

    9999

    18

    (*th

    e lo

    wer

    lim

    it of

    dyn

    amic

    rang

    e fo

    r eac

    h ph

    enol

    ic is

    its L

    OQ

    ). Ita

    lics:

    fluor

    imet

    ric m

    etho

    d

  • Innovaciones en la determicin cromatogrfica de antioxidantes en alimentos

    99

    2.2. Statistical and Preliminary data exploration

    Table 2

    Table 1.

  • Table 2. Phenolic content in the analyzed samples

  • Table 2. Continuation.

  • 102

    2.3. Factor Analysis using Principal Components

    Table 3

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    103

    Table 3

  • Table 3. Features of Factor Analysis a

    a) Extraction method using Principal Component Analysis with Kaiser Normalization, b) using Principal Component Analysis

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    105

    Table 3

    2.4. Discriminant analysis

  • 106

    Table 4.

  • Tabl

    e 4.

    (I) d

    ata

    from

    Win

    e Va

    riet

    y

  • Tabl

    e 4.

    (II)

    dat

    a fr

    om G

    eogr

    aphi

    cal O

    rigi

    n

  • Tabl

    e 5.

  • Tabl

    e 5.

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    111

    Table 5

    Figure 1

    Figure 1.

  • 112

    3. Conclusions

    Acknowledgement

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    113

    References

  • 114

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    115

    Luminescent determination of flavonoids in orange juices by liquid chromatography with post-column

    derivatization with aluminium and terbium A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens(*)

  • Captulo 2

    116

    Introduction

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    117

    Figure 1

    Figure 1.

  • Captulo 2

    118

    1. Experimental

    1.1. Instrumentation

    1.2. Reagents

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    119

    1.3. Manifold and Procedure

    Figure 2

    1.4. Analysis of orange juice samples

  • Captulo 2

    120

    Figure 2.

    2. Results and discussion

    2.1. Study of the luminescence reaction

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    121

    Figure 3

    Figure 3.A

    Figure 3.B

    Figure 3.C

  • Captulo 2

    122

    Figure 3.

    300 350 400 450 5000

    500

    1000

    2000

    3000

    4000

    3

    4

    1

    Excitationwavelenght, nm ( em= 545 nm)

    2

    (A)

    300 350 400 450 5000

    500

    1000

    2000

    3000

    4000

    3

    4

    1

    2

    400 500 550 600 6500

    500

    1000

    2000

    3000

    4000

    4

    3

    1

    Emissionwavelenght, nm (

    2

    (C)

    400 500 550 600 6500

    500

    1000

    2000

    3000

    4000

    4

    3

    1

    Emissionwavelenght, nm ( ex = 450 nm)

    2

    (C)

    0

    500

    1000

    2000

    3000

    4000

    4

    3

    1

    ex= 360 nm)

    2

    (B)

    400 450 500 550 600 6500

    500

    1000

    2000

    3000

    4000

    4

    3

    1

    Emissionwavelenght, nm (

    (B)

    400 450 500 550 600 650

    Lum

    ines

    cenc

    e In

    tens

    ity, a

    .u.

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    123

    2.2. Optimization of Variables

    Table 1

    Table 1. Variables

    Variables Range studied Optimum

    value

    Instrumental variables

    Excitation wavelength, nm Emission wavelength, nm Ex/em slits PMT gain, V

    200 600 400 600 2.5 15

    400 - 800

    360 545

    10/10 500

    Chromatographic variables

    HPP flow-rate, mL/min Injection volume, L Elution mode Temperature, C [HAc], M pH

    0.5 3.0 20 500 Gradient

    15 35

    0.05 0.25 2.5 6.0

    0.7 200

    -

    25 C

    0.15 4.0

    Derivatizing variables

    LPP flow-rate, mL/min L1 reactor length, cm [Al(III)], mM [Tb(III)], mM [HAc], M pH [SDS], mM

    0.2 1.5 50 300

    0.2 -20.0 0.1 10.0

    0.05 0.25 1.5 6.0 0.01 0.5

    0.5 100

    15.0 5.0

    0.15 4.0 0.1

  • Captulo 2

    124

    Chromatographic variables

    Post-column derivatization variables

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    125

    Figure 4

    Figure 4.A

    Figure 4.B

    Figure 4.C

    2.3. Analytical features

    Table 2

  • Captulo 2

    126

    Figure 4.

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    127

    2.4. Application of the method

    Figure 5

    Fig. 5.A Fig. 5.BFig. 5.C

    Table 3

  • Tabl

    e 2.

    Ana

    lyte

    R

    eten

    tion

    time

    (min

    ) Eq

    uatio

    n (1

    ) r2

    y/

    x(2)

    Li

    near

    rang

    e (n

    g/m

    L)

    Det

    ectio

    n lim

    it (n

    g/m

    L)

    RSD

    %(3

    ) lo

    w

    leve

    l hi

    gh

    leve

    l N

    arin

    gin

    10.2

    0 y=

    (5.0

    0

    0.02

    ) x +

    5.63

    3

    .54

    0.99

    55

    0,24

    6.

    0 -1

    700

    1.0

    3.9

    3.8

    Hes

    perid

    in

    11.2

    0 y=

    (0.5

    6

    0.01

    ) x +

    0.2

    0

    0.57

    0.

    9936

    0,

    04

    9.8

    1

    700

    2.7

    3.7

    4.7

    Que

    rcet

    in

    16.8

    0 y=

    (59.

    08

    0.2

    7) x

    2

    0.66

    10

    .5

    0.99

    57

    0,40

    2.

    1

    2000

    1.

    0 1.

    3 4.

    6 N

    arin

    geni

    n 21

    .20

    y=(2

    1.95

    0

    .14)

    x +

    0.3

    1

    11.4

    0.

    9958

    0,

    65

    5.2

    15

    00

    1.5

    4.3

    4.1

    Kae

    mpf

    erol

    22

    .50

    y= (2

    5.34

    0

    .07)

    x -

    0.28

    6

    .32

    0.99

    83

    0,93

    2.

