28
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Offshore Wind Energy Market Overview Ian BaringGould National Renewable Energy Laboratory May 15, 2013 NREL/PR7A2058974

NREL Offshore Costs 2013 PPT

Embed Size (px)

DESCRIPTION

Cool graphics for Offshore Wind costs

Citation preview

Page 1: NREL Offshore Costs 2013 PPT

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Offshore Wind Energy Market Overview

Ian Baring‐Gould

National Renewable Energy LaboratoryMay 15, 2013

NREL/PR‐7A20‐58974

Page 2: NREL Offshore Costs 2013 PPT

2

All Offshore Wind Projects Are in Europe and Asia, with European Nations Leading Deployment

0

500

1,000

1,500

2,000

2,500

3,000UK

Denm

ark

Nethe

rland

s

Belgium

Swed

en

Germany

Finland

Ireland

Norway

Portugal

Total Installed Ca

pacity (M

W)

Portugal 2 MW

Sweden 164 MW

Norway 2 MW

Finland 32 MW

Germany 120 MW

UK 2,679 MW

Denmark 874 MW

Netherlands 247 MW

Ireland 25 MW Belgium

195 MW

Globally  4,600 MW Installed

European Installations Total

~4,300 MW

Page 3: NREL Offshore Costs 2013 PPT

3

Capital Costs Have Risen; Appear to Be Stabilizing

 ‐

 2,000

 4,000

 6,000

 8,000

 10,000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Estim

ated

 Cap

ital Cost (20

12$/kW

)

Commisioning Date

Installed Construction Contracted  Approved

E.U.

Note: Bubble size represents project capacity Source: NREL Offshore Wind Database 

BARD 1

London Array

Talisman (Beatrice)

Alpha Ventus

Horns Rev I

Horns Rev II

Page 4: NREL Offshore Costs 2013 PPT

4

U.S., EU Projects Expected to Have Similar Costs 

Source: NREL Offshore Wind Database  ‐

 2,000

 4,000

 6,000

 8,000

 10,000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Estim

ated

 Cap

ital Cost (20

12$/kW

)

Commisioning Date

Installed Construction Contracted  Approved

E.U.

U.S.

Cape Wind

Block Island

Page 5: NREL Offshore Costs 2013 PPT

5

Asian Projects Projecting Lower Costs 

Source: NREL Offshore Wind Database  ‐

 2,000

 4,000

 6,000

 8,000

 10,000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Estim

ated

 Cap

ital Cost (20

12$/kW

)

Commisioning Date

Installed Construction Contracted  Approved

E.U.

U.S.

Asia

Page 6: NREL Offshore Costs 2013 PPT

6

Installed Capital Costs (ICCs)

Source: Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A. (2012). 2010 Cost of Wind Energy Review. 111 pp.; NREL Report No. TP‐5000‐52920.

• Balance-of-station (BOS) costs dominate ICCs for offshore wind projects

• There are three primary BOS contributors:

Support structure

Electrical infrastructure

Assembly, transport, and installation.

• Component contribution can vary significantly from one project to another

Page 7: NREL Offshore Costs 2013 PPT

7

How Do We Reduce Costs?

Turbine Capacity Wind Plant Size National and Global  Deployment  

Increasing Size Is Desirable at All Scales

Scale

Photo from Ben Barden Photography/ Vattenfall

Increase

Photo from MiddelgrundenWind Turbine Cooperative, NREL 17856

Page 8: NREL Offshore Costs 2013 PPT

8

Physical Siting Considerations

• Water depth• Distance to shore• Geotechnical/geophysical soil conditions• Wave climate: sheltered vs. open ocean• Extreme climate conditions (e.g., tropical

storms)• Availability of grid connections/load proximity• Supply chain• Competing-use issues • Environmental impacts

Page 9: NREL Offshore Costs 2013 PPT

9

Technology Evolution to Deeper Water

Page 10: NREL Offshore Costs 2013 PPT

10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Dep

th (m

)

Distance to Shore (km)

200

210

220

Dep

th (m

)

Installed Offshore Wind Projects Are Typically Sited inShallow Water, Close to Shore

Shallow Water

Transitional Water

Deep Water

Near-shore Far-shore(DC power export technology becomes competitive)

Bubble size represents project capacity

Installed Project

Page 11: NREL Offshore Costs 2013 PPT

11

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Dep

th (m

)

Distance to Shore (km)

200

210

220

Dep

th (m

)

A Few Projects under Construction Are Expanding into Transitional Water Depths, Farther from Shore

Shallow Water

Transitional Water

Deep Water

Near-shore Far-shore(DC power export technology becomes competitive)

Under Construction

Bubble size represents project capacity

Installed Project

Page 12: NREL Offshore Costs 2013 PPT

12

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Dep

th (m

)

Distance to Shore (km)

200

210

220

Dep

th (m

)

Near‐Term Pipeline Suggests this Trend Will Continue, with Projects Moving Beyond the 30‐m by 50‐km Design Envelope

Shallow Water

Transitional Water

Deep Water

Near-shore Far-shore(DC power export technology becomes competitive)

