NMR Petrophysics

Embed Size (px)

Citation preview

  • 8/12/2019 NMR Petrophysics

    1/72

    Lecture Presentation

    PGE368Fall 2001 Semester

    December 5 and 7

    Fundamentals of Nuclear Magnetic Resonance

    Logging

    Carlos Torres-Verdn, Ph.D. Assistant Professor

  • 8/12/2019 NMR Petrophysics

    2/72

    Bedding scale Well logs

    Stratum scale

    Core plug scalePore scale

  • 8/12/2019 NMR Petrophysics

    3/72

    SPIN MAGNETIZATION

    N

    S Proton

    H

    Hydrogen

  • 8/12/2019 NMR Petrophysics

    4/72

    PRECESSION

    B

    Parallel

    Antiparallel

    100,006

    100,000

    oBo

    Larmor Precession

    freq. = 4258 HGauss

    z B o

  • 8/12/2019 NMR Petrophysics

    5/72

    ELEMENTAL NMR RESPONSE

    Nucleus[most common

    applications in log &core analysis]

    2ss

    Naturalabundance

    (%)

    Relativesensitivity I (Hz/Gau )

    4257.591H[core and log]

    2

    H[aqueous phase]13 C

    [need high freq.]19

    F[nonwetting phase]

    1/2 99.99 1.000

    653.57 1 0.015 0.0097

    1070.5 1/2 1.10 0.0159

    4005.5 1/2 100.00 0.83323 Na

    [salinity]11.26 3/2 100.00 0.0925

  • 8/12/2019 NMR Petrophysics

    6/72

    TRANSVERSAL TIPPING

  • 8/12/2019 NMR Petrophysics

    7/72

    TRANSVERSAL TIPPING and PROTON PRECESSION

  • 8/12/2019 NMR Petrophysics

    8/72

  • 8/12/2019 NMR Petrophysics

    9/72

    BASIC NMR INSTRUMENTATION COMPONENTS

    B1

    B0N

    S

    A time-constant magneticfield used to polarize thespins

    A time-varying RFmagnetic field to excitethe spins

    A magnetic receptor tomeasured the spinresponse

  • 8/12/2019 NMR Petrophysics

    10/72

    COMMERCIAL NMR WIRELINE TOOLS

    MRIL CMR

    B 0

    Magnet

    B1

    vs. Homogeneous B 0Gradient field

  • 8/12/2019 NMR Petrophysics

    11/72

  • 8/12/2019 NMR Petrophysics

    12/72

    LONGITUDINAL AND TRANSVERSE RELAXATION

    TW

    T2 T1

    TETw= wait timeTE= inter-echo timeT1= Longitudinal magnetization build upT2= Transverse magnetization decay

  • 8/12/2019 NMR Petrophysics

    13/72

    T1 BUILD-UP OF OILS

    T1 Buildup

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0

    . 5 1 1

    . 5 2 2

    . 5 3 3

    . 5 4 4

    . 5 5 5

    . 5 6 6

    . 5 7 7

    . 5 8 8

    . 5 9 9

    . 5 1 0

    1 0

    . 5 1 1

    1 1

    . 5 1 2

    1 2

    . 5 1 3

    1 3

    . 5 1 4

    1 4

    . 5 1 5

    Time (sec.)

    % P

    o l a r i z a

    t i o n

    0.2 cP

    0.4 cP0.6 cP

    0.8 cP

    1 cP

    2 cP

    4 cP

    Water (512 m)

    Water (256 ms)

    Water (64 ms)

    Water (16 ms)

  • 8/12/2019 NMR Petrophysics

    14/72

    TRANSVERSE RELAXATIONAmplitude Decay Explanation

  • 8/12/2019 NMR Petrophysics

    15/72

    Gradient Field and DiffusionGradient Field and Diffusion

    TT11

    TT22

    BB 00 BB 00 BB 00 BB 00BB 00

    f f f f f f f f --f f Diffusion during the pulse sequence causes a reductionDiffusion during the pulse sequence causes a reduction

    in signal amplitude with time and decreases T2.in signal amplitude with time and decreases T2.

