35
'. SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT 'i:~ MASINLOC COAL FIRED IN THE , 1 , ,t ",j

New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

'.

SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT

'i:~ MASINLOC

OF THE

COAL FIREDTHERMAL POWER PLANT PROJECT

IN THE

,

1,

,t",j

Page 2: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Currency Unit~1.00US$1.00

AP

BCFTPP

°CCOdb

DENR

DrA

DOE

DOHEMS

EMD

EPDC

JICA

LGUMCFTPPMHIAS

MWD

NGO

NOxNPCOHSPP

PAGASA

802

GWhha

km

mm

mpsm

m3/sec

mg/Nm3

MW

km2

ug/m3

ug/Nm3

~

EQUIVALENTS

~

Philippine Pesos (~)

US$O.0384

-

26.00

ABBREVIATIONS

air particulateBatangas Coal-Fired Thermal Power Project

degrees Celsius

carbon dioxide

---

decibelDepartment of Environment and Natural ResourcesDirect Impact Area

Department of Energy

Department of Health

Environmental Management Bureau

Environmental Management Department

Electric Power Development Corporation of Japan

Japan International Cooperation AgencyLocal Government UnitMasinloc Coal-Fired Thermal Power ProjectMasinloc Public Health Impact Assessment Study

Masinloc Water District

Nongovernment Organizationnitrogen oxidesNational Power CorporationOccupational Health and Safety Program PlanPhilippine Atmospheric, Geophysical and AstronomicalServices Administrationsulfur dioxide

-

@

------

-

-

----

()-

MEASURESWEIGHTS AND

gigawatt-hour

hectarekilometermillimeters

meter per second

meter

cubic meter per secondmilligram per normal cubic meter

megawatts

square kilometer

microgram per cubic meter

microgram per normal cubic meter

--

-

----

Page 3: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

SUMMARY

MASINLOC

Map

Introduction

Description of the Project

Description of the Environment

Projected Impacts and Planned

Risk Assessment

Monitoring and Institutional Plan

Alternatives

Benefit-Cost Analysis

Public Involvement

Conclusion

Appendixes

A.

B.,~

-:!J9

c.

D.

E.

F.

G.

H.

I.

J.

K.

-,.

ASSESSMENTENVIRONMENTAL

OF THE

IMPACT

COAL-FIRED PROJECT

CONTENTS Page

i

1

1

3

7

11

11

13

14

14

14

15

Page 4: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

. ~

\@

i

Page 5: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

A. Introduction

1. The environmental impact assessment (EIA) for Masinloc Coal Fired ThermalPower Plant (MCFTPP) Phases I and II was prepared by the Environmental Management

Department of the National Power Corporation (NPC) in coordination with the Electric Power

Development Company of Japan and was submitted to the Environmental Management Bureau

of Department of Environment and Natural Resources (EMB-DENR) on 21 September 1990. A

series of public hearings was conducted in February 1991 to discuss the findings of the EIA. The

environmental compliance certificate was issued by EMB-DENR on 18 December 1992. The

Project was accepted by the municipal government (Sangguniang Bayan) of Masinloc on 6

January 1993, and had been endorsed by the provincial government of Zambales on 12October 1992 and by the regional development council on 14 October 1993. A multipartite

management group to oversee the implementation of the environmental management and

resettlement plan was formed by a memorandum of agreement signed by EMB-DENR, the

provincial government of Zambales, the municipal government of Masinloc, the barangay 1

council of Bani, and the NPC on 2 May 1993. The EIA report was submitted to the Bank in

September 1990 and was one of the bases for the approval of the loan for Phase I of the Projectin October 1990. In March 1993, the Bank issued new environmental assessment requirementsand review procedures that required the circulation of the summary environmental impact

assessment (SEIA) for environmentally sensitive projects 120 days prior to approval of the loan.Because approval of the loan for MCFTPP Phase I was based on the Bank's previousprocedures, this SEIA also briefly reviews the environmental issues, and mitigating measuresrelated to the previously approved loan. The loan for Phase I of the Project became effective on23 December 1994.

~

::@

2. This SEIA analyzes the environmental impacts during the construction, andoperation and maintenance of MCFTPP Phase II (The Project) in addition to the environmentalimpacts from MCFTPP Phase I, which is under construction and expected to begin operationsin mid-199B. The EIA report covering MCFTPP Phase I and the Project is available in the Project

Office on request. An environment specialist from the Bank visited the project and resettlement

site on 26 April 1995.

B. Description of the Project

3. The Project will involve the construction on a turnkey basis of the second unit of

(i) 300 Megawatt (MW) turbine generator; (ii) 990 tons a hour (t/hr) (max.), single-drum outdoor

type steam generator and auxiliaries; (iii) coal handling system; (iv) power transformers andswitchyard equipment; and (v) civil and architectural works within the battery limits of MCFTPP

Phase I. To achieve economies of scale, a number of facilities for MCFTPP were designed and

built under the contract for MCFTPP Phase I. Those facilities include: (i) a powerhouse

consisting of turbine house, heater bay, and control house; (ii) boiler, pulverizer, draft system,and stack; (iii) cooling water facilities such as cooling water intake and outfall; (iv) coal handling

system including offshore conveyor, jetty, inland conveyor, coal yard, and crushers; (iv) ash

handling facility including ash disposal area, sedimentation basin, and neutralization pit; (v)resettlement site; (vi) temporary camp and storage areas, permanent guesthouse and dormitory,

including amenities such as basketball and tennis courts; (vii) fuel oil unloading and storagefacilities; (viii) port facilities; (ix) coal storage yard; (x) basic equipment; (xi) smoke stack; (xii)

building, administrative facilities, and utilities; (xiii) raw water and waste water treatment system;

and (xiv) switchyard. The details of the components and the facilities provided under thecontract for MCFTPP Phase I are shown in Appendix 1.

The barangay is the smallest political unit consisting of 100 to 200 families. Aa municipality.

of barangays constitute

Page 6: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

4. The Project is designed to burn coal imported from Australia, The People'sRepublic of China, Indonesia, and South Africa with the qualities described in Appendix 2. The

plant will also utilize fuel oil with low (no more than 1 percent) sulfur content for ignition,

warming-up, and support fuel. The Project will utilize sea water from Oyon Bay for cooling, while

fresh water for boiler make-up, and other uses will be supplied by the lauis River. Potable water

will be obtained from the Masinloc Water District (MWD). The mass balance and the parameters

affecting the effluent and emissions of the entire MCFTPP complex, Phase I and the Project areshown in Appendix 3.

5. Because the project will utilize a number of facilities and infrastructure built under

the contract for Phase I, it is worthwhile to review the background, environmental issues, andmitigating measures for this component. The Batangas Coal Fired Thermal Power Plant

(BCFTPP) in Calaca, Batangas was the first major coal-fired thermal power plant constructed

and operated by NPC. That thermal power plant had a number of unforeseen design andoperational problems, particularly with the quality and reliability of local coal supply that NPC

was required to use to support the development of the local coal industry. Prior to the

modifications to BCFTPP, its boilers could not operate efficiently because the local coal had veryhigh ash content and low heating value. In addition, NPC had to maintain a large coal inventory

of up to six months because the local coal shipments were very erratic. During windy days, thedust from the coal pile was a serious problem. There were even instances when fires broke out

in the coal pile. The adverse environmental impact of the operations of BCFTPP resulted instrong opposition from nongovernment organizations (NGOs) and the public to the

implementation of MCFTPP Phase I Project even when the problems at BCFTPP were corrected.