    5

    2000

    0.

    8 2.

    6 3.

    3 y

    x

    Tabl

    e 3.

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    129

    Figure 5.

  • 130

    3. Conclusions

    Acknowledgements

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    131

    References

    Chu, Y.H.; Chang, C.L.; Hsu, H.F.; J. Sci. Food Agricul. 2000, 80, 561-566

  • 132

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    133

    Long-Wavelength Fluorescence detection of Flavonoids in Orange Juices using Liquid

    Chromatography

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens

  • Captulo 2

    134

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    135

    Introduction

    figure 1

  • Captulo 2

    136

    Figure 1.

    1. Experimental

    O

    O

    R 2 O

    O H

    R 1

    R 3 R 4

    O

    O

    R 2 O

    O H

    R 1

    R 3 R 4

    O

    O

    R 2 O

    O H

    R 1

    R 3 R 4

    O

    O

    R 2 O

    O H

    R 1

    R 3 R 4

    O

    O

    R 2 O

    O H

    R 1

    R 3 R 4

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    137

    HPLC.

    Post-column reaction system.

    Figure 2

    Table 1

  • Captulo 2

    138

    Figure 2

    Table 1.

    Time (min) % Acetic buffer (0.15 mol L-1, pH 4.0)

    % Acetonitrile % Methanol

    FIGURE 2

    LPP

    D1w2

    w1

    C18 MC

    A C

    HPP

    SD

    HPIV

    L2

    PC

    FLD

    B

    L1

    D2

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    139

    2. Results and discussion

    Figure 3

  • Captulo 2

    140

    Figure 3.

    600 620 640 660 680 700

    0

    400

    800

    1200

    1600

    2000

    Fluo

    resc

    ence

    inte

    nsity

    Emission wavelength (nm) ( ex= 585 nm)

    (3)

    (1) (2)

    (4)

    (5)

    (6)

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    141

    Table 2

    Table 2. Type of Variables

    Variables Range studied Optimum value

  • Captulo 2

    142

    Figure 4

    Figure 4a

    Figure 4b

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    143

    Figure 4c

    Figure 5a

    Table 2

    Table 3

  • Captulo 2

    144

    Figure 4.

    (a)

    0

    100

    200

    300

    400

    500

    600

    [Cresyl violet] (mol L-1)

    PEA

    K A

    REA

    S

    (1) (2)

    (3)

    1 4 7 10 13 16 19

    (b)

    0

    200

    400

    600

    800

    1000

    0.05 0.1 0.15 0.2 [Ce(IV)] (mmol L-1)

    (1) (2)

    (3)

    PEA

    K A

    REA

    S

    (c)

    0

    500

    1000

    1500

    2000

    2500

    0,01 0.5 1 1.5 2 [CTAB] (mmol L-1)

    PEA

    K A

    REA

    S

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    145

    Figure 5.

    Time (min)

    Fluo

    resc

    ence

    inte

    nsity

    0

    400

    800

    1200

    1600

    2000

    0

    400

    800

    1200

    1600

    2000

    (1)

    (3)

    (b)

    0

    0

    400

    800

    1200

    1600

    2000

    0

    400

    800

    1200

    1600

    2000

    0

    400

    800

    1200

    1600

    2000

    0

    400

    800

    1200

    1600

    2000

    (2)

    (4)

    (5)

    (a)

    0 2 4 6 8 10 12

    (3) (2)

    (4)

    (5) (6)

  • Captulo 2

    146

    Table 4,

    Figure 5b

  • Tabl

    e 3.

    N

    Anal

    yte

    Rete

    ntio

    n tim

    e

    SD (m

    in)(1

    ) Eq

    uatio

    n (2

    ) R2

    y/

    x

    (p-v

    alue

    ) (3

    )

    Line

    ar

    rang

    e (n

    g m

    L-1 )

    Dete

    ctio

    n lim

    it (n

    g m

    L-1 )

    RSD%

    (4)

  • 14

    8

    Tabl

    e 4.

    Nat

    ural

    Juic

    e 1

    Nat

    ural

    Juic

    e 1

    (Nav

    el)

    Nat

    ural

    Juic

    e 2

    (Nav

    el)

    Nat

    ural

    Juic

    e 3

    (Cle

    men

    tina)

    Com

    mer

    cial

    Juic

    e 1

    Co

    mm

    erci

    al Ju

    ice

    2

    Anal

    ytes

    Co

    nc.F

    ound

    ( S

    D) (1

    )

    Reco

    very

    (%)

    Conc

    . Fou

    nd

    ( S

    D) (1

    )

    Reco

    very

    (%)

    Conc

    . Fou

    nd

    ( S

    D) (1

    )

    Reco

    very

    (%)

    Conc

    . Fou

    nd

    ( S

    D) (1

    )

    Reco

    very

    (%)

    Conc

    . Fou

    nd

    ( S

    D) (1

    )

    Reco

    very

    (%)

    (1) C

    once

    ntra

    cion

    in

    g m

    L-1 (

    SD=

    stand

    ard

    devi

    atio

    n). (

    2) R

    ecov

    erie

    s af

    ter a

    dditi

    on o

    f 20.

    0 an

    d 10

    0.0

    ng m

    L-1 ,

    first

    and

    seco

    nd a

    dditi

    on,

    resp

    ectiv

    ely.

  • Innovaciones en la determinacin cromatogrfica de antioxidantes en alimentos

    149

    3. Conclusions

    Acknowledgements

  • Captulo 2

    150

    References

  • CAPITULO 3

    INNOVACIONES EN LA DETERMINACIN NO CROMATOGRFICA DE ANTIOXIDANTES EN

    ALIMENTOS

  • -

    Anal. Chim. Acta

    -

    Anal. Chim. Acta

  • Bibliografa

  • Determination of Antioxidant Additives in Foodstuffs

    by Direct Measurement of Gold Nanoparticle Formation using Resonance Light Scattering Detection

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens Department of Analytical Chemistry, Faculty of Sciences, University of Crdoba, Marie Curie Annex Building. Campus of Rabanales, E-14071 Crdoba, Spain

  • Introduction

  • (Figure 1)

    Figure 1

  • 1. Experimental

  • Figu

    re 1

    .