    MM

    TimeTime

  • 8/12/2019 NMR Petrophysics

    16/72

    Elements of T2 DecayElements of T2 Decay

    (Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

    1

    2T

    = + + 1T 2D

    S

    V

    1T 2b

    Bulk Fluid Relaxivity

    Surface Relaxivity Pore Surface Area to Volume RatioPore Surface Area to Volume Ratio

    Diffusion DecayDiffusion Decay

    lP i C l T2 D

  • 8/12/2019 NMR Petrophysics

    17/72

    Primary Controls on T2 DecayPrimary Controls on T2 Decay

    (Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

    1122

    T T == ++ ++S S

    V V 11

    T T 2b2b

    Pore Fluid Viscosity

    Pore Fluid Diffusivity

    Magnetic Field GradientInter-Echo Spacing (TE)

    11T T 2D2D

    Pore Size & Geometry

    M a g n e t i c

    s

    Pore Mineralogy

    Wettability

  • 8/12/2019 NMR Petrophysics

    18/72

    TT22 Decay and Pore SizeDecay and Pore Size(Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

    0

    20

    40

    60

    80

    100

    0 50 100 150 200 250 300 350 400 450 500

    Time (ms)

    E c h

    o A m p

    l i t u d e

    ( p u

    ) Small Pore Size = Rapid Decay RateLarge Pore Size = Slow Decay Rate

  • 8/12/2019 NMR Petrophysics

    19/72

    M ltiM lti ti l Dti l D

  • 8/12/2019 NMR Petrophysics

    20/72

    MultiMulti --exponential Decayexponential Decay

    == por por .. ee -- t / Tt / T 22

    16 64 25616 64 256

    TT22 (ms)(ms)

    I n c r e m e n

    t a l

    I n c r e m e n

    t a l

    ( ( p u p u

    ) )

    1010

    151564 ms64 ms

    16 ms16 ms

    256256

    msms

    55

    = 30p.u.= 30p.u.

    tt

    y = 5y = 5 .. ee --t/t/ 1616 + 10+ 10 .. ee --t/t/ 6464 + 15+ 15 .. ee --t/t/ 256256

  • 8/12/2019 NMR Petrophysics

    21/72

    T2 RELAXATION AND PORE SIZE

    0.5 100101.0 1,000

    T2 ms

    Clay Silt Fine Coarse

    Clay Domain

    2 = 1 m/sSand Domain

    2 = 5 m/s

    d b k

  • 8/12/2019 NMR Petrophysics

    22/72

    Water-Wet Hydrocarbon-Bearing Rock Formation

    Clay

    Wilcox SandOklahoma City

    1 cm

    Close-Up

    Effect of Pore Size on T2 SpectraEffect of Pore Size on T2 Spectra

  • 8/12/2019 NMR Petrophysics

    23/72

    Effect of Pore Size on T2 SpectraEffect of Pore Size on T2 Spectra

    I n c r e m e n

    t a l P o r o s

    i t y

    [ p u

    ]

    T2 [msec]

    0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1. 10. 100. 1000. 10000.

    T2 Spectra @ Sw = 1.0

    Formation AFormation B

    T2 Cut-off

    Small Pores Large PoresMicro-Pores

    NMR = 25 pu

    Formation B (high-k)

    Formation A (Low-k)

    BVI = 10 pu BVM = 15 pu

    BVI = 6 pu BVM = 19 pu

    (Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

  • 8/12/2019 NMR Petrophysics

    24/72

    SurfaceSurface RelaxivityRelaxivity and Tand T 22 DecayDecay

    Controls on SurfaceControls on Surface Relaxivity Relaxivity

    Pore surface mineralogyPara, ferri, and ferro-magnetic ions (e.g., Fe 3+ , Mn 2+)

    Wettability

    Effects ofEffects of VariationsVariations (Wetting Phase Only)(Wetting Phase Only)

    Higher results in faster T 2 Decay

    Lower results in slower T 2 Decay

    SurfaceSurface RelaxivityRelaxivity and Tand T DecayDecay

  • 8/12/2019 NMR Petrophysics

    25/72

    SurfaceSurface RelaxivityRelaxivity and Tand T 22 DecayDecay

    (Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

    Low (Carbonates)High (Clastics)

    E c

    h o

    A m p

    l i t u d e

    [ p u

    ]

    I n c r e m e n t a

    l P o r o s

    i t y

    [ p u

    ]

    T2 [ms]

    0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1.0 10. 100. 1000. 10000.

