1
Rebecca Hornbrook 1, *, Eric Apel 1 , Dan Riemer 2 , Alan Hills 1 , Greg Huey 3 , Dan O’Sullivan 4 , Don Blake 5 , Armin Wisthaler 6 , Paul Wennberg 7 , and the DC3 Science Team 1 Atmospheric Chemistry Division, NCAR, Boulder, CO, *[email protected]; 2 University of Miami 3 Georgia Institute of Technology, 4 United States Naval Academy, 5 University of California – Irvine, 6 University of Innsbruck, 7 California Institute of Technology Trace Organic Gas Analyzer (TOGA) Case Study 1: 29-May, Oklahoma Convection Fast online GC/MS VOC measurement Up to 53 different VOCs High sensitivity: detection limits of NMHCs & OVOCs to ppt, many halocarbons to sub-ppt 35-s integrated measurements every 2 min Altitude independent 0 - 50,000 feet Fig. 1. Simplified schematic of the TOGA. NMHC OVOCs HVOCs i-butane formaldehyde CH 3 Cl n-butane acetaldehyde CH 2 Cl 2 i-pentane propanal CHCl 3 n-pentane butanal CCl 4 2-methylpentane pentanal CH 3 Br n-hexane 2-pentanone CH 2 Br 2 n-heptane acrolein CHBr 3 propene methacrolein CHBr 2 Cl i-butene methanol CH 2 ClI 1,2-butadiene ethanol CH 2 I 2 isoprene acetone a-pinene methyl ethyl ketone (MEK) b-pinene methyl t-butyl ether (MTBE) camphene methyl vinyl kentone (MVK) limonene benzene Other toluene HCN ethylbenzene+m-/p-xylene CH 3 CN o-xylene dimethyl sulfide (DMS) 2-methyl-3-butene-2-ol (MBO) DC3 Targeted Compounds GC Oven 16x10 3 12 8 4 0 altitude, m 20:00 21:00 22:00 23:00 00:00 01:00 29-May-12 RF06, UTC 600 500 400 300 200 100 0 MEK, pptv 4000 3000 2000 1000 0 n-butane, pptv 42 40 38 36 34 32 30 Latitude, °N GV altitude Latitude MEK n-butane 4000 3000 2000 1000 0 n-butane, pptv 20:00 5/29 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 5/30 00:30 DC-8, 29-May-12 14 12 10 8 6 4 2 0 Altitude, km 42 40 38 36 34 32 30 Latitude, °N DC-8 Altitude Latitude n-butane (WAS) Case Study 2: 22-June, Colorado Convection + High Park fire 2000 1500 1000 500 0 n-butane, pptv 20:00 6/22 21:00 22:00 23:00 00:00 6/23 01:00 02:00 DC-8, 22-June-12 14 12 10 8 6 4 2 0 Altitude, km 42 41 40 39 38 37 36 Latitude, °N 50x10 -3 40 30 20 10 0 CH 3 CN, ppbv DC-8 Altitude Latitude n-butane (WAS) CH 3 CN (PTR-MS) 400 350 300 250 200 150 100 CH 3 CN, pptv 23:30 00:00 00:30 01:00 01:30 02:00 22-Jun-12 RF17, UTC 250 200 150 100 50 0 n-butane, pptv 16x10 3 12 8 4 0 altitude, m 1200 1000 800 600 400 200 HCN, pptv 100 80 60 40 20 0 Acrolein, pptv 43 42 41 40 39 38 Latitude GV Altitude Latitude acrolein (TOGA) CH 3 CN (TOGA) HCN (TOGA) n-butane (TOGA) 1 10 100 1000 [VOC], pptv CH2O CH3CHO acrolein propanal butanal acetone MEK methanol ethanol 2.0 1.5 1.0 0.5 0.0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow [VOC] inflow (GV) [VOC] outflow (GV) [VOC] inflow (DC8) [VOC] outflow (DC8) [VOC] ratio (GV) [VOC] ratio (DC8) 1 10 100 1000 [VOC], pptv propane n-butane i-butane n-pentane i-pentane n-hexane n-heptane propene 1,3-butadiene benzene toluene C8-aromatics 2.0 1.5 1.0 0.5 0.0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow 1 10 100 1000 [VOC], pptv HCN CH3CN DMS HNO3 H2O2 MHP CH2Br2 CHBr3 isoprene MVK+methacrolein a-pinene 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow 16x10 3 12 8 4 0 altitude, m 20:00 21:00 22:00 23:00 00:00 01:00 02:00 22-Jun-12 RF17, UTC 400 350 300 250 200 150 100 CH 3 CN, pptv 400 300 200 100 0 Butane, pptv 43 42 41 40 39 38 37 36 Latitude, °N GV altitude Latitude CH 3 CN (TOGA) n-butane (TOGA) Fig. 2. GV (yellow) and DC-8 (mauve) flight tracks. Fig. 3. Time series for n-butane from DC-8 (left) and GV (right) flights. Inflow periods and outflow periods were determined using elevated butane. Fig. 4. Plots of average inflow and outflow mixing ratios for a number of observed species. (bars), and ratios of species to n-butane in outflow vs. inflow. Fig. 5. Above, GV (cyan) and DC-8 (pink) flight tracks, and (right) smoke entrained Into convection from High Park fire. Installed on the GV Fig. 6. Time series for n-butane and CH 3 CN from DC-8 (above) and GV (right) flights. Inflow periods and outflow periods were determined using elevated butane from two convection events between 22:00 and 23:00 (a), and between 23:30 and 02:00, (b) with and (c) without elevated fire-tracer acrolein. 0.1 1 10 100 1000 [VOC], pptv CH2O CH3CHO acrolein propanal butanal acetone MEK methanol ethanol 2.0 1.5 1.0 0.5 0.0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow 0.1 1 10 100 1000 [VOC], pptv propane n-butane i-butane n-pentane i-pentane n-hexane n-heptane propene 1,3-butadiene benzene toluene C8-aromatics 4 3 2 1 0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow 0.1 1 10 100 1000 [VOC], pptv HCN CH3CN DMS HNO3 H2O2 MHP CH2Br2 CHBr3 isoprene MVK+methacrolein a-pinene 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ([VOC]/[n-C 4 ]) outflow /([VOC]/[n-C 4 ]) inflow [VOC] DC-8 inflow [VOC] DC-8 outflow DC-8 ratio [VOC] GV inflow [VOC] GV outflow (a) GV ratio (a) [VOC] GV outflow (b) GV ratio (b) [VOC] GV outflow (c) GV ratio (c) Fig. 7. Plots of average inflow and outflow mixing ratios for a number of observed species. (bars), and ratios of species to n-butane in outflows vs. inflow.