  • Figure 2

    Figure 2.

  • v0

  • 2. Results and discussion

    Figure 3.A

  • Figure 3.B

    Figure 3.C

    Figure 3.A

  • Figu

    re 3

    .

  • Table 1

    Table 1. Type

    of variable Variable Range

    studied Optimum

    value

    Instrumental

    Stopped-flow device

    Chemical

    Figure 4.A

    Figure 4.B)Figure 4.C

  • Figure 4.D

    Figure 4.

  • Table 1

    Table 2

    Table 3

  • 3. Conclusions

    Acknowledgements

  • Tabl

    e 2.

    Anal

    yte

    Equa

    tion

    (1)

    r2

    y/x

    (2)

    Line

    ar r

    ange

    ()

    Det

    ecti

    on L

    imit

    ()

    RS

    D%

    (3)

  • Tabl

    e 3.

    Sam

    ple

    N

    Com

    mer

    cial

    N

    ame

    Food

    stuf

    f Ty

    pe

    Dilu

    tion

    Fact

    or

    Anal

    yte

    Refe

    renc

    e M

    etho

    d Pr

    opos

    ed M

    etho

    d

  • References

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    175

    Determination of polyphenolic content in beverages using laccase, gold nanoparticles and long

    wavelength fluorimetry

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens

  • Captulo 3

    176

    Introduction

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    177

    Figure 1

    Figure 1

  • Captulo 3

    178

    Fig 1.

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    179

    1. Experimental

    Trametes versicolor

  • Captulo 3

    180

    Figure 2

    Figure 2.

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    181

    Figure 3.

  • Captulo 3

    182

    2. Results and discussion

    Figure 3

    Figure 3

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    183

    Figure 3

    .

  • Captulo 3

    184

    0 200 400 600 800 10000,12

    0,14

    0,16

    0,18

    0,20

    0,22

    Fluo

    resc

    ence

    inte

    nsity

    , a.u

    .

    Time, s

    (1) (3)(2) (4)

    FIGURE 3

    Figure 3.

    Table 1

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    185

    Figure 4.A

    Figure 4.B

    Figure 4.C

  • Captulo 3

    186

    Table 1.

    Table 1

    Table 2

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    187

    Figure 4.

    0

    50

    100

    150

    200

    250

    0 10 20 30 40 50 60

    Tim

    e, s

    [Au NPs], mol L-1

    0

    100

    200

    300

    400

    500

    0 0,5 1 1,5 2

    Tim

    e, s

    [Laccase], u.a. mL-1

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    Tim

    e, s

    [Indocyanine Green], mol L-1

  • Cap

    tulo

    3

    Tabl

    e 2

    Ana

    lytic

    al fe

    atur

    es o

    f the

    met

    hod

    Anal

    yte

    Equa

    tion

    (1)

    r2

    y/x

    (2)

    Line

    ar ra

    nge

    (m

    ol L

    -1)

    Dete

    ctio

    n Li

    mit

    (m

    ol L

    -1)

    RSD%

    (3)

    low

    leve

    lhi

    gh le

    vel

    Cate

    chol

    y=

    (246

    2

    ) x +

    (4

    2)

    0,99

    80.

    330.

    08

    5 0.

    014.

    45.

    5Hy

    droq

    uino

    ne

    y=(5

    83

    3) x

    (

    4

    2)

    0.99

    90.

    500.

    05

    2 0.

    013.

    65.

    6Hy

    drox

    yhyd

    roqu

    inon

    e y=

    (92.

    8

    0.7)

    x +

    (13.

    3

    0.8)

    0.

    999

    0.11

    0.09

    5

    0.03

    3.5

    1.8

    Galli

    c Ac

    id

    y=(2

    27

    2) x

    + (1

    5

    3)

    0.99

    90.

    760.

    13

    5 0.

    043.

    95.

    4Py

    roga

    llol

    y=(1

    63

    1) x

    + (2

    3

    2 0,

    999

    0.54

    0.17

    5

    0.04

    3.5

    4.6

    Tabl

    e 3

    Sam

    ple

    Com

    mer

    cial

    na

    me

    Food

    stuf

    f ty

    pe

    Ref

    eren

    ce M

    etho

    d Pr

    opos

    ed M

    etho

    d Co

    nc. F

    ound

    (SD

    )(1)

    Conc

    . Fou

    nd (

    SD)(1

    ) Re

    cove

    ry %

    (2)

    1s

    t 2n

    d

    1 Su

    nny

    Del

    ight

    O

    rang

    e ju

    ice

    394

    80

    34

    4

    116

    90.0

    10

    0.2

    2 Sa

    lobr

    ea

    Gra

    pe ju

    ice

    166

    2

    159

    17

    89

    .9

    97.1

    3

    Alte

    za T

    ea

    Gre

    en te

    a 31

    2

    24

    8

    91.5

    99

    .9

    4 Tw

    inin

    gs T

    ea

    Cinn

    amon

    tea

    58

    2

    48

    6

    90.4

    97

    .3

    (1) P

    olyp

    heno

    ls m

    easu

    red

    as G

    A, c

    once

    ntra

    tion

    in m

    g L-

    1 fo

    r jui

    ces

    and

    mg

    g-1 f

    or te

    as (2

    ) Rec

    over

    ies

    afte

    r the

    firs

    t (0,

    2 m

    ol

    L-1 )

    and

    seco

    nd a

    dditi

    on (1

    m

    ol L

    -1),

    resp

    ectiv

    ely.

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    189

    Table 3

    3. Conclusions

  • Captulo 3

    190

    References

    Singleton, V. L.; Rossi, J. A.; Am. J. Enol. Viticult. 1965, 16, 144-158.

    .