    NMR porosity

    Time [ms]

    SurfaceSurface RelaxivityRelaxivity and Tand T 22 DecayDecay

  • 8/12/2019 NMR Petrophysics

    26/72

    SurfaceSurface RelaxivityRelaxivity and Tand T 22 DecayDecay

    Low (Carbonates)High (Clastics)

    22 --phase Fluid System, Wetting Phasephase Fluid System, Wetting Phase@ Irreducible Saturation@ Irreducible Saturation

    E c

    h o

    A m p

    l i t u d e

    [ p u

    ]

    I n c r e m e n t a

    l P o r o s

    i t y [ p u

    ]

    T2 [ms]

    0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1.0 10. 100. 1000. 10000.

    NMR porosity

    Time [ms]

  • 8/12/2019 NMR Petrophysics

    27/72

    Effect of Magnetic Ions on TEffect of Magnetic Ions on T 22 DecayDecay

    The presence of Para, ferri, and ferro-magnetic ions (e.g., Fe 3+ , Mn 2+

    will increase and produce internal magnetic field gradients which

    attenuate echo amplitudes due to accelerated diffusion decay (T 2D).Mineral Constituents with Low Magnetic SusceptibilitMineral Constituents with Low Magnetic Susceptibilit

    Mineral Constituents with High Magnetic SusceptibilitMineral Constituents with High Magnetic Susceptibilit

    NMR porosity

    Time [ms]

    E c

    h o

    A m p

    l i t u d e

    [ p u ]

    I n c r .

    P o r o s

    i t y

    [ p u

    ]

    T2 [ms]0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1. 10. 100. 1000. 10000.

    Basic NMR Field DeliverableBasic NMR Field Deliverable

  • 8/12/2019 NMR Petrophysics

    28/72

    Basic NMR Field DeliverableBasic NMR Field Deliverable

    GR T 2 Spectra Resistivity &Permeability Pore Volumetrics

    Formation Tester Data and NMR Data

  • 8/12/2019 NMR Petrophysics

    29/72

    Formation Tester Data and NMR Data

    Patagonia Example

  • 8/12/2019 NMR Petrophysics

    30/72

    g p

  • 8/12/2019 NMR Petrophysics

    31/72

    Patagonia

    Example

  • 8/12/2019 NMR Petrophysics

    32/72

    PatagoniaExample

  • 8/12/2019 NMR Petrophysics

    33/72

    China Example

  • 8/12/2019 NMR Petrophysics

    34/72

    VenezuelaExample

    Petrophysical Applications of NMR DataPetrophysical Applications of NMR Data

  • 8/12/2019 NMR Petrophysics

    35/72

    Mineralogically-Independent Porosities ( Total & Effective )

    Clay-Bound Water Volume

    Capillary-Bound Water & Free Fluid Volumes

    Pore Size Distribution ( Single Phase Fluid Saturation )

    Permeability ( With calibration to core or test data )Shale Volume & Distribution

    Flushed Zone Fluid Saturations ( DTW analysis )

    Hydrocarbon Viscosity ( DTE analysis )

    Electrical Properties & Water Saturation ( Integrated Products )

    Basic MRIL Field DeliverableBasic MRIL Field Deliverable

  • 8/12/2019 NMR Petrophysics

    36/72

    Basic MRIL Field Deliverable

    GR T 2 Spectra Resistivity &Permeability Pore Volumetrics

    Basic NMR DataBasic NMR Data

  • 8/12/2019 NMR Petrophysics

    37/72

    Basic NMR DataBasic NMR Data

    NMR measurements provideNMR measurements provide ::Echo Amplitudes

    Echo Decay RatesCalibrated transforms provide:

    Mineralogically Independent Porosities.