6. In response to the growing opposition to the Project fueled by negative reportsabout the experience of Calaca residents with the BCFTPP, NPC met with the critics, andsponsored a tour of the BCFTPP I for them in August 1992 to correct their misconceptions aboutcoal-fired power plants and the issues associated with BCFTPP. Because they still hadmisgivings about the Project despite the visit to BCFTPP, NPC took two groups of Masinloc

residents and officials, including members of NGOs, to Indonesia to visit to the Suralaya Coal-

Fired Thermal Power Plant (1,600 MW) in May and June 1993 to show them how the plant's

antipollution devices, which are similar to those that will be installed under the Project, effectivelychecked plant emissions and effluents.

7. The environmental compliance certificate issued by EMB-DENR imposed onMCFTPP (Phase I and the Project) the following requirements: (i) low-sulfur imported coal will

be utilized so that sulfur dioxide (S02) emissions from the smoke stack will not exceed the

standards in DENR's administrative orders of 1 ,500 milligrams per normal cubic meter (mg/Nm3)

of S02; (ii) the Project will be equipped with low nitrogen oxides (NOx) burners and a two-stagecombustion system to keep nitrogen dioxide (N02) emissions to no more than 751 mg/Nm3,

which is only half the DENR limit of 1,500 mg/Nm3; (iii) the Project will be equipped with

electrostatic precipitators with guaranteed dust emission of less than 183 mg/Nm3 or 200mg/Nm3 (dry) measured at their outlets at any boiler load from 35 percent rated output to fullload or maximum continuous rating of 330 MW per unit (DENR emission limit is 300 mg/Nm3);

(iv) a continuous stack monitoring system will be provided to measure smoke density, S02' NOx'

and carbon monoxide (CO) with the detectors located in the economizer outlet for CO and NOx,

at the induced draft fan for S02' and at the ESP outlet for smoke density; (v) a 150 meter (m)

stack will be installed to diffuse the flue gases and achieve pollutant ground level concentrations

within ambient standards; (vi) the coal storage yard and the coal unloading facility will beequipped with sprinklers to prevent dust generation; the coal conveyor will be provided with

dust cover; and an effective physical windbreak (earth embankment and trees) around the coalyard will be installed; (vii) coal unloading from barges will be undertaken using a fully covered

2..'

~

0

Page 7: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

(dust-free) continuous unloader; (viii) the dry-type ash disposal system will be adopted to limitthe volume of sea or fresh water requirement of the power plant; (ix) a wastewater treatment

facility will be provided including chemical treatment, coagulation, sedimentation, oil separation,

and pH control; (x) noise and vibration dampers will be installed to keep noise and vibration

within limits and the main noisy equipment will be located indoors; (xi) the cooling water will be

discharged on the sea surface through an open channel 650 m from shore to minimize damage

to corals, benthic organisms, and fish juveniles; (xii) the ash disposal pond areas will beconstructed to contain all ash contaminated wastes and will be provided with an embankment

for surface runoff control and with an impervious lining to prevent leaching infiltration/seepage

of heavy metals to the groundwater; and (xiii) the buffer area between the power plant and the

community will be planted with trees so that the power plant will blend with the natural

surroundings and the aesthetic characteristics of the area around the plant will be maintained.The environmental protection features of the MCFTPP are in Appendix 4. The status of

compliance of MCFTPP with DENR's emission limits is shown in Appendix 5.

8. The directly impacted area (DIA) of the whole MCFTPP Project covers 137.18hectares (ha) in Barangay Bani, Masinloc, Zambales and the 12-ha resettlement site in the

adjacent Barangay Taltal. A total of 198 households resided in the DIA in May 1994 (compared

with about 60 in 1989). The population was estimated to 814 in 1994. Seven of thesehouseholds with a population of 47 resided in the proposed resettlement site. Among the

affected households, 107 households have opted to resettle at the NPC resettlement site and

73 households have already transferred there. As of April 1995, 86 households opted to resettle

outside the NPC resettlement site as and 77 households have already been transferred.Expropriation cases have already been filed for the remaining affected households who do not

want to leave the Project site. The common types of dwelling units in the DIA are shanties,

bungalows, and multidwelling units. More than 90 percent of these units have floor area of lessthan 60 m2.

,~~*

c. Description of the Environment

1. Physical

9. The Project is located in the western part of the province of Zambales in an areawith high mountains and rugged peaks. The steep Zambales mountain range serves as theboundary of the province. The area is underlaid by mainly igneous rocks and some sedimentaryrock formations. The high mountains, particularly the Zambales range is underlaid by ultrabasic

rocks. On the western side of the range, there are shale and sandstone formations and,

unconsolidated conglomerate and agglomerate materials. Limestone is intercalated with shale.

The proposed site for the plant is characterized by gently sloping hills about 15 to 25 m above

sea level, surrounded by flat alluvial surfaces extending into sandy beaches.

10. The climate in the area covered by the Project is classified as Type I, usingCorona's classification of Philippine climate, with two pronounced seasons: dry, from Novemberto April, and wet, during the rest of the year. The total annual rainfall is 3,701.5 millimeters (mm).The temperature at the site is seasonal and ranges from 20.3°C to 33.3°C. The average annualrelative humidity is 79 percent. The prevailing regional wind directions based on data from 1951to 1985 at the Philippine Atmospheric, Geophysical and Astronomical Services (PAGASA)weather station at Iba are NE, E and NW with an average wind speed of 2 meters per second

(mps). At the Project site, the prevailing winds are from the NE, SE, SWand NW, with wind

speeds varying from 1 to 3 mps. Thus, most of the time, the emissions from the stack will be

carried away from the populated area and towards the sea. The presence of Zambales ridge E

of the site affects the wind regimes at the Project site particularly during the NE monsoon

season. Atmospheric stability conditions were estimated during day and night using the data

3

Environment

Page 8: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

for three decades (1961 to 1990) from the PAGASA weather station at Iba. At low wind speeds

(2 to 3 mps), the stability condition is moderately to extremely unstable during the day and

slightly to moderately stable during the night. At high wind speeds (> 5 mps), the stability

condition is slightly unstable to neutral during the day and neutral during the night. However,during the NE monsoon, the emissions from the stack will be carried by the wind to the SouthChina Sea.

11 . The baseline S02 levels without Phase I around the Project site range from not

detectable to 44.63 micrograms per cubic meter (~g/m3) (1981 to 1993). N02 ambient levelsrange from not detectable to 11.33 ~g/m3. The variation in concentration may be attributed

vehicular emissions collected in the sampling stations near the highway. At the proposed Projectsite, the ambient S02 levels are lower, and typical of a rural environment. Furthermore, basedon the low ambient results of S02 levels (1981 to 1993) around the Project site, the MCFTPP sitewas not affected by the eruption of Mount Pinatubo in June 1991, which is located

approximately 80 km SE of the Project site. The prevailing winds in the Mount Pinatubo area are

E, SW, and NW, and transport volcanic emissions away from the area covered by the Project.