  • Innovaciones en la determinacin no cromatogrfica de antioxidantes en alimentos

    191

  • CAPITULO 4NUEVAS INVESTIGACIONES CON

    NANOPARTICULAS DE ORO

  • 1. Introduccin

    2. Objetivos

    3. Conocimientos adquiridos

  • Figura 1

    Fig 1.

  • Figura 2

    Figura 2, lnea A

    Figura 2, lnea B)

    Figura 3

  • Figura 2

  • Figura 3.

    Figura 3

    Figura 4

  • Figura 5

    Figura 4.

    Figura 5

  • Figura 5.

    Des

    plaz

    amie

    nto

    del m

    nim

    o SP

    R

  • Figura 6

  • Figura 6

    4. Trabajo experimental

    1. Lnea de base

    2. Asociacin 3. Disociacin 4. Regeneracin 1. Lnea de base

    Paso:

    Des

    plaz

    amie

    nto

    del m

    nim

    o S

    PR

  • Figura 7

    (Figura 7.1) (Figura 7.2)

  • Figura 7.

    Central EM-LAB, University Hospital Regensburg (2010) 300 nm

    Tamao = 20 nmAbs = 529 nm

    Abs

    orba

    ncia

    (nm)

  • Figura 8

  • Figura 8

  • Bibliografa

  • CAPITULO 5DISCUSIN DE LOS RESULTADOS

    DISCUSSION OF THE RESULTS

  • Introduccin

    1. Metodologas basadas en separacin cromatogrfica, derivatizacin postcolumna y deteccin fluorescente

  • Tabla 1.

  • Tabla 2

  • Tabla 2.

  • Tabla 3

    Tabla 3.

  • Tabla 4

    Tabla 4

  • Tabla 5

  • Tabla 5

    Tabla 6

  • Tabla 6

  • 2. Metodologas automticas no cromatogrficas basadas en el uso de la tcnica de flujo detenido y nanopartculas

  • Tabla 7

    Tabla 7

  • Introduction

    1. Methodologies based on chromatographic separation, post-column derivatization and fluorescence detection

  • Table 1

  • Table 1.

  • Table 2

    Table 2.

  • Table 3

  • Table 3.

  • Table 4

    Table 4.

    Table 5

  • Table 5.

    Table 6

  • Table 6.

  • 2. Automatic non-chromatographic methodologies based in the used of stopped-flow technique and nanoparticles.

  • Table 7

    Table 7.

  • Bibliografia References

    912

  • CONCLUSIONESCONCLUSIONS

  • CONCLUSIONES

  • CONCLUSIONS

  • Analytical Innovations in the Detection of Phenolicsin Wines

    PIETRO RUSSO, LVARO ANDREU-NAVARRO, MARA-PAZ AGUILAR-CABALLOS,JUAN-MANUEL FERNNDEZ-ROMERO, AND AGUSTINA GMEZ-HENS*

    Department of Analytical Chemistry, Marie Curie Annex building, Campus of Rabanales, Universityof Crdoba, E-14071 Crdoba, Spain

    A liquid chromatographic method with online photometric and luminescent detection for thedetermination of 18 phenolic compounds in wines is reported. Photometric detection is performed atfour wavelengths, namely, 256, 280, 320, and 365 nm, using a diode array detection system. Theluminescent detection is achieved by means of a postcolumn derivatization reaction of 10 of thesecompounds with terbium(III) in the presence of synergistic agents, such as ethylenediaminetetraaceticacid (EDTA) and n-octyltriphosphine oxide (TOPO). A micellar medium provided by the surfactantssodium dodecyl sulfate and Triton X-100 was used for the determination of the luminescent chelatesat ex 317 and em 545 nm. The long wavelength emission of lanthanide chelates can minimizeinterferences from background sample matrix, which usually emit at shorter wavelengths. The analyticalfeatures of the photometric and fluorometric methods, such as dynamic ranges of the calibrationgraphs, detection limits, and precision data, have been obtained. The practical usefulness of thedeveloped methods is demonstrated by the analysis of Spanish and Italian wine samples (red, ros,oloroso, and white), which were diluted and directly injected into the chromatographic system. Theaccuracy of both methods was checked by assaying a recovery study, which was performed at threedifferent analyte levels for each type of sample.

    KEYWORDS: Phenolic compounds; postcolumn derivatization; terbium-sensitized luminescence; winesamples

    INTRODUCTION

    Phenolics are a wide group of compounds constituted byphenolic aldehydes, hydroxybenzoic and hydroxycinnamic acids,catechins, flavonols, and stilbenes, in their monomeric form orconjugated to some species, such as tartaric acid in the case ofcinnamic acids (1), among others. These compounds are presentin wines because they are secondary metabolites of plants. Thecomposition of phenolics and their concentration depend ongrape variety, geographical origin, soil type, collection system,and grape processing. These compounds are responsible of thesensory properties of the wines, and, also, they are anticarci-nogenic and have an anti-inflammatory action when they areregularly ingested. A particular example of the importance ofmonitoring phenolic concentration to control the quality of winesis the presence of aromatic aldehydes, formed by a group ofvolatile compounds that are extracted from wood lignin duringthe winemaking process. The presence of these aldehydes inwines is an indicator of fermentation and aging in oak barrels,their absence being indicative of counterfeit aged wines. Vanillinand syringaldehyde are the most abundant aromatic aldehydesin wines.

    The occurrence of phenolics has been extensively studied byliquid chromatographic methods (118). In most of them,conventional reversed-phase columns, constituted by packedmicroparticulate bonded silica, have been used (15, 715, 18),which generally feature separations of 1425 compounds inalmost 1 h or 32 phenolics in 90 min, which makes routineanalysis of these compounds very tedious. The use of othermaterials such as mesoporous silica has given rise to monolithiccolumns, which operate at higher flow rates with lower back-pressures than conventional columns (16, 17). Thus, they allowthe analysis of samples using direct injection or low sampledilutions, because the cleaning and regeneration of the columncan be done more quickly than in the conventional ones due tothe high flow rates afforded. Monolithic columns have been usedfor the determination of 15 phenolics in red and white winesamples (16) with separation times around 30 min and, also,for the direct analysis of cider samples (19).