    Clay Bound Water

    Capillary Bound Water & Free Fluid Volumes

    Permeability

    Echo Train Inversion ProcessingEcho Train Inversion Processing

  • 8/12/2019 NMR Petrophysics

    38/72

    C u m u

    l a t i v e

    P o r o s i t y

    [ p u

    ]

    I n c r e m e n

    t a l P o r o s i t y

    [ p u

    ]

    T2 [msec]

    0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1. 10. 100. 1000. 10000.

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    16.0

    multi-exponential fit

    to spin-echo amplitudes

    NMR porosity

    Time [msec]

    E c

    h o A m p

    l i t u d e

    [ p u

    ]

    Acquisition Time Domain T2 Relaxation Time DomainInversion

    Processing

    NMR Porosity DefinitionsNMR Porosity Definitions

  • 8/12/2019 NMR Petrophysics

    39/72

    yy

    Effective - Pore volume excluding clay bound water.

    Total - Pore volume including clay bound water.CBW - Clay bound water, which represents anion-freewater adsorbed within clay inter-layers.

    BVI - Bulk volume irreducible water which includeswater retained by capillary forces in small pores, andwater wetting pore surfaces.

    BVM - Free-fluid volume which is available forhydrocarbon storage and fluid flow.

    MRIL PorosityMRIL Porosity -- Test Pit VerificationTest Pit Verification

  • 8/12/2019 NMR Petrophysics

    40/72

    Echo Spacing of 1.75 ms

    E c

    h o

    A m

    p l i t u d e

    1500 15 1351201059075604530

    BVM = 20.30 puMRIL = 26.25 pu

    BVI = 5.95 pu

    Time ( ms )

    25

    20

    15

    10

    5

    Limestone Block

    core = 25.5%

    E c

    h o

    A m p

    l i t u d e

    0 15 1501351201059075604530

    MRIL = 19.82 pu

    BVM = 15.61 pu

    BVI = 4.21 puEcho Spacing of 1.5 ms

    Time (ms)

    20

    15

    10

    5

    Berea Sandstone Block

    core = 20.3%

    BVM Fit ResultsEcho Amplitude Complete Echo Fit Results

    MineralogyMineralogy --Independent PorosityIndependent Porosity

  • 8/12/2019 NMR Petrophysics

    41/72

    Gulf of Mexico SandstoneGulf of Mexico Sandstone Middle East CarbonateMiddle East Carbonate

    20

    Core Porosity (%)

    M R I L P o r o s

    i t y

    ( % )

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 2 4 6 8 10 12 14 16 180

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 0.05 0.1 0.15 0.2 0.25 0.3

    Core Porosity (frac.)

    M R I L P o r o s i t y

    ( f r a c . )

    Porosity ConsiderationsPorosity Considerations

  • 8/12/2019 NMR Petrophysics

    42/72

    y

    Although NMR porosity isAlthough NMR porosity is mineralogicallymineralogicallyIndependent, it is not fluid independent.Independent, it is not fluid independent.

    NMR porosity can be too low whenNMR porosity can be too low when :: Hydrogen Index of reservoir fluids < 1.0Hydrogen Index of reservoir fluids < 1.0 Reservoir fluids with long T1 are only partiallyReservoir fluids with long T1 are only partially

    polarized due to insufficient acquisition wait time (TW)polarized due to insufficient acquisition wait time (TW) Solid hydrocarbons (tar) are present with relaxationSolid hydrocarbons (tar) are present with relaxation

    rates faster than the measurement time windowrates faster than the measurement time window

    Internal gradients caused from magnetic mineralsInternal gradients caused from magnetic mineralsaccelerate NMR echo decay to below measurementaccelerate NMR echo decay to below measurementtime windowtime window

    T2 Decay and Pore SizeT2 Decay and Pore Size

  • 8/12/2019 NMR Petrophysics

    43/72

    y

    (Wetting Phase Saturation = 100%)(Wetting Phase Saturation = 100%)