12. The existing noise at the plant site ranges from 39.8 db to 50.9 db. At the

highway nearest the Project site, the noise varies from 68 to 71 db because of vehicular trafficconsisting of tricycles, passenger jeepneys, and trucks. At the town of Masinloc, commercialand residential activities increase the noise levels to 70.2 to 77.3 db.

13. The major earthquake generators are the Manila Trench and the Philippine Fault,

which are 100 km to 150 km from the Project site. The minor ones are the Iba Fracture Zonelocated 40 km SE of the site and the San Antonio Graben located 110 km SE of the proposedsite. The records on earthquakes with the epicenters in Zambales Province indicate themagnitudes ranged from 4.5 to 5.0 on the Richter scale.

14. The lauis River which runs along the northwestern side of the MCFTPP site andserves as boundary line between Candelaria and Masinloc is the proposed source of freshwaterfor the plant's water requirements. The observed stream flow data for the lauis River for twoyears are not sufficient to determine extreme minimum discharges. Therefore, the measureddata at the lauis River and the Nayom River, an adjacent river were correlated to estimate theprobability of minimum discharges for different return periods. The computed lauis Riverminimum discharge for a return period of once every 5 years, 10 years, and 25 years are 0.811m3jsec, 0.451 m3jsec, and 0.215 m3jsec, respectively. The lauis River is presently utilized forcommunal irrigation systems with a maximum water requirement in December to March

equivalent to 0.405 m3jsec. During the rare drought periods, the plant's water requirements will

be provided by the Masinloc Water District (MWD), which will be upgraded with funding from

NPC. The quality of the water.in the lauis River meets the standards of DENR for Class B freshsurface water. Details about the water quality in the lauis River are shown in Appendix 6.

15. Most of the thirty-seven groundwater wells surveyed at the Project site (within an

area of approximately 70 square kilometers) yield potable water. Saline water occurs at the wellsnear the proposed plant site, within 1 kilometer of the shoreline and the mouth of the lauis

River. The salinity can be attributed to "the proximity to the shore and the swampy condition of

the well sites.

16. Studies made off the west coast of Luzon show that the tidal streams are weak;the strength of the seasonal current is practically nil. The net current is quite steady. Thepredominant direction of the current is north throughout the year because the of countercurrentthat develops during the northeast monsoon period. Sometimes the currents flow south in April

.4

M'

~

0

r:j

Page 9: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

5

and May. Tidal observation at Cyon Bay revealed that the periodic variation is that of a regulartype tidal height.

Biological Environment2.

17. The terrestrial environment at the MCFTPP site at Bani, Masinloc, Zambales ispredominantly agricultural with mango and rice, the main crop species. Other agricultural crops

at the Project site are coconut, cassava, star apple, papaya, sweet potato, squash, and other

vegetable crops and fruits. Along the southeastern to southwestern shore of Bani Point, herbsand trees are the most dominant vegetative cover during the wet and dry season. The uplandareas on the middle portion of Bani Point are covered by mango orchards and rice fields withclumps of native black berries ("duhat"). The uncultivated and vacant areas are covered mainly

by grass species such as andropogon aciculatus, imperata cylindraca and mimosa pudica. At

the northeastern to northwestern side of Bani Point, screw pine is the dominant vegetative covertogether with bamboo and "ta/isay". Outside of the MCFTPP site and within a radius of 10 km

grasslands and shrublands comprise the most predominant vegetative cover (44 per cent).

Ricefields and mango orchards comprising only 30 percent of the total land area.~~'.:~F

18. The pygmy swiftlet and tree sparrow were the most common bird species

observed at the Project site. The house shrew and house rat were the mammalian speciesnoted, while the giant toad was the lone amphibian species recorded. The house lizard andPhilippine brown skink were the reptilian species observed in the area. Among the arthropodsArachnids belonging to Family Araneidae (spiders) and insects belonging to Families Formicidae

(ants), Lygaeidae (bugs) and Sciomyzidae (marsh flies) comprised the majority of specimens

collected and identified at the study site.

19. Freshwater phytoplankton at lauis River is dominated by pennate diatoms suchas Navicula sp., PJeurosygma sp., and Pinnularia sp. The calanoid copepods are the mostcommon zooplankton, while Malanoides sp. is the most abundant freshwater benthic fauna.

Tilapia and catfish are the most common freshwater fishes.

20. The coastline of Oyon Bay starting from Bani Point up to Oyon Point measures8.5 km. The bay has a total area of 5 km2, of which 4.06 km2 is the habitat for seagrasses,

corals, mangroves, and associated organisms. The coastal areas of Oyon Bay at its

northwestern and eastern fringes are mostly bordered by fringing reefs with associatedcommunities such as seagrass beds and algal flats. The reef sites are characterized by relativelywide reef flats that gently slope to seagrass and algal beds and coral reefs. Small shoals arealso scattered inside the bay. Residual mangrove stands are found along the eastern andsoutheastern shores of the bay. Bacteriastrum sp. and Chaetoceros sp. dominate the marine

phytoplankton community during the sampling in both the wet and the dry season. Although

red tide caused by Pyrodinium bahamense var. compressa is reported to occur in nearbyMasinloc Bay, no such occurrence has been recorded in Oyon Bay. The studies at the six sitesinside the bay and the one outside the bay reveal that corals are slowly being degraded bynatural and anthropogenic sources. The coral cover in the bay is generally poor (0-25 percentlive coral cover) to fair (26-50 percent live coral cover). The highest percentage of live coral

cover (63.3 percent) was noted at the station situated outside Oyon Bay near San Salvador

Island (about 2.5 km south of the MCFTPP site) in Masinloc Bay where a marine reserve hasbeen established. The average percentage of live coral cover inside the bay was 33.5 percent,

the highest percentage was 46.4 percent and the lowest percentage was 27.1 percent. The reef

flats are dominated by tabulate Acropora sp. and massive Porites sp. corals. Along the reef crestand slopes, encrusting Ga!axea sp. and Montipora, massive Favia sp. and Favites sp., foliatePachyseris sp, branching He!iopora and solitary Fungia sp. and Herpo!itha were noted. t

Ij

Page 10: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

21 . Residual stands of mangrove forests are found along coastal areas of Oyon Baystarting from Oyon Point up to Barangay Taltal. The mangroves are mostly secondary growthand occur in scattered patches. The mangrove species found were Avicennia sp., Sonneratiaalba, Rhizophora mucronata, Scyphiphora hydrophy/lacea, and Avicennia officina/is. The majorcause of loss of mangroves in Oyon Bay was that the area was converted to other uses suchas fishponds and cutting trees for fuel and construction material. There are no mangroves at theProject site. The seagrass beds in the bay are dominated by Thalassia hemprichii, Ha/ophi/a

ova/is, and Enha/us acoroides. The average density of seagrasses is 575 shoots per m2 during

the dry season and 1250 shoots per m2 during the wet season. Other species present are

Cymodocea serrulata, Ha/ophi/a minor, Halophi/a uninervis, Cymodocea rotundata, andSyringodium isoetifo/ium. The seagrass beds in Oyon Bay belong to the disturbed and alteredcategories. The disturbed seagrass habitats in the bay are found along its western and easternsections in characteristically high or low diversity areas and occupying small coves. In OyonBay, this category of seagrass habitat is associated with the effects of the conversion ofmangrove areas into fishponds, cutting the trees for domestic uses, and surface runoff from

upland areas around the bay. To a certain extent, the disturbance may have been caused by

unsound fishing practices such as the haphazard placement of fish enclosures. The alteredseagrass habitats are found along the northern and southern portions of the bay. These areareas of low cover, density, and species diversity, either permanently and completely changedand converted to other uses like fishponds, or constantly impacted by waves, tidal influences,and other natural elements in such a way that their natural structure no longer supports lush

vegetation. Thirty-one species of seaweeds were found along Oyon Bay. In terms of cover, the

seaweed community in the bay exhibited poor values (0-25 per cent cover).