Under Construction

Contracted Project

Approved Project

Bubble size represents project capacity

Installed Project

Page 13: NREL Offshore Costs 2013 PPT

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Dep

th (m

)

Distance to Shore (km)

200

210

220

Dep

th (m

)

Several Projects Are Demonstrating Floating Substructures, Which Could Enable Development of Deep Water Sites  

Floating Technology Demonstration Projects

Shallow Water

Transitional Water

Deep Water

Near‐shore Far‐shore(DC power export technology becomes competitive)

Under Construction

Contracted Project

Approved Project

Bubble size represents project capacity

Installed Project

CapeWind

Page 14: NREL Offshore Costs 2013 PPT

14

The Majority of Existing and Planned Global Offshore Wind Developments are in Europe

~ 15,600 MW Approved

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000Po

land

Germany

France UK

Belgium

Finland

Estonia

Greece

Italy

Swed

enDe

nmark

Norway

Prop

osed

 Cap

acity

 (MW) A

pproved

Sweden 265 MW

Norway 31 MW

Germany 3,723 MW

Poland 4,500 MW

France 2,303 MW

Italy 384 MW

Greece 498 MW

UK 1,416 MW

Belgium 1,015 MW

Denmark 36 MW

Finland 768 MW

Estonia 700 MW

Page 15: NREL Offshore Costs 2013 PPT

15

• China: Issued 12th Five‐Year Development Plan for Renewable Energy (2012) targeting 5 GW installed by 2015 and 30 GW installed by 2020

• Japan: As part of the Fukushima recovery efforts, the government plans to phase out nuclear power by 2040, which previously provided more than 30% of the country’s electricity. New feed‐in tariffs for wind announced in 2012, ~25 cents/kWh 

• South Korea: 5‐MW offshore demonstration project (Jeju Island) in operation, plus a government target of 2 GW in operation by 2019

• Taiwan: Launched the Thousand Wind Turbines Promotion program, targeting 3 GW installed by 2030

Offshore Wind Drivers & Developments in Asia

Page 16: NREL Offshore Costs 2013 PPT

Total Global Offshore Wind Project Pipeline Exceeds 200 GWs

(Total U.S. Generating Capacity ~1,000 GWs)

16

4.6 4.5 4.920.8

47.3

125.4 202.9

0

50

100

150

200

Installed UnderConstruction

Contracted Approved Permitting Planning Total Pipeline

Capa

city (G

W)

Project Status

Offshore Wind Project Pipeline

Page 17: NREL Offshore Costs 2013 PPT

Average Offshore Wind Turbine Capacities, Rotor Diameters, & Hub Heights Are Expected to Continue to Increase

0.5 0.5 0.5 0.6 0.6 2.0 1.9 2.0 2.2 2.5 3.0 3.0 3.0 3.2 2.8 3.1 3.9 3.5 4.2 3.9 4.5 5.1 -

20

40

60

80

100

120

140

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1990 1995 2000 2005 2010 2015

Dis

tanc

e (m

)

Rat

ed C

apac

ity (M

W)

Weighted Average Capacity Weighted Average Rotor Diameter Weighted Average Hub Height

Page 18: NREL Offshore Costs 2013 PPT

47%

2%

35%

16%0%

78%

17%

4%

1% 0%

Multi-Pile Foundations Will Gain Market Share as Larger Turbines Are Deployed and as Wind Farms Are Installed in Deeper Water

Monopile

Gravity Base

Jacket

Tripod/Tri-pile

Floating

ProjectedNear-Term Capacity*

~13,450 MW

Installed Capacity~4,550 MW

* Includes projects under construction and approved projects that have announced a foundation design

• The popularity of the gravity base foundation has recently declined: • Current designs are generally uncompetitive in water depths greater than 15 m• Key challenges include requirements for precise seabed preparation, expensive heavy lift

vessels, and sensitivity of installation schedule to weather • Several companies are working on promising new designs that address these challenges

• Floating technology is becoming increasing mature, with plans for multi-turbine demonstration projects announced in the U.S., Portugal, and Japan

Page 19: NREL Offshore Costs 2013 PPT

19

Siemens38%

Vestas5%REpower

12%

Sinovel7%

AREVA11%

BARD5%

Alstom11%

Mingyang4%

China Energine2%

Goldwind1%

XEMC Darwind1% China Creative Wind 

Energy1%

Shanghai Electric1%

Others1%0%0%0%0%0%0%0%0%

Siemens59%

Vestas32%

REpower5%

Sinovel2%

WinWind1%

AREVA1%

Installed Capacity ~4,550 MW

* Includes projects under construction and approved projects that have announced a turbine manufacturer.

Turbines from Siemens and Vestas represent a combined 91% of capacity installed to date.

Some OEMs have developed strong pipelines, reducing projected Siemens/Vestas share to 43% of near-term market

ProjectedNear-Term Capacity*

~16,600 MW

Others 1%

OEMs gaining share tend to 1) offer turbine models in the 5 MW+ class or 2) are well positioned to take advantage of growth in the Chinese market.

