22
June 2014 Pavement design and construction technique using high strength stone interlocked cemented aggregate low fines matrix. Gerhard van Blerk

NOC Hi Lab Video

  • Upload
    hadieu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: NOC Hi Lab Video

June 2014

Pavement design and construction technique using high strength stone interlocked cemented aggregate low fines matrix.

Gerhard van Blerk

Page 2: NOC Hi Lab Video

2

2

Introduction:“More for Less”

• Global financial constraints and a steep increase in bitumen prices

• RCA’s are seeking alternative construction techniques (Hi-Lab)

• Embrace the origin of road construction (John Loudon McAdam, 1820) through modern pavement construction techniques

Page 4: NOC Hi Lab Video

4

4

Design Intent:High degree of aggregate interlock

Maximize stone packing, forcing “full” stone on stone interlock through a controlled process of:

• grading (percentage of large aggregate fraction)

• aggregate quality (crushing resistance)• small amount of cement (3%)• construction technique

Page 5: NOC Hi Lab Video

5

5

Material Selection and Properties: Aggregate Grading

0

10

20

30

40

50

60

70

80

90

100

Hi-Lab40 AP40 RCC

0.075 1.18 4.75 9.50 19.0 37.5 63.0

SIEVE SIZE (mm)

% P

ASSI

NG

Hi-Lab40 vs AP40 vs RCC Grading Envelope

Page 6: NOC Hi Lab Video

6

6

Hi-Lab Construction Technique: Aggregate Placing

Page 7: NOC Hi Lab Video

7

7

Hi-Lab Construction Technique: Placing and Grading

Page 8: NOC Hi Lab Video

8

8

Hi-Lab Construction Technique: Cement Spreading

Page 9: NOC Hi Lab Video

9

9

Hi-Lab Construction Technique: Subbase Stabilization (mixing process)

Page 10: NOC Hi Lab Video

10

10

Hi-Lab Construction Technique: Base Stabilization (mixing process)

Page 11: NOC Hi Lab Video

11

11

Material Selection and Properties: Aggregate Grading

Page 12: NOC Hi Lab Video

12

12

Hi-Lab Construction Technique: Compaction and Final Surface

Page 13: NOC Hi Lab Video

13

13

Hi-Lab Construction Technique: Compaction and Final Surface

Page 14: NOC Hi Lab Video

14

14

Hi-Lab Construction Technique: Engineering Properties (Strength)

• Indirect Tensile Strength (ITS)

Page 15: NOC Hi Lab Video

15

15

Hi-Lab Construction Technique: Engineering Properties (Strength)

• Beam Fatigue Tensile Strain

Page 16: NOC Hi Lab Video

16

Hi-Lab Construction Technique: Engineering Properties (Strength)

16

Page 17: NOC Hi Lab Video

17

Hi-Lab Construction Technique: Engineering Properties (Strength)

17

Page 18: NOC Hi Lab Video

18

Hi-Lab Construction Technique: Engineering Properties (Strength)

18

Page 19: NOC Hi Lab Video

19

19

Hi-Lab Construction Technique: Observed Performance

Benkelman Beam Deflections

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Tatuanui(SectionA)

Tatuanui(SectionB)

Tatuanui(SectionC)

Te Rapa(Section A)

Te Rapa(Section B)

Taupiri Orini

Project Name

Ymax

(Ave

rage

Val

ue)

Selected Sand Layer Hi-Lab65 (Subbase Layer) Hi-Lab40 (Base Layer)

Back-calculated Stiffness (MPa)

0

1000

2000

3000

4000

5000

6000

Selected Sand Layer Hi-Lab65 (Subbase Layer) Hi-Lab40 (Base Layer) Selected Sand Layer Hi-Lab65 + Hi-Lab40 (LayersCombined)

Project Name

Med

ian

Stiff

ness

(MPa

)

Tatuanui Te Rapa Orini

Page 20: NOC Hi Lab Video

20

2020

Case Studies: Cost Saving

• Substantial cost savings without sacrificing performance.

• Pavement construction cost savings between 30% to 40%.

• Base layer construction cost savings between 100% to 400% e.g. SAC ($100/m^2) – Hi-Lab ($25/m^2).

Page 21: NOC Hi Lab Video

21

2121

Conclusion/Summary:

• Realizing the proven performance associated with the Macadam design theory through modern stabilization equipment.

• Observed engineering properties are very promising.

• Case studies shows this technique to be a viable alternative to more costly options.

Page 22: NOC Hi Lab Video

22

22