    Diode array detection (1, 317) has been extensively usedfor the development of liquid chromatography methods, whereasfluorometric (8, 12) and mass spectrometry (2) detection systemshave been used to a lesser extent. Most fluorometric methodsproposed are based on measurements of the intrinsic fluores-cence of some phenolics. Although these methods featuregenerally lower detection limits than photometric methods, the

    * Author to whom correspondence should be addressed (telephone+ 34-957218645; fax +34-957-218644; e-mail [email protected]).

    1858 J. Agric. Food Chem. 2008, 56, 18581865

    10.1021/jf073206t CCC: $40.75 2008 American Chemical SocietyPublished on Web 02/22/2008

  • Analytical Methods

    Usefulness of terbium-sensitised luminescence detection for the chemometricclassification of wines by their content in phenolic compounds

    A. Andreu-Navarro, P. Russo, M.P. Aguilar-Caballos, J.M. Fernndez-Romero, A. Gmez-Hens

    Department of Analytical Chemistry, Marie Curie Annex Building, Campus of Rabanales, University of Crdoba, E-14071 Crdoba, Spain

    a r t i c l e i n f o

    Article history:Received 4 May 2009Received in revised form 2 August 2010Accepted 9 August 2010

    Keywords:Phenolic compoundsLC-photometry and fluorimetryTerbium(III)Factor Analysis (FA)Linear discriminant analysis (LDA)Wine samples

    a b s t r a c t

    Amethod for wine classification based on the phenolic compound content, wine variety and geographicalarea is described. The method involves the use of the results obtained from the analysis of fifteen samplesof Italian and Spanish wines from different geographical origins [Sicilia (Italy) and Crdoba (Spain)] usingliquid chromatography (LC) with photometric and fluorimetric detection, in which eighteen phenolicswere determined: gallic acid, protocatechuic acid, p-hydroxybenzoic acid, salicylic acid, vanillic acid, caf-feic acid, syringic acid, catechin, vanillin, p-coumaric acid, syringaldehyde, epicatechin, ferulic acid, rutin,trans- and cis-resveratrol, quercetin and kaempferol. Photometric measurements were performed select-ing four wavelengths (256, 280, 320 and 365 nm), using a diode-array detection system. The fluorimetricdetection was achieved by measuring the sensitised luminescence provided by the chelates formedbetween each analyte and terbium (III). All samples were commercial wines bought in local marketsand analysed immediately after they were opened. The pattern data matrix was constructed by the con-centration of each analyte present in wine, which was determined by the most adequate method, namelyLC-photometric or LC-fluorimetric method. This data matrix was subjected to different algorithms inorder to classify and characterise the wine samples adequately. Supervised (LDA) and un-supervised(FA) pattern recognition methods were used. The wine pattern generation with LC separation and dualdetection approach to determine eighteen phenolic compounds and the chemometric treatment providean appropriate way with recognition and prediction rates. The values obtained for these rates were 100%when fluorimetric detection was used. These results can be considered satisfactory, which proves theusefulness of the selected variables.

    ! 2010 Elsevier Ltd. All rights reserved.

    1. Introduction

    In recent years, there has been an increasing interest in thedevelopment of chemometric applications in order to establishthe variety, geographical origin, manipulation and other techno-logical features, which define the taste of foods and beverages fromagricultural origin (Ariyama & Yasui, 2006; Marcos, Fischer, Rea, &Hill, 1998; Sanz, Prez, Herrera, Sanz, & Juan, 1995; Smith, 2005).The reasons for this interest are: (1) laws enforce labelling of thegeographical origin of the foodstuff and beverages in many coun-tries due to demands of more information from consumers andimprovement of their domestic production; (2) producers have be-gun to advertise their brands of high-quality products by includinggeographical origin and other features in the label for economicreasons; (3) prevention of frauds and adulteration on the label,production and commercialisation. Thus, the development of

    methods giving acceptable information is highly desirable for con-sumers, producers and administrative authorities.

    Wine industry and the market sector are particular examples inwhich the development of sophisticated chemometric techniquesare essential for the improvement of the analytical informationabout wine composition and for assessing wine authenticity(Arvanitoyannis, Katsota, Psarra, Soufleros, & Kallithraka, 1999;Horwitz, 1995). Several chemometric procedures have been usedas the basis for discrimination of wines according to vinificationtechnology and classification according to region, type and variety.Different pattern recognition techniques (PRT), such as PrincipalComponent Analysis (PCA) (Boselli, Giomo, Minardi, & Frega,2008; Recamales, Sayago, Gonzlez-Miret, & Hernanz, 2006), Linearand Canonical Discriminant Analysis (LDA and CDA) (Hernndez,Estrella, Dueas, Fernandez de Simn, & Cadaha, 2007; Makris,Kallithraka, & Mamalos, 2006; Villiers et al., 2005), ProbabilisticNeural Network (PNN) (Daz, Conde, Estvez, Prez-Olivero, &Prez Trujillo, 2003), K-Nearest Neighbours (KNN) (Beltrn et al.,2006), Cluster Analysis (CA) (Villiers et al., 2005), MultiregressionAnalysis (MRA), Partial Least Squares (PLS) (Capron, Smeyers-Verbeke, & Massart, 2007; Le Moigne et al., 2008), and CAIMAN

    0308-8146/$ - see front matter ! 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.foodchem.2010.08.014

    Corresponding author. Tel.: +34 957218645; fax: +34 957218644.E-mail address: [email protected] (A. Gmez-Hens).