    Pore Volumetric DistributionPore Volumetric Distribution

  • 8/12/2019 NMR Petrophysics

    44/72

    E c h o

    A m p

    l i t u

    d e

    0 15 1501351201059075604530

    Time (ms)

    20

    15

    10

    5

    0.00

    1.00

    2.00

    3.00

    4.00

    0.1 1 10 100 1000 10000

    BVI BVM

    4.00

    0.00

    1.00

    2.00

    3.00

    I n c r e m e n

    t a l P o r o s

    i t y

    ( p u )

    CBW

    MatrixMatrix DryDryClayClay

    Clay-Clay-BoundBoundWater Water

    MobileMobileWater Water

    CapillaryCapillaryBoundBoundWater Water

    HydrocarbonHydrocarbon

    T2 Decay

    NMR Porosity

    T2 Decay (ms)

    T2 Cutoffs

    Transform

    BulkBulk VolumetricsVolumetrics -- Light HCLight HC

  • 8/12/2019 NMR Petrophysics

    45/72

    Matrix DryClay

    Clay-BoundWater

    MobileWater

    MobileHC

    Capillary-BoundWater

    Res.HC

    MBVM

    MPHS

    MPHE

    MBVIMCBW

    Effect of Oil Saturation & TEffect of Oil Saturation & T 22 SpectraSpectra

  • 8/12/2019 NMR Petrophysics

    46/72

    Adapted fromAdapted from StraleyStraley et al, Log Analyst (Jan. 1995)et al, Log Analyst (Jan. 1995)

    OilOil

    Water Water

    SwSw = 100%= 100%

    SwSw = 76%= 76%

    SwSw = 57%= 57%

    SwSw = 34%= 34%

    SwSw = 0%= 0%

    Bulk OilBulk Oil

    TT22

    T2 Decay in a 2T2 Decay in a 2 --Phase SystemPhase System

  • 8/12/2019 NMR Petrophysics

    47/72

    Wetting Phase Relaxivity

    ++ 11T T 2D2D water water

    11T T 2b2b water water

    11T T

    == ++ S S V V 2b2b water water

    ((SwSw ))S S V V

    Non-Wetting Phase Relaxivity

    11

    22hchcT T

    == ++ 11T T 2D2D hchc

    11T T 2b2b hchc

    T2 Spectra for Various Fluid TypesT2 Spectra for Various Fluid Types

  • 8/12/2019 NMR Petrophysics

    48/72

    Water Water

    OilOil

    GasGas

    Effect of Pore Size on T2 SpectraEffect of Pore Size on T2 Spectra

  • 8/12/2019 NMR Petrophysics

    49/72

    Small Pores Large PoresMicro-Pores

    NMR = 25 pu

    Formation B (high-k)

    Formation A (Low-k)

    BVI = 10 pu BVM = 15 pu

    BVI = 6 pu BVM = 19 pu

    I n c r e m e n

    t a l P o

    r o s

    i t y

    [ p u ]

    T2 [msec]

    0.00

    0.50

    1.00

    1.50

    2.00

    0.1 1. 10. 100. 1000. 10000.

    T2 Spectra @ Sw = Swir

    Formation AFormation B

    T2 Cut-off

    (2(2 --Phases with Wetting Phase Saturation @ Irreducible)Phases with Wetting Phase Saturation @ Irreducible)

    Default TDefault T 22 CutCut --off Valuesoff Values

  • 8/12/2019 NMR Petrophysics

    50/72

    T 2 [msec]

    Carbonates : 92 msecSandstones : 33 msec

    0.00

    1.00

    2.00

    3.00

    4.00

    0.1 1 10 100 1000 10000

    BVI BVM

    4.00

    0.00

    1.00

    2.00

    3.00T2 Cut-off

    I n c r e m e n

    t a l P o r o s

    i t y

    ( p u

    )

    CBW

    CoreCore -- Calibration ProcessCalibration Process

  • 8/12/2019 NMR Petrophysics

    51/72

    Capillary Pressure DataCore NMR Data

    Calibrate BVI Model

    Core Perm DataCalibrate Permeability Model

    TT22 CutCut --off from Core NMRoff from Core NMR

  • 8/12/2019 NMR Petrophysics

    52/72

    -- Obtain two core NMR measurements at:Obtain two core NMR measurements at:

    SwSw = 1.0= 1.0SwSw == Swir Swir (obtained with centrifuging)(obtained with centrifuging)

    -- Determine TDetermine T 22 cutcut --off where the terminaloff where the terminalcumulative porosity @cumulative porosity @ SwSw == SwirSwir is equalis equalto the cumulative porosity @to the cumulative porosity @ SwSw = 1.0.= 1.0.

