26
Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 , Holly Hughes 1 , John T. Lee 3 , Chuck Rodrigues 3 , 1 Woods Hole Research Center, Woods Hole, MA 2 USDA Forest Service, Durham, NH 3 Dept. of Plant, Soil and Environmental Sciences, University of Maine, Orono, ME Factors controlling carbon sequestration at Howland Forest, Maine: Long-term trends, interannual variability, and forest management impacts

Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

  • Upload
    onawa

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Factors controlling carbon sequestration at Howland Forest, Maine: Long-term trends, interannual variability, and forest management impacts. Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 , Holly Hughes 1 , John T. Lee 3 , Chuck Rodrigues 3 , - PowerPoint PPT Presentation

Citation preview

Page 1: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Neal A. Scott1, David Y. Hollinger2, Eric A. Davidson1, D. Bryan Dail3, Holly Hughes1, John T. Lee3, Chuck Rodrigues3,

1Woods Hole Research Center, Woods Hole, MA2USDA Forest Service, Durham, NH

3Dept. of Plant, Soil and Environmental Sciences, University of Maine, Orono, ME

Factors controlling carbon sequestration at Howland Forest, Maine: Long-term trends,

interannual variability, and forest management impacts

Page 2: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Overview

• Why care about carbon sequestration?• Long-term trends in carbon sequestration

in unmanaged forest• Effects of shelterwood harvest on carbon

sequestration• Can a shelterwood regime enhance

carbon sequestration?

Page 3: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

•Commercial spruce-hemlock forest

–GMO Renewable Resources LLC (formerly IP)

•LAI ~5.5

•Live tree C ~110 t C ha-1

•BA~43 m2 ha-1

•Age ~140 years

Howland Forest

Page 4: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,
Page 5: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Interannual variability in carbon uptake

•Interannual variability of forest C sequestration is high (if you do an experiment you need a control!)

Harvard forest data courtesy S. Wofsy

Page 6: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

• Reconstructed diameters indicate a mean tree sink of 164 g C m-2 y-1 • Uptake decreas-ing by 1 g m-2 y-1

• Tree C sink not correlated with variations in tower flux, but consistent with tower data

Page 7: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

)/(max)246(max

0

osoilaa TTE

m

T

E

AeIK

IPeRNEE

Modeling net ecosystem carbon exchange

Annual predictions require carbon pool information!

Page 8: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

+18 kg N ha-1 y-1

1 km

Shelterwood Harvest

Jan. 2002

Long-term flux studies (1996 - )

Howland AmeriFlux Site

LaG

range

Ikonos imagery courtesy M. Martin, UNH EOS

Nitrogen addition experiment (1999-)

Page 9: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

0

20000

40000

60000

80000

100000

120000

140000

160000

1992 1994 1996 1998 2000

Year

Acr

es o

f fo

rest

lan

d

Clear-cut

Shelterwood

27% of total

3.5% of total

Changes in forest management practices in Maine (1994-1999)

Shelterwood system – 2-3 harvests, 5-15 years apart, enhances natural conifer regeneration

Maine Forest Service 1999

Total harvested area in 1999: 536,219 acres (6% increase from 1994)

Page 10: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

How forest management alters carbon sequestration:

• Affects age structure• Modify carbon distribution in the forest (e.g.

more dead wood)• Change in soil C:N ratio• Changes in carbon allocation within trees (e.g.

leaves vs. roots vs. stems)• Can change stand structure (light interception)• Can change growth efficiency (? - linked to

changes in age-structure, nutrient availability)• Types of wood influences types of products

Page 11: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Shelterwood harvest

Started Nov. 2001Ended April 2002Cut to length and forwardedRemoved about 1/3 of basal

area and leaf area

Photo courtesy of Mary Martin

Page 12: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

The impact of a harvest on forest C sequestration depends on several

things:

• What happens to C uptake & loss in the remaining forest?– How does photosynthesis change? Compensation?

– How does soil respiration change? Reduction?

• How much slash is produced & how quickly does it decay?– Belowground versus aboveground losses

• How much wood is removed and what is its fate?

Page 13: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Carbon pools and harvest C fluxes:

Carbon pool Control Harvested

(pre-)

Harvest

C fluxes

Live basal area (m2 ha-1) 43(2.4) 30 (1.7) 22

Live biomass (t C ha-1) 109 (6.6) 77.3 (4.7)

Standing dead (t C ha-1) 10.8 (1.2) 3.3 (0.8)

Down-dead (t C ha-1) 4.1 16.1 (3.9)

Soil 110

Wood removal (t C ha-1) 14.9 (2.1)

AG detritus (t C ha–1) 5.3 (1.1)

BG detritus (t C ha-1) 5.2 (0.7)

Page 14: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Detritus production and decay (II)

0

5

10

15

20

0 50 100 150 200

Water content (%)

Re

sp

ira

tio

n

(ug

C/g

dw

/hr)

….but also to water content

Dead wood respiration is related to temperature…

0.1

1

10

100

1000

5 10 15 20 25 30

Temperature (C)

Res

pir

atio

n (

ug

C g

dw

-1 h

r-1) Ln respiration = 0.092Temp - 0.014; R2 = 0.21

Result: Half life ~ 2.5 years

Page 15: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Soil respiration in harvested and control stands1-