    Food Chemistry 124 (2011) 17531759

    Contents lists available at ScienceDirect

    Food Chemistry

    journal homepage: www.elsevier .com/locate / foodchem

  • Research Article

    Luminescent determination of flavonoids inorange juices by LC with post-columnderivatization with aluminum and terbium

    A new post-column derivatization system is described and applied to the determination offlavonoids in citric beverages after their separation by LC using a monolithic column. Thederivatization involves the formation of the chelates of the analytes with aluminum (III)and terbium (III) in the presence of the surfactant SDS and the measurement of theterbium sensitized luminescence at lex 360 and lem 545 nm. Naringin, hesperidin,quercetin, naringenin, and kaempferol have been chosen as analyte models. The largeStokes shift and the relatively long wavelength emission of terbium(III) can minimizeinterferences from background sample matrix, which usually emit at shorter wavelengths.Calibration graphs were constructed in the intervals 6.01700 ng/mL naringin,9.81700 ng/mL hesperidin, 2.12000 ng/mL quercetin, 5.21500 ng/mL naringenin and2.52000 ng/mL kaempferol, with regression coefficients higher than 0.9935 in allinstances. The precision of the method, expressed as RSD%, was established at twoconcentration levels, with values of 1.3 and 4.7%, which corresponded to the minimal andmaximal error zones of the calibration graphs. The practical usefulness of the method isdemonstrated by the analysis of orange juices, which were diluted and directly injectedinto the chromatographic system, obtaining recoveries between 86.9 and 108.2%.

    Keywords: Aluminum and terbium complexes / Flavonoid compounds / Orangejuices / Post-column derivatizationDOI 10.1002/jssc.200900696

    1 Introduction

    Flavonoids are a group of polyphenolic compounds widelydistributed in vegetables and fruits [1]. The determination ofthese compounds is of great interest owing to their multiplebiological effects, including antioxidant activity, antitumor,antimutagenic, antibacterial and angioprotective properties[2, 3]. They also contribute to different plant properties suchas colour, flavour, fragrance, nutrition, stability andtherapeutic properties. Flavonoids such as 2-phenyl-benzo-a-pyrones are classified according to the multitude ofsubstitution patterns in the two benzene rings of theirbasic structure. Variation in their heterocyclic rings givesrise to flavonols, flavones, catechins, flavanones, anthocya-nidins and isoflavones [4]. The flavonoid content in orangejuices has special interest as it contributes to the quality ofthese samples [5].

    The main separation technique applied to the determi-nation of flavonoids in orange juices is LC [611], usingreversed-phase columns, although gas chromatography [12],

    involving the formation of trimethylsilyl derivatives, hasbeen also described for this purpose. The usefulness of amonolithic column, which can operate at higher flow rateswith lower backpressures than conventional columns, hasbeen previously described for the LC separation of someflavonoids in wine samples [13]. However, to the best of ourknowledge, this type of column has not been used up to datefor the determination of these compounds in orange juices.

    Photometric [610], coulometric [10] and MS [6, 11]detection systems have been reported in the LC methodsdescribed for the analysis of these samples. Some flavo-noids, such as quercetin and kaempferol, have been fluor-imetrically determined in body fluids using aluminum(III)as post-column derivatization reagent to obtain fluorescentchelates [14]. Another post-column derivatization systempreviously described for the determination of thesecompounds in wine samples involves the formation of thecorresponding terbium(III) chelates and the measurementof the sensitized luminescence [13]. This phenomenon is anintermolecular energy transfer process, in which the ligandacts as donor and terbium(III) acts as acceptor and emitsluminescence, that allows very sensitive and selectivedeterminations, although its use as detection system in LChas been relatively limited [15].

    This article reports for the first time the use of amonolithic column for the direct separation of flavonoids inorange juice samples and a new post-column derivatization

    Alvaro Andreu-NavarroJuan Manuel Fernandez-RomeroAgustina Gomez-Hens

    Department of AnalyticalChemistry, Faculty of Sciences,University of Cordoba, Cordoba,Spain

    Received October 23, 2009Revised December 18, 2009Accepted December 21, 2009

    Correspondence: Professor A. Gomez-Hens, Departmentof Analytical Chemistry, Faculty of Sciences, University ofCordoba, Marie Curie Annex Building, Campus of Rabanales,E-14071 Cordoba, SpainE-mail: [email protected]:134-957-218644

    & 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com

    J. Sep. Sci. 2010, 33, 509515 509

  • Long-Wavelength Fluorescence Detectionof Flavonoids in Orange Juices by LC

    Alvaro Andreu-Navarro, Juan Manuel Fernandez-Romero, Agustina Gomez-Hens&

    Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Marie Curie Annex Building,Campus of Rabanales, 14071 Cordoba, Spain; E-Mail: [email protected]

    Received: 16 April 2010 / Revised: 7 September 2010/ Accepted: 7 September 2010

    Abstract

    A new post-column liquid chromatographic reaction system for the determination of flavo-noids in orange juices is based on the use of the long wavelength fluorophor cresyl violet andcerium(IV) in a cetyl trimethylammonium bromide micellar medium. Two flavone aglycones(quercetin and kaempferol), a flavonone aglycone (naringenin), one flavone-O-glycoside(rutin) and two flavanone-O-glycosides (hesperidin and naringin) have been used as analytemodels. The reaction process involves the interaction between the analyte, cerium(IV) andcresyl violet giving rise to a decrease in the fluorescence, measured at kex 585, kem 625 nm,which is proportional to the analyte concentration. Dynamic ranges of the calibration graphsand detection limits, obtained with standard solutions of the analytes are (ng mL-1): quer-cetin (12.24,000, 3.7), kaempferol (3.51,000, 1.0), naringenin (6.71,000, 2.0), rutin(5.0800, 1.5), hesperidin (10.11,000, 3.0), and naringin (17.8800, 1.8). The deter-mination coefficients were higher than 0.993 in all instances. The precision of the method,expressed as RSD%, was established at two concentration levels, with values rangingbetween 2.8 and 6.2%. The practical usefulness of the developed method is demonstrated bythe analysis of natural and commercial orange juices, which were filtered, diluted anddirectly injected into the chromatographic system, with apparent recoveries between 86.9and 107.0%.