    T2 Cut-offs from Core NMR

  • 8/12/2019 NMR Petrophysics

    53/72

    T2 (ms)10 10 100 2 4

    0

    5

    10

    15

    C

    u m u

    l a t i v e

    ( p u )

    T2 cut-off (Sxo = Swi)

    S w = 1.0

    S w (air-brine) = S wir

    BVI

    T2 cut-off(Sxo = 1.0)

    S w (oil-brine) = S wir

  • 8/12/2019 NMR Petrophysics

    54/72

    TT22 CutCut --off from Pc & Log NMR Dataoff from Pc & Log NMR Data

  • 8/12/2019 NMR Petrophysics

    55/72

    0 100

    Sw (%)

    Pc

    T2 cutoff Capillary Pressure Data

    Swir core

    BVIcore

    NMR Post-Processing

    Cumulative LogNMR Porosity

    10 0 10 3T2 (ms)

    4 8 16 32 64 128 256 512

    T2 (ms)

    BVI BVM

    Integrated Petrophysical Analysis ResultsIntegrated Petrophysical Analysis Results

  • 8/12/2019 NMR Petrophysics

    56/72

    Resistivity &Permeability

    RockVolume

    FluidSaturation

    PoreVolume

    T2Spectra

  • 8/12/2019 NMR Petrophysics

    57/72

  • 8/12/2019 NMR Petrophysics

    58/72

  • 8/12/2019 NMR Petrophysics

    59/72

    Permeability from NMRPermeability from NMR

  • 8/12/2019 NMR Petrophysics

    60/72

    k k

    aa

    S S wir wir

    11 -- S S wir wir

    C C

    bb

    =

    Generalized CoatesGeneralized Coates --Timur Timur Model:Model:

    This model is designed to compute the effective (nonThis model is designed to compute the effective (non --wettingwettingphase) permeability model based on the lower permeabilityphase) permeability model based on the lower permeabilityboundary condition which is controlled by the ratio of nonboundary condition which is controlled by the ratio of non --wetting phase (1wetting phase (1 --Swir Swir ) to wetting phase () to wetting phase ( Swir Swir ) saturation .) saturation .

    Permeability from NMRPermeability from NMR

  • 8/12/2019 NMR Petrophysics

    61/72

    Coates-Timur Model ( NMR version ):

    NMR NMR

    BVI BVI

    BVM BVM

    C C k k

    bb

    = aa

    Where default parameters are: C =10 , a = 4 & b = 2

  • 8/12/2019 NMR Petrophysics

    62/72

    BVI Dependence on CapillaryBVI Dependence on CapillaryPressure/Height above FWLPressure/Height above FWL

  • 8/12/2019 NMR Petrophysics

    63/72

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 50 100 150 200 250 300 350 400 450

    Capillary Pressure (psi)

    N M R P r e d

    i c t e d B V I ( % )

    Calibration Pc

    BVI at calibration Pc

    Capillary Drainage Curve

    CoatesCoates --Timur Timur Permeability vs. Column HeightPermeability vs. Column Height

    24

  • 8/12/2019 NMR Petrophysics

    64/72

    Coates-Timur Permeability

    k = (20 / 10) 4 (15.7 / 4.3) 2 = 213 md

    NMR = 20 pu

    2

    k

    = BVI

    BVI NMR 4

    10

    NMR

    P c

    ( p s

    i )

    1 10 100 10000 20 40 60 80 100

    Sw (%)

    0

    250

    100

    150

    200

    50

    T2 (ms)