22. A total of 192 species of fish belonging to 31 families were recorded during the

underwater surveys in the seven sites around Oyon Bay. Species from family Pomacentridae

(damselfishes) and labridae (wrasses) were the most common. large numbers were found in

all reef sites especially the species Pomacentrus philippinus, Pomacentrus bankanensis,Cirrhilabrus cyanopleura, Thalassoma hardwicke, and Pomacentrus lepidogenys. The next mostcommon species belong to families Acanthuridae and Scaridae. Milkfish fry is collected alongthe coastal area near the mouth of lauis River. The average catch per year of milkfish fry is

1,739,000 pieces. Of the 728 households in Barangay Bani, 98 depend on fishing for their

livelihood. The bay is experiencing heavy fishing pressure, however, given enough time to

recover, it has the potential to yield sustainable amounts of fish because the area serves as anursery ground for some fish species especially commercially important species.

23. The quantitative and qualitative survey of soft bottom benthos in the bay resultedin identification of 64 taxa belonging to 12 phyla. The dominant taxa were Foraminifera,

Nematoda, Pelecypoda, Polychaeta, Copepoda, and Amphipoda. There is a relatively highdiversity and abundance of soft bottom benthos.

24. No rare, endangered, or threatened floral or faunal species are present at the

proposed Project site and surrounding areas.

3. t:luman Environment

25. The study area covers the Central Luzon Region (Region III), the province of

Zambales, the municipalities of Candelaria and Masinloc, Barangay Bani and the DIA. TheCentral Luzon Region had a population of 6,188,716 in 1990. The population grew at an averageannual rate of 2.6 percent from 1980 to 1990, which is 0.23 percentage points higher than theaverage annual growth rate for the economy for the same period. With a land area of 18,231km2, the population density in the region is 340 per km2 which is 68 percent more than the

population density for the country of 202 persons per km2. The average household size in the

6" .

A

~

0

Page 11: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

region is 5.3 which is slightly smaller than that in the country which is 5.6 members perhousehold.

26. The province of Zambales is composed of thirteen municipalities covering 3,614km2 or 20 percent of Region Ill's total land area. It has a comparatively sparser population

density of 152 persons per km2, which is 75 percent of the country's average. The average

annual population growth rate was 2.5 percent in Zambales for the period 1980-1990, which is

lower than the population growth rate in Region III by 0.06 percentage points and the populationgrowth rate in the country by 0.17 percentage points.

27. Large portions of Candelaria and Masinloc municipalities in Zambales are withinthe 1O km radius of the proposed Project. Cumulatively, Candelaria and Masinloc cover about

an area of 743.6 km2. Their combined population in 1990 was 50,872 which was just 9 percent

of the total population of the province that year. The average annual population growth rate forthe period 1980-1990 was lower in Masinloc and Candelaria than in Zambales by 1.7 percent.

The population density was 68 persons per km2, which is very sparse compared with the

population densities in the province and in Region III.

28. The proposed Project complex will be located in Barangay Bani in Masinloc. The

barangay had a total of 375 households and a population of 2,085 in 1990. It accounts for only1 percent of Masinloc's land area and a mere 6 percent of the municipal population. It has thesame average household size as the national average of 5.6 members per household.

29. Agricultural lands comprise almost 80 percent of the total 149.5-ha in the DIA.

These agricultural lands are mainly planted to rice and mango. About 2.5 km across from the

proposed plant site at Oyon Point is the Benguet Consolidated, Inc. pier that has been used toloading chromite ores in ocean-going vessels for export since the early 1900's. At anyone time,

several thousand tons of ore may be stockpiled at the pier area awaiting shipment. More

recently, in the late 1980's, the Faculdo pier located 1 km east of the northern portion of theplant site began to be used. Faculdo hold a lease for a much smaller chromite mining area thanBenquet Consolidated Inc. There are plans to develop agro-industries in Masinloc byestablishing a ripe mango vapor treatment facility (targeted to serve the export market), aceramic factory, food processing plants, ice plant, and a port, among others. The commercialand market area will be expanded by reclaiming land from Masinloc Bay. The Masinloc

Comprehensive Development and Land Use Zoning Plans have designated the Project site asan industrial zone.

r~

,~y

Projected Impacts and Planned Management MeasuresD.

Air Quality1.

30. In 1992, a Danish consulting firm under a Bank-financed technical assistance

grant restudied atmospheric pollution dispersion of MCFTPP. Air quality modelling was

undertaken with the objective of evaluating the impact on air quality of the entire MCFTPP. The

calculations were based on the Danish AIRDISP model, a Gaussian dispersion model whichtakes into account both local meteorological data and terrain levels. The local meteorologicaldata was based on the reports from the PAGASA weather station at Iba for 1981-1990. Themodel was used to predict ambient ground level concentration of sulfur dioxide (S02)' nitrogendioxide (N02) and air particulates (AP) for Phase I and the Project (600 MW) with both operatingand using the eight types of coal that will be used by the proposed Project.

31. The coal particulates with ash contentwill be collected by using electrostatic precipitators

7

ranging from 5.3 to 19.5 percent by weightwith an over 99 percent efficiency to yield

Page 12: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

a guaranteed particulate emission at the stack exit of 200 mg/Nm3 based on the coal withhighest ash content (Australian Lithgow). The particulate level of emissions from Phase I and

the Project will be lower than the DENR emission standard of 300 ~g/Nm3. The ambient ground

level concentrations will increase with the addition of the second unit but will remain within theDENR standard of 300 ~g/Nm3 as shown in Appendix 7.

32. S02 is a by-product of combustion of coal containing sulfur. The Project will utilizecoal with sulfur content ranging from 0.3 to 0.76 percent (Ping Shuo coal will be blended with

Blair Athol and Kaltin Prima) to meet the DENR emission standard of 1500 mg/Nm3 of 8°2' The

calculated S02 emissions from Phase I and the Project range from 574.7 mg/Nm3 to 1500

mg/Nm3, all are within the DENR standard of 1500 mg/Nm3. The predicted ambient 8°2concentrations will comply with the DENR standard of 470 ~g/Nm3 (ninety-eight percentile [98th]

values for 30-minute sampling). The calculated ninety-eight percentile of 8°2 concentration

values with only Phase I operating range from 27.4 ~g/Nm3 to 84. 7 ~g/Nm3. With the Project,the ninety-eight percentile of 8°2 concentration values increase to a range of 47.4 ~g/Nm3 to113.1 ~g/Nm3. The predicted ambient 8°2 concentrations when Phase I and the Project areoperating is shown in Appendix 8. If only Phase I or the Project is operating, the 8°2concentrations will be half of these values.