    Keywords

    Column liquid chromatographyLong wavelength fluorescence detectionFlavonoid compoundsOrange juice samples

    Introduction

    The use of long-wavelength fluorophores(LWF) as analytical reagents is anattractive option to improve the selectiv-ity of fluorimetric analysis and avoid orminimize the sample treatment step of theanalytical process. These dyes allowingmeasurements are obtained in a region ofthe electromagnetic spectrum (>600 nm)in which the potential absorption oremission associated to sample matrix isminimized. Also, Raman interference isgreatly diminished and the probability ofnon-radiative quenching processes isdecreased due to the usually short fluo-rescence lifetime of these fluorophores.LWFs have been described as enzymaticsubstrates, immunoassay labels, sensingsystems and derivatizing reagents inliquid chromatography (LC) and capil-lary electrophoresis [1]. Although the lackof sufficient reactive groups for targetingof analytes is a limitation of these fluo-rophores, their analytical usefulness hasbeen expanded using electrostatic andredox interactions [26].

    This article describes for the first timethe use of the oxazine LWF cresyl violet(CV) in a post-column LC reactionsystem for the indirect determination of

    DOI: 10.1365/s10337-010-1774-8! 2010 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

    Original

  • Author's personal copy

    Analytica Chimica Acta 695 (2011) 1117

    Contents lists available at ScienceDirect

    Analytica Chimica Acta

    journa l homepage: www.e lsev ier .com/ locate /aca

    Determination of antioxidant additives in foodstuffs by direct measurement ofgold nanoparticle formation using resonance light scattering detection

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens

    Department of Analytical Chemistry, Faculty of Sciences, University of Crdoba, Marie Curie Annex Building, Campus of Rabanales, E-14071 Crdoba, Spain

    a r t i c l e i n f o

    Article history:Received 21 January 2011Received in revised form 14 March 2011Accepted 24 March 2011Available online 1 April 2011

    Keywords:Antioxidant additivesGold nanoparticlesStopped-flow mixing techniqueResonance light scattering detectionFoodstuff samples

    a b s t r a c t

    The capability of antioxidant compounds to reduce gold(III) to gold nanoparticles has been kineticallystudied in the presence of cetyltrimethylammonium bromide using stopped-flow mixing technique andresonance light scattering as detection system. This study has given rise to a simple and rapid method forthe determination of several synthetic and natural antioxidants used as additives in foodstuff samples.The formation of AuNPs was monitored by measuring the initial reaction-rate of the system in about5 s, using an integration time of 0.1 s. Dynamic ranges of the calibration graphs and detection limits,obtained with standard solutions of the analytes, were (!mol L1): gallic acid (0.040.59, 0.01), propylgallate (0.041.41, 0.01), octyl gallate (0.030.35, 0.08), dodecyl gallate (0.020.30, 0.007), butylatedhydroxyanisol (0.070.39, 0.009), butylated hydroxytoluene (0.040.32, 0.01), ascorbic acid (0.111.72,0.03) and sodium citrate (0.071.29, 0.02). The regression coefficients were higher than 0.994 in allinstances. The precision of the method, expressed as RSD%, was established at two concentration levelsof each analyte, with values ranging between 0.6 and 4.8%. The practical usefulness of the developedmethod was demonstrated by the determination of several antioxidant additives in foodstuff samples,which were extracted, appropriately diluted and assayed, obtaining recoveries between 95.4 and 99.5%.The results obtained were validated using two reference methods.

    2011 Elsevier B.V. All rights reserved.

    1. Introduction

    Natural and synthetic antioxidants are a group of compoundsused as additives to prevent or retard oxidation reactions in foodproducts. There is a trend to limit the use of synthetic antioxidants,owing to their potential toxic effects, but they are still found in a rel-atively wide range of foodstuffs, although their use is subject to verystrict safety regulations [16]. Phenolic compounds such as propyl(PG), octyl (OG) and dodecyl (DG) esters of gallic acid (GA), buty-lated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT)are the main synthetic antioxidants still authorized, although theyare being replaced by natural antioxidants, such as ascorbic (AA)and citric (CA) acids. CA is also used as a food additive for otherpurposes, such as acidifier and flavouring agent.

    The determination of synthetic antioxidants in food samplesis mainly carried out by using reverse-phase liquid chromatogra-phy (LC) with photometry or mass spectrometry (MS) as detectionsystems [7,8]. Methods based on gas chromatography (GC), with

    Corresponding author. Tel.: +34 957 218645; fax: +34 957 218644.E-mail address: [email protected] (A. Gmez-Hens).

    flame ionization detector (FID) or MS, and capillary electrophore-sis (CE) with photometric or electrochemical detection have beenalso described [7]. The limits of detection (LODs) reported for mostof these methods are at the level of !mol L1. These methods arevery useful for the identification of the analytes, but they are time-consuming for screening purposes.

    The use of gold nanoparticles (AuNPs) as analytical reagentshas allowed the development of very sensitive methods based ontheir special optical and electrochemical properties. For instance,they have been used as labels in immunoassays and hybridiza-tion assays and as nanoscaffolds to develop chemical sensors [9].These methods require the previous synthesis of the NPs, usinggenerally tetrachloroauric acid and a reducing reagent, usually cit-rate [10,11]. Other reagents such as cysteine [12], ascorbic acid[10,13,14], sodium borohydride [15,16] and gallic acid [17,18] havealso shown their usefulness for this purpose. The experimental con-ditions chosen to obtain AuNPs are critical factors that affect thesize, shape and potential aggregation of the NPs and, consequently,their properties. Some of these methods [14,15] involve the use ofcetyltrimethylammonium bromide (CTAB) to favour the synthesisof the NPs. The formation of ion pairs between AuCl4 and cationicsurfactants prior to the formation of AuNPs was described [19,20].