The Global Offshore Wind Turbine Market Is Expected to Become Increasingly Fragmented

Page 20: NREL Offshore Costs 2013 PPT

20

Offshore Wind Resource Is Near Population CentersMap of Annual Average Wind at 80 m

Credit: Dr. H. J. Dagher

55 million people in Northeast

18% of U.S. population

Highest electricity costs

Page 21: NREL Offshore Costs 2013 PPT

21

Approximate Percentage of Gross Offshore Wind Resource Area for Three Technology Stages (based on NREL estimates: 0‐50 nm from shore, 60% of resource excluded, AK and HI not included, Class 5 winds and 

above only)

Transitional Depths22%

Shallow Water 17%

Deepwater (Floating)61%

~4,000 GWs Total Technical Potential

>60 m

0‐30 m

30‐60 m

U.S. Offshore Resource

Page 22: NREL Offshore Costs 2013 PPT

NATIONAL RENEWABLE ENERGY LABORATORY

Coastal States Usually Have High Electricity Prices, Making Offshore Wind More Competitive

22

0

5

10

15

20

25

30

HI NY CT MA RI NJ

AK NH

ME CA MD VT DE TX FL NV PA LA AZ MI IL WI

GA

MS

CO OH

NM AL NC

OK

MN SC VA AR KS TN MT

OR SD IA

MO IN WA

ND UT

NE KY WY ID WV

Electricity

 Pric

e ‐A

ll Sectors (¢/kWh)

Coastal State with Significant Offshore Wind Resource

Inland State with No Significant Offshore Wind Resource

U.S.  Retail Average = 9.90 ¢/kWh

Coastal vs. Inland State Electric Rates (2008)

Page 23: NREL Offshore Costs 2013 PPT

NATIONAL RENEWABLE ENERGY LABORATORY

New Jersey Call Area / WEA

Rhode Island / Massachusetts WEA

Maryland Call Area / WEA

Virginia Call Area / WEA

Massachusetts WEA

Delaware Call Area / WEA

North Carolina Call Area

North Carolina

Three New Wind Energy Areas (WEAs) and Call Areas in 2012;There Are Now 6 WEAs Plus a Call Area in North Carolina

Page 24: NREL Offshore Costs 2013 PPT

24

Technology Challenges for United States

Freshwater Ice and Ice 

Deep Water

Tropical Storms

Deep Water

Standards are being updated to address U.S. issues.

Page 25: NREL Offshore Costs 2013 PPT

NATIONAL RENEWABLE ENERGY LABORATORY

In General, Primary Stakeholder Concerns about Offshore Wind Power Are Site Specific

25

Marine animal populations:European studies suggest minimal impacts. U.S. studies are required to better understand potential risks and develop mitigation strategies. Pile driving during construction has highest impact.

Visual effects:Coastal residents near offshore wind farms may be concerned about visual impacts. More research is needed to better understand coastal communities and their ability to accept changes to the seascape.

Property values:Studies conducted on land-based wind projects show minimal to no impact on real estate prices and property values as a result of the presence of wind turbines; however, extensive studies have not been conducted on the impact of offshore wind turbines on coastal communities.

Noise:The most significant environmental impact is noise associated with pile driving during construction. Mitigation strategies may be effective in reducing this temporal risk. Alternative technology can also be implemented if appropriate to avoid some of the pile-driving activity.

Tourism:Impacts on tourism may concern some communities dependent on beach vacationers and the resulting local revenues and tax base. The evidence is ambiguous, and actual effects appear to be minimal or positive.

Marine safety:The possibility of a ship colliding with a turbine could pose a risk to the marine environment from fuel leaks or to human safety should the turbine collapse. No reported incidents have occurred to date.

Page 26: NREL Offshore Costs 2013 PPT

26

• Protected sites and species• Benthic ecology• Fish and shellfish/ fisheries• Marine birds• Marine mammals• Seabed sediments• Marine and coastal 

processes• Seabed contamination • Water quality

One of the largest environmental impacts found is sea mammal 

disturbance due to pile‐driving noise.NREL 04698

Photo courtesy of Travis S, Flickr

Photo courtesy of eGuide Travel, Flickr

Photo courtesy of Thespis377, Flickr

Siting Must Account for Potential Environmental Impacts

Page 27: NREL Offshore Costs 2013 PPT

27

Marketing Summary

• European markets dominate so far.

• Asian markets promise lower costs, but as of now this is undemonstrated.

• The U.S. offshore wind industry is ready to begin deployment.

• Stable, coordinated policy is needed to offset high initial costs and drive deployment.

• A robust project pipeline is needed to encourage investment in technologies and infrastructure that will lower the cost of energy.

• Costs are high for first adopters and must be reduced through risk reduction, new technology, and increasing scale (turbine, project, and national deployment).

Page 28: NREL Offshore Costs 2013 PPT

28

Contact Information

Ian Baring‐GouldTechnology Deployment Manager

NRELIan.Baring‐[email protected]

Thank You!

http://www.nrel.gov/tech_deployment/wind.html