NMHC OVOCs HVOCs - University Corporation for ... 5...Rebecca Hornbrook1,*, Eric Apel1, Dan Riemer2, Alan Hills1, Greg Huey3, Dan O’Sullivan4, Don Blake5, Armin Wisthaler6, Paul

Embed Size (px)

Citation preview

Page 1: NMHC OVOCs HVOCs - University Corporation for ... 5...Rebecca Hornbrook1,*, Eric Apel1, Dan Riemer2, Alan Hills1, Greg Huey3, Dan O’Sullivan4, Don Blake5, Armin Wisthaler6, Paul

Rebecca Hornbrook1,*, Eric Apel1, Dan Riemer2, Alan Hills1, Greg Huey3, Dan O’Sullivan4,

Don Blake5, Armin Wisthaler6, Paul Wennberg7, and the DC3 Science Team

1Atmospheric Chemistry Division, NCAR, Boulder, CO, *[email protected]; 2 University of Miami 3 Georgia Institute of Technology, 4 United States Naval Academy, 5 University of California – Irvine, 6University of Innsbruck, 7California Institute of Technology

Trace Organic Gas Analyzer (TOGA) Case Study 1: 29-May, Oklahoma Convection • Fast online GC/MS VOC measurement

• Up to 53 different VOCs • High sensitivity: detection limits of NMHCs &

OVOCs to ppt, many halocarbons to sub-ppt • 35-s integrated measurements every 2 min • Altitude independent 0 - 50,000 feet

Fig. 1. Simplified schematic of the TOGA.