    0003-2670/$ see front matter 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.aca.2011.03.047

  • 1

    Determination of polyphenolic content in beverages using laccase, gold nanoparticles and long wavelength fluorimetry

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens (*)

    Department of Analytical Chemistry, Faculty of Sciences, University of Crdoba, Marie

    Curie Annex Building. Campus of Rabanales, E-14071 Crdoba, Spain ABSTRACT An enzymatic fluorimetric method for the determination of polyphenol compounds in beverages is described, which is based on the temporal inhibition caused by these compounds on the oxidation of the long wavelength fluorophor indocyanine green ( ex 764 nm, em 806 nm), in the presence of the enzyme laccase and positive charged gold nanoparticles (AuNPs). The oxidation of the dye gives rise to a fast decrease in its fluorescence, but it is delayed by the polyphenol, obtaining a time period directly proportional to its concentration, which has been used as the analytical parameter. The behaviour of several benzenediols and benzenetriols in the system and the modification of the activity of the enzyme by its interaction with AuNPs have been studied. The system has been optimized using gallic acid as a polyphenol model, but the dynamic ranges of the calibration graphs and the detection limits for several of the polyphenols assayed were obtained ( mol L-1): gallic acid (0.13-5, 0.04), catechol (0.08-5, 0.01), hydroquinone (0.05-2, 0.01), hydroxyhydroquinone (0.09-5, 0.03), pyrogallol (0.17-5, 0.04). Most of the values of the regression coefficients were 0.999 and the precision of the method, expressed as RSD% and checked at two concentration levels of each analyte, ranged between 1.8 and 5.6%. The method has been applied to the determination of polyphenol content in several foodstuff samples and the results compared with those obtained with the standard Folin-Ciocalteu method. KEYWORDS: Polyphenols; laccase; gold nanoparticles; stopped-flow mixing technique; long wavelength fluorimetric detection; beverage samples

    * Author to whom correspondence should be addressed (telephone +34 957 218645; fax

    +34 957 218644. E-mail address: [email protected] )

  • Crdoba, 14 de enero de 2010

    II ENCUENTRO SOBRE

    NANOCIENCIA Y NANOTECNOLOGA DE INVESTIGADORES Y TECNLOGOS

    DE LA UNIVERSIDAD DE CRDOBA

    Universidad de Crdoba

    Instituto Andaluz de Qumica Fina y Nanoqumica

    Consejera de Innovacin, Ciencia y Empresa

  • P-16

  • REUNIN DEL GRUPO REGIONAL ANDALUZ DE LA SOCIEDAD ESPAOLA DE QUMICA ANALTICA

  • Departmento de Qumica Analtica, Facultad de Ciencias. Universidad de Crdoba. Edificio Anexo Marie Curie

  • - 53 -

    P-1

    DETERMINATION OF ANTIOXIDANT ADDITIVES IN FOODSTUFFS BY DIRECT MEASUREMENT OF GOLD NANOPARTICLE FORMATION USING

    RESONANCE LIGHT SCATTERING DETECTION

    A. Andreu-Navarro, J.M. Fernndez-Romero, A. Gmez-Hens Department of Analytical Chemistry

    University of Crdoba Campus of Rabanales

    Annex to Marie Curie building 14071-Crdoba. Spain

    E-mail: [email protected] Web: http://www.uco.es/FQM-303/

    The capability of antioxidant compounds to reduce gold(III) to gold nanoparticles (AuNPs) has

    been kinetically studied in the presence of cetyltrimethylammonium bromide using stopped-flow mixing technique and resonance light scattering as detection system. This study has given rise to a simple and rapid method for the determination of several synthetic and natural antioxidant used as additives in foodstuff samples. The formation of AuNPs was monitored by measuring the initial reaction-rate of the system in about 5 s, using an integration time of 0.1 s. Dynamic ranges of the calibration graphs and detection limits, obtained with standard solutions of the analytes, were ( mol L-1): gallic acid (0.04 0.59, 0.01), propyl gallate (0.04 1.41, 0.01), octyl gallate (0.03 0.35, 0.08), dodecyl gallate (0.02 0.30, 0.007), butylated hydroxyanisol (0.07 0.39, 0.009), butylated hydroxytoluene (0.04 0.32, 0.01), ascorbic acid (0.11 1.72, 0.03) and sodium citrate (0.07 1.29, 0.02). The regression coefficients were higher than 0.994 in all instances. The precision of the method, expressed as RSD%, was established at two concentration levels of each analyte, with values ranging between 0.6 and 4.8 %. The practical usefulness of the developed method was demonstrated by the determination of several antioxidant additives in foodstuff samples, which were extracted, appropriately diluted and assayed, obtaining recoveries between 95.4 and 99.5 %. The results obtained were validated using two reference methods.

  • FLUORIMETRIC DETERMINATION OF POLYPHENOLS USING A LONG- WAVELENGTH-FLUOROPHOR AND LACCASE IMMOBILISED ON GOLD NANOPARTICLES

    lvaro Andreu-Navarro, Juan Manuel Fernndez-Romero, Agustina Gmez- Hens

    Department of Analytical Chemistry. Institute of Fine Chemistry and Nanochemistry (IUQFN- UCO) Campus de Rabanales. Marie Curie Building (Annex) University of Crdoba E-14071- Crdoba, Spain. Phone: 34- 957218645, Fax: 34-957218644, email: [email protected] web: http://www.uco.es/investiga/grupos/FQM-303

    A new method for the determination of polyphenols based on their competitive redox interaction with a long-wavelength-fluorophor (LWF) in the presence of the enzyme lacasse immobilised on gold nanoparticles (AuNPs) is presented. The biocatalyst causes a fluorescence inhibition of the LWF, but their effect is delayed in the presence of polyphenols. The competitive redox reaction has been kinetically studied using stopped-flow mixing technique and fluorimetry as detection system. The behaviour of several polyphenols (phenol, gallic acid, catechol, hydroquinone, resorcinol, pyrogallol and phloroglucinol) on the system has been comparatively studied and a simple and rapid method for the determination of these compounds has been developed. Initial-rate and induction time measurements have been used as analytical parameter using Cardio Green ( ex= 764 nm, em= 806 nm) as LWF. Dynamic ranges of the calibration graphs and detection.

  • Pagina_edicion_eTesis462462.pdfPgina en blancoPgina en blancoPgina en blancoPgina en blancoPgina en blancoPgina en blanco