Jan-

02

10-A

pr-0

2

19-J

uly-

02

27-O

ct-0

2

4-F

eb-0

3

15-M

ay-0

3

23-A

ug-0

3

1-D

ec-0

3

1-M

ar-0

4

9-Ju

ne-0

4

17-S

ept-

04

26-D

ec-0

4

Mea

n F

lux

(mg

C m

-2 h

r-1)

0

50

100

150

200

250

300

350Main Tower AMain Tower BHarvest Low ImpactHarvest High Impact

Respiration rates lower after harvest (2003 and 2004)

Page 16: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Impact of harvest on net carbon exchange

To examine the impact of harvest on net C flux, we compared fluxes from the control and harvested tower both pre- and postharvest

Preharvest slope (2001) = 0.92

Postharvest slope (2002) = 0.75

Postharvest slope (2004) = 0.89

Suggest an initial 18% reduction in net C storage as a result of harvest (30% BA removed) but then a recovery.

Page 17: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Impact of harvest on

carbon uptake efficiency

(growing season)

Whole stand:

Drops then recovers

Per unit BA:

Slight drop and then big increase by 3rd year

Page 18: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Control: 1.99 Mg C ha -1 y-1 (95% CI=0.5)

Harvested: 1.79 Mg C ha -1 y-1 (95% CI=0.5)

Inventory-based measurement of carbon sequestration (2001 – 2003)

Page 19: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Simulated carbon losses following harvest (with and without wood products)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

Time (years)

Net

C s

tora

ge

(Mg

C h

a-1

y-1)

net C uptake-slash/products net C uptake - slash only C uptake

Without harvest: 54 Mg C ha-1 (30y)With harvest, assuming no enhanced uptake: 34 Mg C ha-1 (30y)With harvest, 40% enhancement in net uptake: 54 Mg C ha-1 (30y)

Measured net uptake for 2004=0.70± 0.25 t C ha-1y-1

Page 20: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Summary• Mature, relatively undisturbed forests at Howland,

Maine sequester about 1.9 t C ha-1 y-1, primarily in bole wood

• Shelterwood harvest removed about 30% of stand biomass, and created detritus containing ~10 t C ha-1

• Soil respiration is lower two years after harvest, and respiration from slash is strongly related to BOTH temperature and moisture content

• Simulated net C uptake 3 years after harvest (0.6 t C ha-1y-1 agrees closely with measured net uptake (0.7 t C ha-1y-1) that year - Strong Growth Enhancement in the Remaining Trees

This research was supported by Office of Science (BER), US Department of Energy under Interagency Agreement No. DE-AI02-00ER63028 to the USDA Forest Service, by Grant No. DE-FG02-00ER63002 to WHRC and DE-FG02-00ER63001 to U. Maine and by the USDA Foest Service NE Research Station

Page 21: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

50 100 150 2000

0.1

0.2

0.3

0.4

Tree age class (years)

frequ

ency

Age of canopy red spruce

• Near navigable river,flat land Colonial use

• Charcoal in soil Site burned• Soil horizons intact Not plowed, grazed• Age synchrony Pasture abandoned

~1860, forestage 140

Old for eastern US

Site age from land use reconstruction:

Page 22: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Fate of harvested wood:Wood products produced, and their longevity, affects the net C balance of the shelterwood harvest regime

Product Wet mass

(tons)

% total Half-life

(y)

Boltwood 232 2 20

Chipwood 364 3 3.5

Groundwood 199 2 3.5

Logs 4771 40 45

Pulp 4265 36 3.5

Studs 463 4 45

‘Tree length’ 1511 13 3.5

Sko

g a

nd

Nic

ho

lso

n 1

998

Page 23: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Debris

Photosynthesis

CO2

Respiration

CO2

ReducedPhotosynthesis

CO2

IncreasedRespiration

CO2

Timber

+

Wood products

CO2

Paper products

Sawdust

Harvest

Forest regrowth

Carbon consequences of forest management

How quickly doesforest growth recover?

Page 24: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Factors influencing Forest C Sequestration:

• Historical land-use (age structure and (perhaps) growth rates)

• Climate Change (season length, precipitation)• CO2 fertilization• Nitrogen deposition

• Forest use/management– Current land-use assessments include logging (clear-cutting and

regrowth), fire suppression, cropland, pasture (Houghton et al. 1997).

– Subtle management practices not included (e.g. thinning, low-intensity logging; lead to changes in species composition, carbon distribution in ecosystem pools).

Page 25: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Impact of harvest on net carbon exchange (I)

Ecosystem Exchange Characteristics

Control Towerµmol m-2 s-1

(mean ± std dev, n)

Harvest Towerµmol m-2 s-1

(mean ± std dev, n)

6 months postharvest

Day -9.3 ± 5.1, n=502 -5.9 ± 5.7, n=490

Night

30 months post

Day

Night

5.5 ± 4.0, n=497

-7.6 ± 7.8, n=711

6.0 ± 3.0, n=277

 3.0 ± 4.8, n=506

-6.4 ± 7.7, n=538

6.9 ± 4.0, n=191

Initial predictions

Decreased uptakeIncreased respirationReduced

Photosynthesis

CO2

IncreasedRespiration

CO2

Page 26: Neal A. Scott 1 , David Y. Hollinger 2 , Eric A. Davidson 1 , D. Bryan Dail 3 ,

Flux data show that forests can switch between sink & source depending on weather

• Mean uptake188 g C m-2 y-1

• High variability• Uncertainty~20 g C m-2 y-1