105
NASA Contractor Report I05003 (H&OA-CB-1550U3-Vo_-1) _+OW n_Y_(J.LJJ'_.. NULaLt_I_ dt+_-1q059 , AZJ_P_Z& SUilVB_e VOLUH]_I F_, li@po_t (Low BIl@¢qy TL'on,uporf, _Jg_t_m_) 105 p HC AOS/HP A01 C_¢L IOA ULL_I_ ' dJ/O_ OO_d7 LOW REYNOLDS NUMBER/_IRFOIL SURVEY VOLUMEI B. H. Carmichael _ LOW ENERGY TK_NSPORTATIONSYSTEMS / Caplstrano Beach;California 92.624 ' ""_se OrderL-4059B 981 Naltonal Aeronautics and Space Administration LI_p_ Fleem_.h c+mte Hampton, Virginia 23665 + ;+-+-_+-_+ :+++ , + + .... + , o + , , . .o . + , .... _ .............. _ .... "%,_ ......... .......... + -+ _"++'+_\ -. " '+ + __ ......... . .... +._ , , ,, , ,,,,,,, + , +i, ,++ https://ntrs.nasa.gov/search.jsp?R=19820006186 2019-02-04T09:52:56+00:00Z

NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

  • Upload
    vokhanh

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

NASA Contractor Report I05003

(H&OA-CB-1550U3-Vo_-1) _+OWn_Y_(J.LJJ'_..NULaLt_I_ dt+_-1q059, AZJ_P_Z& SUilVB_e VOLUH]_I F_, li@po_t (Low

BIl@¢qy TL'on,uporf, _Jg_t_m_) 105 pHC AOS/HP A01 C_¢L IOA ULL_I_

' dJ/O_ OO_d7

LOW REYNOLDSNUMBER/_IRFOILSURVEY

VOLUME I

B. H. Carmichael _(

LOW ENERGY TK_NSPORTATIONSYSTEMS /

CaplstranoBeach;California 92.624

' ""_se Order L-4059B981

NaltonalAeronauticsandSpaceAdministration

LI_p_ Fleem_.hc+mteHampton,Virginia23665

+ ;+-+-_+-_+ :+++ , + +.... + , o + • , , . .o . + , .... _ .............. _ .... "%,_.......... .......... + -+_"++'+_\-. " '+ + __ ......... ..... +._ , , , , , ,,,,,,, + , +i, ,++

00000002

https://ntrs.nasa.gov/search.jsp?R=19820006186 2019-02-04T09:52:56+00:00Z

Page 2: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

!PREFACI:

Tile1ocatlmland cnllm:timl_f tim.lar_]em_,h_)raf _meful references

p(_rtalnin.qto thls l_Ighlysp_:_l_11zedfi_,Idwas _.xpmllt_dthr(}ll_lhthe 1

golmrou_and wholelleartedco_p_.ration_f many enthuslastlcres_.;arcllers.

The extensive_irf(}ildo_i_n alldt_.stil1.qby lI)'_.Altl_aus,Epplerand j!

Wortm_mnof StuttgartUniversity,those of Dr. wm Inge,and his associ_ites

at Delft University,The Netherlands,_md those of Dr. Muel]Qra,d his

associatesat the Universityof Notre Dame are currentand most useful.

AlthoughNASA Langleyis not active in the criticalReynoldsnumber field,,!

discussionswith Dr. Pfennlnger,H. Phillips,and Dan Seinersand Harry i

Sheaf of thatfacilityhave been helpful. Additionalusefuldata have06

been obtainedthrl_ughDr. Kramerof GottingenUniversity,Dr. Marsdenof

the Universityof Alberta,Dr. Miley of Texas A&M, Dr. E(.Ig!estonof the

Universityof WesternOntarlo_ Larrabeeand Derilla of Mas._achusettS

Instituteo'_Technology,a_d Patrickof CranfieldUniversity.