    T2 Cut-off @ Reference Pc

    Capillary Pressure T2 Spectra

    BVI = 4 pu

    BVI = 4.3 pu

    BVI = 6 pu

    BVI = 5 pu

    k = (20 / 10) 4 (16 / 4)2 = 256 md

    k = (20 / 10) 4 (15 / 5)2 = 144 md

    k = (20 /10) 4 (14 /6)2 = 87 md

    k absolute = 256 md

    Limitations of CoatesLimitations of Coates --TimurTimurPermeability ModelPermeability Model

  • 8/12/2019 NMR Petrophysics

    65/72

    Application of the model is predicated on assumption thatApplication of the model is predicated on assumption that

    the porosity is all interconnected, and that pore throatthe porosity is all interconnected, and that pore throatdiameterdiameter sytematicallysytematically increases proportional to an increaseincreases proportional to an increasein the magnitude of the bulk free fluid volume (BVM).in the magnitude of the bulk free fluid volume (BVM).

    Computed permeability may systematically increase as afunction of increasing height above free water level. Thiseffect is most likely to occur for lower quality reservoirs withhighly sloped capillary pressure curves, but should not bean issue for very high permeability reservoirs wherecapillary presure curves are near-asymptotic.

    Model Losses sensitivity at very high permeabilities whereirreducible water saturation is on the asymptote of thecapillary pressure curve, and porosity doesnt increaserelative to increased pore size and/or pore throat size.

    Calibration of Coates-Timur Permeability Model

  • 8/12/2019 NMR Petrophysics

    66/72

    Local calibration of model fitting parameters (C, a & b) arenecessary to account for variations in the complexity andconnectivity of the pore system, which control thepermeability and its correlation to the bulk pore volumetric

    elements of which model is strictly comprised.

    Multi-linear regression can be employed to solve for the theformation-specific fitting parameters (C, m & n) whenreference permeability data from core or formation tests areavailable.

    Minimum error analysis can also be employed to solve foran optimum value of the porosity denominator C whileholding parameters a and b constant at default values.

    Multiple Water SaturationMultiple Water Saturation ModelsModels

  • 8/12/2019 NMR Petrophysics

    67/72

    ShaleShale --Free Conductance ModelFree Conductance Model

    ArchieArchie

    Laminated Shale Conductance ModelLaminated Shale Conductance Model

    PouponPoupon --LeveauxLeveaux (Indonesian)(Indonesian)

    DoubleDouble --Layer Dispersed Clay Conductance ModelsLayer Dispersed Clay Conductance Models

    WaxmanWaxman --SmitsSmits

    DualDual --WaterWater

    Mixed DispersedMixed Dispersed --Clay / Laminar Clay / Laminar --Shale Conductance ModelShale Conductance Model

    PatchettPatchett --HerrickHerrick

    WaxmanWaxman -- SmitsSmits Water Saturation ModelWater Saturation Model

  • 8/12/2019 NMR Petrophysics

    68/72

    C t C w

    F* S wn* =

    F* S w

    B Q v

    WaxmanWaxman --SmitsSmits Model:Model:

    Where, F* is the Total Formation ResistivityFactor, and Q v = Total Q v

    PatchettPatchett --Herrick Water Saturation ModelHerrick Water Saturation Model

  • 8/12/2019 NMR Petrophysics

    69/72

    PatchettPatchett --Herrick Model:Herrick Model:

    C t = (1 - V sh ) C w

    F* S wn*

    F* S w

    B Q v (V sh C sh )

    Where, V sh = Laminar Shale Volume, F* is theFormation Resistivity Factor of the Sand layers,and Q v = Q v of Dispersed Shale in Sand Layers

    CoreCore --Calibrated Analyses ResultsCalibrated Analyses Results

    Permeability & T2Rock Fluid Porosity

  • 8/12/2019 NMR Petrophysics

    70/72

    Permeability &

    Resistivity

    T2

    Spectra

    Rock

    Volumetrics

    Fluid

    Saturations

    Porosity

    Volumetrics

  • 8/12/2019 NMR Petrophysics

    71/72

  • 8/12/2019 NMR Petrophysics

    72/72