10
Noncommutative Noncommutative Quantum Mechanics Quantum Mechanics Catarina Bastos Catarina Bastos IBERICOS, Madrid 16th-17th April IBERICOS, Madrid 16th-17th April 2009 2009 C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49 (2008) 1. C. Bastos, O. Bertolami, N. Dias and J. Prata, Phys. Rev. D 78 (2008) 023516. C. Bastos and O. Bertolami, Phys. Lett. A 372 (2008) 5556.

Noncommutative Quantum Mechanics Catarina Bastos IBERICOS, Madrid 16th-17th April 2009 C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49

Embed Size (px)

Citation preview

Noncommutative Noncommutative Quantum MechanicsQuantum Mechanics

Catarina BastosCatarina Bastos

IBERICOS, Madrid 16th-17th April IBERICOS, Madrid 16th-17th April 20092009

C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49 (2008) 1.C. Bastos, O. Bertolami, N. Dias and J. Prata, Phys. Rev. D 78 (2008)

023516.C. Bastos and O. Bertolami, Phys. Lett. A 372 (2008) 5556.

Phase-space Noncommutative Phase-space Noncommutative Quantum Mechanics (QM):Quantum Mechanics (QM):

Quantum Field TheoryQuantum Field TheoryCConnection with Quantum Gravity and onnection with Quantum Gravity and String/M- theoryString/M- theory

Find dFind deviations from the predictions of eviations from the predictions of QM QM

PresumedPresumed signature of Quantum Gravity. signature of Quantum Gravity.

Obtain a phase-space formulation of a noncommutative extension of QM in arbitrary number of dimensions;

Show that physical previsions are independent of the chosen SW map.

Noncommutative Quantum Noncommutative Quantum MechanicsMechanics

ijij e e ijij antisymmetric real constant antisymmetric real constant ((ddxxdd)) matrices matrices

Seiberg-Witten mapSeiberg-Witten map: class of non-canonical linear : class of non-canonical linear transformationstransformations Relates standard Heisenberg-Weyl algebra with Relates standard Heisenberg-Weyl algebra with

noncommutative algebranoncommutative algebra NNot uniqueot unique

States of the system:States of the system: Wave functions of the ordinary Hilbert spaceWave functions of the ordinary Hilbert space

Schrödinger equation:Schrödinger equation: Modified Modified ,,-dependent-dependent Hamiltonian Hamiltonian Dynamics of the systemDynamics of the system

Quantum Mechanics Quantum Mechanics –– Deformation Deformation QuantizationQuantization

Self-adjoint operators CSelf-adjoint operators C∞ ∞ functions in functions in flat phase-space;flat phase-space;

DDensity matrix Wigner Function ensity matrix Wigner Function (quasi-distribution);(quasi-distribution);

Product of operators *-product Product of operators *-product (Moyal product);(Moyal product);

Commutator Moyal BracketCommutator Moyal Bracket

Deformation quantization method: leads to a phase space formulation of QM alternative to the more conventional path integral and operator formulations.

Weyl-Wigner map:

*-product:

Generalized coordinates:

Quantum Mechanics Quantum Mechanics –– Deformation Deformation QuantizationQuantization

Kernel representation:

Generalized Weyl-Wigner map:Generalized Weyl-Wigner map:

T : coordinate transformation non-canonicalT : coordinate transformation non-canonical

NNew variables (no longer satisfy the standard ew variables (no longer satisfy the standard Heisenberg algebra):Heisenberg algebra):

Generalized Weyl-Wigner map: Generalized Weyl-Wigner map:

Noncommutative Quantum Noncommutative Quantum Mechanics IMechanics I

SW map:

Generalized coordinates:

S=Sαβ constant real matrixS=Sαβ constant real matrix

Weyl-Wigner map:

Noncommutative Quantum Noncommutative Quantum Mechanics IIMechanics II

Moyal Bracket:

Wigner Function:

*-product:

Independence of WIndependence of Wξξz z from the particular from the particular

choice of the SW map:choice of the SW map: TTwo sets of Heisenberg variables related by unitary wo sets of Heisenberg variables related by unitary

transformation:transformation:

TTwo generalized Weyl-Wigner maps:wo generalized Weyl-Wigner maps:

Is Is AA11(z)=A(z)=A22(z)(z)?? From (a) and (b): From (a) and (b):

Unitary transformation (a)Unitary transformation (a) linear: linear:

(a)

(b)

Bastos et al., J. Math. Phys. 49 (2008) 072101.

Linear diff

Applications:Applications:Noncommutative Gravitational Quantum WellNoncommutative Gravitational Quantum Well

Dependence of the energy level (1Dependence of the energy level (1stst order in order in perturbation theory) on η;perturbation theory) on η;

BBounds for noncommuative parameters, θ and η:ounds for noncommuative parameters, θ and η:

Vanishing of the Berry Phase. Vanishing of the Berry Phase.

Noncommutative Quantum Cosmology:Noncommutative Quantum Cosmology:Kantowski Sachs cosmological model Kantowski Sachs cosmological model

Momentum NC parameter η allows for a selection of Momentum NC parameter η allows for a selection of states.states.

O.B. et al, Phys.Rev. D 72 (2005) 025010.

C.B. and O.B., Phys.Lett. A 372 (2008) 5556.

θ≠0 η=0

θ=0 η≠0

Bastos et al. , Phys.Rev. D 78 (2008) 023516.