33. The rated NOx emission of MCFTPP will be 751 mg/Nm3. The DENR standard forNOx is 1,500 mg/Nm3. Low NOx burners and a two-stage combustion system will be used to

suppress the generation of NOx by creating fuel-rich and then fuel-lean regions, thus lowering

combustion temperature. The predicted increase in maximum ambient ground level

concentration (from 124.8 ~g/Nm3 to 249.6 ~g/Nm3) is due to the increase in capacity from 300MW (Unit I only) to 600 MW (Phase I and the Project) and resulted in NOx concentration levels

lower than the DENR standard of 260 ~g/Nm3. The predicted values are in Appendix 7.

34. The plant will use a dust-free, continuous type coal unloader and water sprayersat the coal yard to suppress coal dust generation during stacking and reclaiming operations.The height of fall of coal from the stacker will be made as low as possible during stacking andstackers will not be operated at wind speeds higher than 5 mps. The coal conveyors will becompletely covered to avoid coal dust dispersion during coal transport from the pier to the coalyard to the power plant. Tall trees will be planted around the plant complex to reduce coal dustdispersion, and to attenuate the noise from the plant and shield the coal yard from view.

2. Noise Impacts

35. Noise levels will vary from 65 db at 20 meters from the power house to 50 dboutside the plant complex during daytime. During nighttime, when the coal handling facilities

are not operating, the expected noise level outside the plant complex will be close to thebackground noise level. To control noise generation within the ambient and occupational

standards, the measures to be implemented include: (i) using low noise equipment; (ii)

installing of soundproof walls and doors; (iii) installing fans, pumps, compressors, and motorsindoors; (iv) providing the steam vents with silencers, (v) operating the coal stockyard and ashdisposal area o.nly during daytime, and (vi) enclosing the coal yard by an earth embankmentplanted ~th trees. '

Water Quality3.

36. The raw water and the processed water requirements of the Project will be

sourced from the lauis River. Potable water to be used during operation will be derived fromthe MWD. During normal operation, the Masinloc Plant (Phase 1 and the Project) will require

1500 m3 of fresh water and 20 m3 of drinking and domestic water. Part of the financial

8

A

t7:d

0

Page 13: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

. .assistance accruing to the municipality from the Department of Energy Act of 1992 will be usedto upgrade and expand MWD to allow it to service the domestic water supply needs of the plantand the resettlement area. The municipal government of Masinloc imposed this condition on theproponents of the Project so that it will have control over the extraction of the ground waterresources in the area.

~

37. A small concrete weir will be constructed along an intake area located near the

confluence of north and south branches of the lauis River. The withdrawal of freshwater fromthe lauis River for the Project will not significantly affect the volume of water and habitat offishes and other organisms downstream of the intake because only a maximum of 0.0185 m3jswill be drawn for operations during Phase I and 0.029 m3j3 for operations during Phase I andthe Project. These are lower than the 25-year annual average flow of 25.9 m3jsec, for the lauis

River. The lauis River is presently utilized primarily for Bani's communal irrigation system.

During the dry season, the maximum irrigation diversion requirement is 0.405 m3jsec. Thus, theirrigation water requirement plus the Phase I and the Project water requirement of 0.029 cumjsec equal 0.434 m3jsec which is still slightly lower than the minimum discharge of the lauisRiver of 0.451 m3(sec with return period of once every ten years. Therefore, the lauis River cansupply sufficient processed water for the plant. During drought years, the processed water for

the plant will be obtained from deepwells of the MWD. This arrangement has been cleared with

the MWD, which is operated by the Masinloc municipal government.

6

38. The operation of the Project will produce wastewater from boiler blowdown,

domestic wastewater, laboratory drains, oil containing effluent, coal yard effluent, and ashtreatment effluent. Plant inspection and maintenance will also produce wastewater such ascondenser leak test effluent, boiler and generator washing effluent, and boiler chemical cleaningwaste liquid. The proposed Project will utilize the wastewater treatment facility constructed inPhase I, which is designed to accommodate the additional wastewater discharge from theProject. This facility consists of coagulation and sedimentation tanks, neutralization tanks,

storage tanks, filters, oil-water separators, and pH control system. A sedimentation basin will beprovided to remove suspended solids from the ash disposal and coal yard areas. All liquid

effluents discharged from the proposed plant will meet the DENR effluent standards. The

expected effluent quality of the proposed power plant is shown in Appendix 9. The sludgeunderflows will be dehydrated, compacted and directed to a sludge thickener to increase solids

content to 10 to 15 percent. The thickened sludge will be dewatered and hauled to the ash

disposal area.

39. To prevent contamination of groundwater with leachate from the ash disposal

area, a dry disposal method will be employed. The embankments and portions of the bed orfloor of the ash pond will be lined with impervious materials such as clay. The embankments

will contain the ash and the rainwater from entering the ash disposal area. The water will be

directed to the sedimentation basin to remove settleable materials, then to the curtain wall to

retain floating ash and to the neutralization tank for pH adjustment before discharge. The ash

disposal area will be surrounded by a green belt to reduce the wind speed and improve the

aesthetics of the area. The ash disposal area and related infrastructure is designed to handle

the additional ash generated by the Project for 20 years.

40. Seawater will be drawn into the plant at 28°C to 31°C to serve as condensercoolant and discharged back to the sea with a 7°C rise in temperature to 35°C-38°C. The

discharge structure is an open canal, surface discharge type and extended to 650 m from the

shore to limit the area of the sea affected by the thermal plume with minimum a 3°C rise in

temperature. Simulations of excess temperature (. T) at the receiving water from the discharge

of Phase I and the Project of 29 m3Jsec of cooling water heated rc above the intake

temperature show that areas influenced by excess temperature greater or equal to 3°C are

9

Page 14: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

10

<0.05 km2 (average) and 0.05 km2 (maximum). In the design of the cooling channel, provisions

will be made to install an auxiliary pump to provide additional cooling water for dilution of warm

effluents, if needed. A velocity reduction cap will be installed at the top of the cooling water

intake to minimize the entrapment of fish.

41. The maximum allowable rise in temperature for Oyon Bay (Classified by DENR

as Class SC Water; i,e., areas suitable for boating, commercial and sustenance fishing, and fish

and wildlife sanctuaries) is 3°C. The areas influenced by excess temperatures 2: 1°C are 0.9 km2

(average) and 1.9 km2 (maximum). The temperature increase at the intake because of

recirculation has been calculated to be 0.8°C (average) and 1.3°C (maximum) in the simulation

period. Except for the area around the outfall, the average excess temperature in Oyon Bay will

be < 0.5°C, and the impact on the north coast of Salvador Island will be even less and confinedto short reaches of the coastline. The excess temperature on the sanctuary west of San

Salvador Island is insignificant, and there will be no biological impact. A plot of the predicted

increase in water temperature at Oyon Bay and the types of marine communities within the

thermal plume is in Appendix 10.

Sociocultural4.