NMHC OVOCs HVOCsi-butane formaldehyde CH3Cl

n-butane acetaldehyde CH2Cl2

i-pentane propanal CHCl3

n-pentane butanal CCl4

2-methylpentane pentanal CH3Br

n-hexane 2-pentanone CH2Br2

n-heptane acrolein CHBr3

propene methacrolein CHBr2Cl

i-butene methanol CH2ClI

1,2-butadiene ethanol CH2I2

isoprene acetone

a-pinene methyl ethyl ketone (MEK)

b-pinene methyl t-butyl ether (MTBE)

camphene methyl vinyl kentone (MVK)

limonene

benzene Othertoluene HCN

ethylbenzene+m-/p-xylene CH3CN

o-xylene dimethyl sulfide (DMS)

2-methyl-3-butene-2-ol (MBO)

DC3 Targeted Compounds

GC Oven

16x103

12

8

4

0

altitu

de

, m

20:00 21:00 22:00 23:00 00:00 01:00

29-May-12 RF06, UTC

600

500

400

300

200

100

0

ME

K,

pp

tv

4000

3000

2000

1000

0

n-b

uta

ne

, p

ptv

42

40

38

36

34

32

30

La

titud

e, °N

GV altitude Latitude MEK n-butane

4000

3000

2000

1000

0

n-b

uta

ne

, p

ptv

20:005/29

20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:005/30

00:30

DC-8, 29-May-12

14

12

10

8

6

4

2

0

Altitu

de

, km

42

40

38

36

34

32

30

La

titud

e, °N

DC-8 Altitude Latitude n-butane (WAS)

Case Study 2: 22-June, Colorado Convection + High Park fire 2000

1500

1000

500

0

n-b

uta

ne

, p

ptv

20:006/22

21:00 22:00 23:00 00:006/23

01:00 02:00

DC-8, 22-June-12

14

12

10

8

6

4

2

0

Altitu

de

, km

42

41

40

39

38

37

36

La

titud

e, °N

50x10-3

40

30

20

10

0

CH

3C

N,

pp

bv

DC-8 Altitude Latitude n-butane (WAS) CH3CN (PTR-MS)

400

350

300

250

200

150

100

CH

3C

N,

pp

tv

23:30 00:00 00:30 01:00 01:30 02:00

22-Jun-12 RF17, UTC

250

200

150

100

50

0

n-b

uta

ne

, pp

tv

16x103

12

8

4

0

altitu

de

, m

1200

1000

800

600

400

200

HC

N, p

ptv

100

80

60

40

20

0

Acro

lein

, p

ptv

43

42

41

40

39

38

La

titu

de

GV Altitude Latitude acrolein (TOGA) CH3CN (TOGA)

HCN (TOGA) n-butane (TOGA)

1

10

100

1000

[VO

C],

pp

tv

CH

2O

CH

3C

HO

acro

lein

pro

pa

na

l

buta

nal

ace

ton

e

ME

K

me

tha

no

l

eth

an

ol

2.0

1.5

1.0

0.5

0.0([V

OC

]/[n-C

4 ])o

utflo

w/([V

OC

]/[n-C

4 ])in

flow

[VOC] inflow (GV) [VOC] outflow (GV) [VOC] inflow (DC8) [VOC] outflow (DC8) [VOC] ratio (GV) [VOC] ratio (DC8)

1

10

100

1000

[VO

C], p

ptv

pro

pane

n-b

uta

ne

i-buta

ne

n-p

en

tane

i-penta

ne

n-h

exa

ne

n-h

ep

tane

pro

pene

1,3

-buta

die

ne

benzene

tolu

ene

C8-a

rom

atics

2.0

1.5

1.0

0.5

0.0

([VO

C]/[n

-C4 ])

ou

tflow/([V

OC

]/[n-C

4 ])in

flow

1

10

100

1000

[VO

C], p

ptv

HC

N

CH

3C

N

DM

S

HN

O3

H2O

2

MH

P

CH

2B

r2

CH

Br3

isopre

ne

MV

K+

meth

acro

lein

a-p

inen

e

3.0

2.5

2.0

1.5

1.0

0.5

0.0

([VO

C]/[n

-C4 ])

ou

tflow/([V

OC

]/[n-C

4 ])in

flow

16x103

12

8

4

0

altitu

de

, m

20:00 21:00 22:00 23:00 00:00 01:00 02:00

22-Jun-12 RF17, UTC

400

350

300

250

200

150

100

CH

3C

N,

pp

tv

400

300

200

100

0

Bu

tan

e,

pp

tv

43

42

41

40

39

38

37

36

La

titud

e, °N

GV altitude Latitude CH3CN (TOGA)

n-butane (TOGA)

Fig. 2. GV (yellow) and DC-8 (mauve) flight tracks. Fig. 3. Time series for n-butane from DC-8 (left) and GV (right) flights. Inflow periods and outflow

periods were determined using elevated butane.

Fig. 4. Plots of average inflow and outflow mixing ratios for a number

of observed species. (bars), and ratios of species to

n-butane in outflow vs. inflow.

Fig. 5. Above, GV (cyan) and DC-8 (pink) flight tracks, and (right) smoke entrained Into convection from High Park fire. Installed on the GV

Fig. 6. Time series for n-butane and CH3CN from DC-8 (above) and GV (right) flights. Inflow periods and outflow periods were

determined using elevated butane from two convection events between 22:00 and 23:00 (a), and between 23:30 and 02:00, (b)

with and (c) without elevated fire-tracer acrolein.

0.1

1

10

100

1000

[VO

C], p

ptv

CH

2O

CH

3C

HO

acro

lein

pro

panal

bu

tan

al

aceto

ne

ME

K

meth

an

ol

eth

an

ol

2.0

1.5

1.0

0.5

0.0

([VO

C]/[n

-C4 ])

ou

tflow/([V

OC

]/[n-C

4 ])in

flow

0.1

1

10

100

1000

[VO

C],

pp

tv

pro

pa

ne

n-b

uta

ne

i-b

uta

ne

n-p

en

tan

e

i-penta

ne

n-h

exa

ne

n-h

ep

tan

e

pro

pe

ne

1,3

-bu

tad

ien

e

be

nze

ne

tolu

en

e

C8

-aro

ma

tics

4

3

2

1

0

([VO

C]/[n

-C4 ])

ou

tflow/([V

OC

]/[n-C

4 ])in

flow

0.1

1

10

100

1000

[VO

C],

pp

tv

HC

N

CH

3C

N

DM

S

HN

O3

H2

O2

MH

P

CH

2B

r2

CH

Br3

iso

pre

ne

MV

K+

meth

acro

lein

a-p

ine

ne

3.0

2.5

2.0

1.5

1.0

0.5

0.0

([VO

C]/[n

-C4 ])

ou

tflow/([V

OC

]/[n-C

4 ])in

flow

[VOC] DC-8 inflow [VOC] DC-8 outflow DC-8 ratio [VOC] GV inflow [VOC] GV outflow (a) GV ratio (a) [VOC] GV outflow (b) GV ratio (b) [VOC] GV outflow (c) GV ratio (c)

Fig. 7. Plots of average inflow and

outflow mixing ratios for a number

of observed species. (bars), and ratios of

species to n-butane in

outflows vs. inflow.