42. As provided for in Republic Act No. 7638, the Department of Energy (DOE) Act

of 1992, NPC will be required, once the Project starts operation, to set aside one centavo(PO.01) per kilowatt hour of the total electricity sales for the local government unit (LGU). With

the operation of the Project, during Phase I, the LGU is expected to receive P36.8 million ($ 1.4million) annually. Twenty-five percent of this amount or P9.2 million ($ 0.35 million) will be used

for the electrification of the rest of Masinloc, the other 25 percent will be used for additional

livelihood projects and the remaining 50 percent or P18.4 million ($ 0.7 million) will be used for

reforestation. The Livelihood Fund will be allocated as follows: Zambales, 25 percent; Masinloc,

25 percent; Barangay Bani, 20 percent; and Region 111,30 percent. The Electrification Fund andthe Reforestation Fund will be used by the host LGUs to finance their own projects. In addition

to the financial benefits from the DOE Act of 1992, the Local Government Code (LGC) of 1991

requires NPC to pay real estate and franchise taxes. NPC was exempt prior to the LGC of 1991.

The annual real estate tax amounts to 01'3.6 million and the franchise taxes, 01'30.3 million. The01'33.9 million is almost seven times more than the 01'5 million in income of Masinloc in 1990.Because of the mandated benefits for local communities from power projects, there is now

competition among LGUs to host thermal power projects and requests from local officials to

NPC to study the hydropower potential of the rivers in their provinces.

43. In accordance with the hiring policy of NPC, qualified applicants from Barangay

Bani and Masinloc will be given priority in employment in the facilities provided under the

Project. With the development and livelihood funds granted by NPC to Masinloc, the

municipality has provided skills training in carpentry, masonry, electricity, electric welding, andcollege scholarships in engineering courses for the residents of Bani and Masinloc. After the

power plant is constructed, the selected workers will be trained for jobs in power plant

operations and employed at the power plant. The small increase in direct and indirectemployment for Masinloc residents and the increase in demand for materials, supplies, andother basic commodities is expected to increase individual and household incomes as well asimprove the local economy.

44. NPC will procure supplies and services from Masinloc and Zambales whenever

possible. NPC will also provide a reliable power supply to the host LGUs and the Central Luzon

Region by giving them priority when there is an energy shortage. Masinloc and Zambales willbenefit from the additional income generated primarily through increase in taxes. They will alsobenefit from the financial assistance and infrastructure projects provided for in the memorandum

- .

@ '.'

.

"

Impacts

0

Page 15: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

of agreement totaling P252 million ($ 9.7 million). The use of less expensive coal instead of fueloil for power generation will benefit the Philippine economy because it will translate into a

foreign exchange savings of $ 15 million annually. Furthermore, the additional 300 MW to be

generated by the Project will help stabilize power supply in the Luzon Grid and support

economic growth.

5. Public Health

45. No significant potential health risk will arise from the atmospheric emissions from

the operation of the Project because measures have been instituted to ensure that the plant'semissions and effluents will be well within DENR standards.

46.protectiveprocedurespolicies.

During the construction of the Project, the workers will beclothing and will be trained and monitored to ensure proper

are being implemented in accordance with the occupational

-"

.~~:-t.

Risk Assessment

47. The potential risks of the Project are low. The risk from high sulfur dioxideemissions will be reduced by using the proper type of coal or coal blending, and conforming

with DENR emission and ambient standards. The long term fuel supply contracts with suppliers

will ensure this type of coal is available. The plant will be maintained properly to keep NO2

emission within the boiler manufacturer's guaranty level of 751 mg/Nm3 (the DENR emission limit

is 1,500 mg/Nm3). If the electrostatic precipitator efficiency drops to a level that will cause theparticulates in the flue gases to exceed the DENR 300 mg/Nm3 emission limit, the plant will be

derated or shutdown. Then the electrostatic precipitators will be repaired and maintained toachieve their required efficiency level.

48. The Project will be designed and constructed to resist natural disasters such as

earthquakes, floods, typhoons and tidal waves. The acceleration coefficient used in the designof the plant will be in accordance with the seismic zone classification of the Government of the

Philippines as required by the Structural Code of the Philippines and other relevant internationalstandards.

49. Specific procedures have been developed to reduce the impact of accidental oilspills. The required facilities and equipment to be procured by NPC include oil and water

separators, skimmers, booms, sorbents, and motorboats. Other NPC projects have also similar

and compatible equipment which could be mobilized in case of large oil spills. In addition, NPC

has a standing agreement with the oil refineries to cooperate in case of large oil spills beyondthe capability of the individuat companies.

50. The plant will be provided with fire fighting systems and equipment to controlfires. Water will be made available from the plant's water supply system. A fire alarm system willalso be installed.

F. Monitoring and Institutional Plan

51. The environmental monitoring programs and organization for Phase I will be

adequate to cover the Project. Even prior to the construction of Phase I, a Multipartite MonitoringCommittee was formed in coordination with EMB-DENR and composed of representatives from

NPC, LGUs, local communities, NGOs, and EMB-DENR. This Committee met with NPC's

environmental and project management staff and worked out an environmental monitoring plan

11

Impacts

required to wearhealth and safetyhealth and safety

Page 16: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

for the Project. The environmental quality parameters to be monitored, the frequency of

monitoring, and the procedures to be used for monitoring are shown in Appendix 11. Thelocations of sampling stations are shown in Appendix 12. The MCFTPP Multipartite MonitoringCommittee, which is chaired by the mayor of Masinloc, reports to the Multipartite ManagementGroup headed by the Technical Director of DENR Region III. The composition of the MCFTPPEnvironmental Management Group and Committee is shown in Appendix 13.

52. Public health, particularly the incidence of respiratory diseases, will be monitoredregularly every two years. The work place, and the health of the workers will also be monitoredand personnel will be trained to ensure early detection and immediate remedies for industrialhealth and safety risks. An Occupational Health and Safety Program Plan (OHSPP) developedin accordance with requirements of the Department of Labor and Employment will be

implemented. This will ensure that plant personnel are informed about the health and safety

hazards associated with the plant and provided with the necessary protection measures to

minimize work-related risks and hazards.

53. The population size, vitality, and distribution of the following aquatic life will bemonitored: (i) corals and coral reef fish communities (percentage area cover of live and deadcorals, species, abundance, size, and biomass of fishes); (ii) fish fry at the collecting ground(species, abundance, and pieces collected); (iii) seaweed communities (list of species,

percentage cover of dominant species); and (iv) seagrass communities (list of species,

percentage cover, and biomass). A periodic monitoring program of crop production will be

implemented to determine the possible effects of long-term exposure to the different levels ofacid rain and ambient pollutant concentrations. The studies will focus on mango and rice, themain crops cultivated around the power plant site.

54. Environmental management is the responsibility of the Project Manager throughthe Environmental Management Section (EMS) under the Project Management Office for

MCFTPP. The EMS is administered at the site by the Project Manager, but supervised by the

Environmental Management Department at NPC's head office. This Department is

multidisciplinary with staff with graduate level training and extensive experience in power plant

environmental management. The EMS of MCFTPP will have a maximum staff of 22 during thepeak phase of construction, and will be headed by an engineer (pollution control officer) and

assisted by a biologist, two engineers, a chemist, a community development specialist, andenvironmental technicians and laborers. Any environment-related accidents will be reported

immediately to the Project Manager, who will report them to the Environmental Management

Department, the President of NPC, other departments (such as the Safety Department), and

other Government agencies as required by law depending on the nature of the accident. Theregular functions of the EMS is to assure compliance of contractors with the provisions of the

environmental compliance certificate, memorandum of agreement, and tender documents andto implement the planned environmental and management measures of the Project.

55. An organization to improve the fishermen's technical and scientific expertise to

maintain the sustainability of the yield in the area will be developed. The program will include:(i) rehabilitation and enhancement .of critical habitats specially mangrove reforestation,deployment of artificial reefs, establishment of community-based marine reserve, and seagrasstransplants; (ii) rehabilitation of linked habitats, specifically the reforestation of lauis Riverwatershed; (iii) alternative livelihood projects for fishing families; (iv) mariculture development

projects; and (v) assessment and monitoring of marine ecology and water quality during

construction and operation.

12- .

~

v

0

Page 17: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

G. Alternatives

56. Electric power demand in the Philippines increased at 5.38 percent per annumfrom 1986 to 1991 and 5.83 percent per annum from 1991 to 1995 despite the demand sidemanagement strategies applied by the Government to suppress unnecessary powerconsumption. In 1991-1992, the Philippines experienced severe power shortages that resultedin load shedding for five to twelve hours per day. Industries, commercial establishments,institutions, and households purchased individual electric generators. The large commercial andindustrial establishments purchased diesel-powered electric generators while the householdspurchased the two-stroke gasoline generators. The electric generators were often rebuilt and

reconditioned units without any noise and emission controls. The generators, especially the twostroke engines have a low energy utilization efficiency and produced hydrocarbons andparticulate. Eight million people in Metro Manila were subjected to serious health hazards fromthe emission of the electric generators, and the noise caused serious social disturbance,especially at night. During this period the incidence of respiratory diseases within Metro-Manilaincreased by more than 20 percent based on hospital records. The increase could be higherbecause poor people usually do not go to hospital for minor ailments. A number of fires and

deaths have been reported because of unattended candle and kerosene lamps during loadshedding especially in the slum areas and low middle income housing where the residents are

not financially able to buy their own electric generators.

(&\~3

57. A site selection study conducted by NPC in 1988 chose Masinloc over several

other sites in Luzon for the coal-fired thermal power Project. The feasibility study for the Projectwas funded by Japan International Cooperation Agency (JICA) and prepared by the Japan

Electric Power Development Corporation (EPDC), which finalized the design and concept for the

power plant. NPC conducted an EIA study for the Project from 1989 to 1990. Prior to conductingthe study, NPC consulted the municipal officials and residents in Masinloc to inform them about

the Project and to request permission to conduct the EIA study. The Masinloc site was selected

because it has the following advantages: (i) the inland ash disposal site is close to the proposedplant (as opposed to the other sites that need offsite or offshore disposal), (ii) the bedrock iscloser to the ground surface, thus, the construction cost of the foundation will be lower

compared with the other sites, (iii) the offshore coal conveyor and cooling water intake and

discharge facilities are shorter, (iv) the plant site can be expanded both inland and offshore, (v)freshwater is available, and (vi) the environmental (ecological and social) impacts will be less,(vii) low population density of the area, and (viii) it balanced the location of the power plants inrelation to major load areas.

58. The best alternative to the proposed coal-fired power plant is an oil-fired thermal

power plant that generates the same energy as the coal-fired power plant. The choice of the oil-fired alternative depends on the urgency of the plant, its economic reliability and its responseto load. The coal-fired alternative was selected based on long range economic projections. Fuel

oil is more expensive than coal and this cost relationship is expected to continue in the future.

To safeguard national interest especially on the reliability of the supply and price fluctuation of

energy sources, the Department of Energy has to diversify the sources and type of fuel. NPC

is currently pursuing the development of geothermal energy, hydropower, natural gas power

thermal power plants and small hydro electric power. NPC has also started a demand side

management program to maximize the efficiency of power utilization. NPC is also developing

solar energy, wind, biomass and other renewable energy sources. The coal-fired plant would

also assist NPC in improving its mix of hydro, geothermal, coal, and oil-fired power plants.

13

Page 18: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Benefit-Cost AnalysisH.

59. The evaluation of the proposed Project yielded a financial internal rate of return

(FIRR) of 18.5 percent, and an economic internal rate of return (EIRR) of 27.9 percent. Theassumptions used for the evaluation were:

(i) a plant service life of 25 years;(ii) the estimated total cost of $1 ,152 million (incorporating the cost of $95.85 million

for environmental protection measures shown in Appendix 14) includes the costof (i) both stages of the MCFTPP (600MW), (ii) the transmission line from

Masinloc to Labrador (iii) 33 percent of the costs of the 500-kV transmission line

from Labrador to San Manuel and to San Jose and (iv) 33 percent of the costs

of 500/230 kV and 230 kV substations;

(iii) the annual fixed operation and maintenance (O&M) costs are 2.5 percent of total

costs for transmission lines and substations;

(iv) the variable O&M costs are P 0.067 per kWh and the fixed O&M costs are $5.3

million per year for the Masinloc plant;(v) the annual sales to the Luzon Grid will be 3,641 GWh based on 3,942 GWh of

generation with losses of 7.6 percent from consumption at the power plant andtransmission losses; and

(vi) the average tariff for NPC for the Luzon Grid of P1.87/kWh in 1994.

The economic analysis was based on : a) a standard conversion factor of 0.83 applied

to all local costs; and b) incremental output from the Project based on a resource saving

valued at P 0.36/kWh above MERALCO's consumer tariff of P2.76/kWh.

I. Public Involvement

60. The completed EIA report was submitted to the EMB-DENR on 21 September

1990. A public hearing on the EIA was conducted at the Masinloc Elementary School in

February 1991. To promote people's awareness about the Project, NPC then published and

distributed a primer that contained information about the Project. After holding a special publichearing on the project, the DENR issued the environmental compliance certificate for the Project

on 18 December 1992. A Multipartite Masinloc Project Management Group was formed as

specified in the memorandum of agreement entered into by DENR, the provincial government

of Zambales, the municipal government of Masinloc, the barangay of Bani, the DOE and the

NPC on 2 May 1993. The memorandum of agreement covers among others, the resettlement

program and the benefits to be derived by the residents affected by the Project.

ConclusionJ.

61. Based on the assessment of the environmental and socioeconomic aspects ofthe project and that NPC has undertaken to meet the commitments described above, it is

concluded that all environmental, occupational, health, safety and socioeconomic impacts of

the Project can be mitigated to levels that fully comply with all applicable international guidelinesand the requirements of the Government of the Philippines.

14

.~

v

0

Page 19: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Plant Layout

Coal Data Analysis

MCFTPP Mass Balance

MCFTPP Environmental Protection Measures

MCFTPP Compliance With DENR's Emission Limits

Water Quality of Lauis River

MCFTPP Compliance With DENR's Ambient Air Quality Standards

Predicted Ambient Ground Level S02 Concentration

Expected Effluent Quality

Calculated Maximum Excess Temperature and MarineCommunities in the Proposed Discharge Area

MCFTPP Environmental Monitoring Program

Location Map of MCFTPP Environmental Monitoring Stations

MCFTPP Multipartite Management Set-up

Environmental Management Measures Cost Estimates

1

2

3

4

5

6

7

8

9

10

(:5

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

Page 20: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Appendix 1

" .

\'

Page 21: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

~\

'!~"":':5:

17 Appendix 2

COAL ANALYSIS DATA LIST

(MCFTPP SEIA)

Page 22: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh
Page 23: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

t-W-,0H:U')a::

Ww0:::5:::)0

~a-

W~~<1:

~

za::OW

-:I:

bt-wo

b~

0::-

a..~

~

~<1:~8

Zu~gZ6OU)

~~

>

Z:5:

W~

0~

X

(\J

Appendix

419

Page 24: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Note:Ping Shuo coal shall be blended with other coals having low sulfur content to meet thestandard

*

20 Appendix 5

. .

Compliance with DENR AD 14Emission Limits

MCFTPP

(MCFTPP SEIA)

()

0

Page 25: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

t~a:w2::a:cn:>5II..0~,:J~:>",a:w~..W-Jm~ -~wU)c..c..t:u~-

21

Q)

UJ

coQ)

C3

;.; c:

0 .-

- ::J

- -

c: 01

6 E

E 0

co M

Q) c:

- co

.a .c

~ -J

-

O-J"O

>-J~

Q)-

E-o

"'Gj0l OlE

-oENE

E~811>o:J .

.~ c:

Eo 0

0 ,

.- ,

, ,~

.£.a0lQ)~

Ea.J:LL-(

Q)

(/I!OQ

)

~ 5

- C

.!J .-

!O- *

~ g

~

"U

c!Oco

-J ,-J.r.

--<---

ZC

lClC

lQ)

. E

E E

0

o"'U">

U">

Ezo.oo.-..000

0C

D

. .

. C

o"U~

:J'

zuuu<

Page 26: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

~w~~

cn

:)~~w~~w

U

~~-:)ct

cnw

:I:cn

cnD-

wD-~t:U-uU-~

0-

~~ct:)

()

~w~~

N

w-Jm~

22

A

ti&

-J-J------01

OlEE~

'88dd

, '

0)01

u.I

£~\:.';:.;1

-.J-.J--0101

E E

U')U

')

..00:~

'0

000-

. 'Cl.

~::!Z

Q)300()

- 0

~

~ E

w

~IO ()

~ <

Q).o

-"010

W

C~~~;,gwO

lOl.D

."OE

E~

OEo~""Z::! .

. g

.. E

00"0

Q).-

I .

CC

0 .-

"0.0 0

Z~OCl.O

Page 27: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

MCFTPP COMPLIANCE WITH DENR AO 14AMBIENT AIR QUALITY STANDARDS

(MCFTPP SEIA)

Predicted Hourly Ambient Ground Level S02 Concentration, ug/NcmTable 1:

Ninety-eight percentile (98%) values of 30 minute sampling measured at 2SoC and one atmoshphere pressure.

: Predicted Hourly Ambient Ground Level NO2 and AP Concentrations (based on worst coal, Reit Spruit)

*

Table 2:

Note:Coal Type

*Blended Coal

2. Distance

Max

Mean

98th

3.

Met Data4.

23

Appendix 7

Reit Spruit (South Africa)

Lithgow (Australia)

Blair Athol (Australia)

Ulan (Australia)

MIM Coal (Australia)Datong (China)

Kaltin Prima (Indonesia)

A

B

C

D

E

F

H

.-

PingShuo/Blair Athol (65/35)PingShuo/Kaltin Prima (65/35)the distance from the source to the receptor with the maximum concentrationat 1.5 km

IJ

--

(a)(b)(c)

at 12.5 kmat5km

the maximum 1-hr concentration calculatedthe highest mean value calculated in all receptors for the entire periodthe highest calculated 98th percentile of concentration values, i.e. that thisconcentration level will be exceeded in 2% of the time and vice versa theconcentration value is less or equal to the fraction value in 98% of the time.1981-1990

-

-

Page 28: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

Appendix

824

-.,

t:':;:'\(i:i;1

0

Page 29: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

..

~-J~:>

°-..-~ZWW<I>:>a.

-Ja.M:t:Wu

c~W-..-

UWa.XW

~dix

925

Page 30: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

26 Appendix 10

{)

0

Page 31: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

MCFTPP

(~9

Note:(a) Metals - As, Pb, Hg, Cr, Cd, Cu, Fe

(b) P - Pre-constructionC - Construction phase0 - Operation phase

(c) Follows approved methods of analysis by DENR

27

Appendix 11

ENVIRONMENTAL MONITORING PROGRAM

Page 32: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

28

~

v

0c

Page 33: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

. .

Appendix

1329

Page 34: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

ENVIRONMENTAL MANAGEMENT MEASURES COST ESTIMATES

Particulars Cost

(In Million US$)*

A. NOISE AND VIBRATION COUNTERMEASURES1. Use of low noise type equipment Included in item A2

2. Use of silencers and impact absorbers such as rubber,polyethylene. neophrene, etc. 1.37

3. Installation of noise shielding walls Included in item A2

4. Use of vibration dampers and correct installation of

equipment Included in item A2

5. Periodic noise monitoring and reporting Included in item A2

B. SOX, NOX AND DUST EMISSION COUNTERMEASURES1. Use of 1% sulfur fuel oil Operational requirement

2. Use of less than 1% sulfur coal Operational requirement

3. Two-stage combustion method Operational requirement

4. Use of efficient electrostatic precipitator with guaranteeddust emission of less than 200 mg/Ncm 9.10

5. Adoption of high stack (150m min.) 5.30

6. Stack monitoring equipment for S02, N02, SPM, opacity 3.40 *1

7. Ambient monitoring insturment for S02, N02, SPM 1.25 *2

C. COUNTERMEASURES AGAINST COAL SPILLAGE FLYINGCOAL DUST, SPONTANEOUS COMBUSTION, ODOR, ETC.

1 . Use of imported coal Operational requirement

2. Use of continous type unloader 34.903. Installation of coal/oil fence Included in item C2

4. Installation of conveyor enclosure Included in item C2

5. Installation of water spray system @ coal yard & SIR Included in item C2

6. Use of trees and other greenery as wind shield

7. Installation of fire fighting system 3.64

8. Use of coal compactors such as bulldozers Included in item C2

9. Installation of coal stockpile temp. monitoring equipment Included in item C2

10. Sedimentation of pit in coal yard;1 meter high concrete retaining wall 3.16 *3

11. Efficent coal inventory control Operational requirement12. Provide public access to Oyon Bay No cost implication

Subtotal 62.12

30

Appendix 14Page 1

(~

Page 35: New SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT · 2014. 9. 29. · US$1.00 AP BCFTPP °C CO db DENR DrA DOE DOH EMS EMD EPDC JICA LGU MCFTPP MHIAS MWD NGO NOx NPC OHSPP PAGASA 802 GWh

ENVIRONMENTAL MANAGEMENT MEASURES COST ESTIMATES

~~

Notes: * 1 Cost of boiler special instruments

* 2 Includes water quality monitoring equipment and other

* 3 Cost of foundation for coal storage yard* 4 Cost of land reclamation

* 5 Cost of one boiler fee pump

31App.endix 14

Page 2

laboratoryequipment