Aid was also receivedfrom Zipkinand Dr. Roy Smith of GeneralElectric

Corporation.Jolm McMastersof BoeingAircraft,Bob Liebeckof Douglas

Aircraft,and Russ Osborn_of Wright Field

The scientificfree flightmeasurementsof model aircraftbuilders,

MaxlmilllanHacklingerof Germany.[illbertHoffmann,Andy Buaer, and "

Blain Rawdonof the UnitedStateshave been inspiring°

Meeting_nd talkingwith Frank Zaic, whose Model AircraftYearbooks

have disseminatedthe latesttechnologyto model aircraftbuildersthrough-

out the world for half a centurewas a great joy and prlvilege. Discusslons

and c_)rrespondencewltl_expertmodel builderssu_:has Blanchard,¢hampine,*!

.* llmman,Hines, Isaacson,Mouser,Meier, Ko, Pressnell,Gioskleng,Gale,

i i

00000002-TSA03

Page 3: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Reld,Wagner,White,and Xenakishaveh_Ipedto make th_ limltati_s

of laboraturydevelopedmaximump_rfo_anceairfoilswhenenceunterlng

the realworldaf rouohalr dynamicfreefllghtpalnfullyclear, The

keenobservationalpowerBand empiricaldevelopment_by freeflight :;I

modelbuilder_havealreadyarrivedat a hlghtechnlcalplateau,

ii

O0000002-TSA04

Page 4: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

c.\

-)

L_O_,._REYNOLDSN.U.MBE_RAIRFOIL DA_TA.sURVE_y

TABLE.OF CONTENTS_

List of Illustrations v

Nom(_nclature vliix

Sumnlary

I Brlof Reviewof ApplicableAerodynanlicPrinciple_ I

II Changesin Flow Phenomenaand Wing Design Technique 7With Inc,'easingRNFlow PhenomenaBibliography 14

Iil S.tateof Knowledgeon Fluid Flow Separation 15

Introduction 15

Chronology 16

Discussion 19

FlowSeparationBibliography 43

IV Low ReynoldsNumberAirfoilCharacteristics 46

(A) LaboratoryTest Data 46

HistoricalReview 46

Chronology 53

Discussion 57

Bibliography 67

(B) Discussionof Free FlightTesting 71

Chronology 73

Free FlightBibliography 75

(C) Low ReynoldsNumberAirfoilDesign 77 :

AirfoilDesignBibliography 81

(D) Books o_ TechnicalAeromodelling 84

V BoundaryLayerTrippingDevices 85 '

(A) HistoricalReview 85

(B) VariousMethodsof BoundaryLayer Tripping 86 !

(C) Uiscussion 88

(D) Bibliography 96

iii

• 't

00000002-TSA05

Page 5: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

PREOEDINGPAGEBLANKNOT

Listof lllgstratlQns

II-I- The Realmof Reynolds 8

III-1 - LaminarBubbleGeometry 28

-= - SchematicDiagramof LaminarSeparation Bubble 29

-3 - t.amtnarSeparation Prediction 30

-4 - Reparation Streamline Angle 31

-5 - SeparationStreamlineAngle 32

-6 - TransitionBubbleLength 33

-7 - LaminarPart of BubbleLength 34

-8 - TotalBubbleLength 35

-9 - CriticalBurstingPressureCoefficient 36

-10-BubbleEffectson PressureDistribution 37

-11-BoundaryLayerVelocityProfile 38

-12-BubbleLengthvs. ROs 39

-13-TransitionCriteriaBasedon BubbleHeightand RN 3g

-14-VelocityDistributionsin SeparationBubble 40

-15-PressureDistributionoverSeparatedRegion 41 ,!-16-Variationin ShapeFactorH =_*/0 41 il

-17-Comparisonof CalculatedVelocityDistributions 42 iii

IV-I- AerodynamicCompariSonof TurbulentTunnelData 47 .(withRN increasedto accountfor turbulence)withlow turbulencetunneldata) _'_

-2 - Liftvs Dragand LiftvsdForms 59

-3 - Eppler61 Airfoilin ThreeWindTunnelsat RN = 50,000 61

-4 - Eppler61 Airfoilin Three WindTunnelsat RN = 80,000 63

-5 - Comparisonof Eppler387 ExperimentalPolarsWith 79TheoreticalPredictions

V

•-,'-.

=.._: ._',

00000002-TSA06

Page 6: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

V-1 - Various Methods of Boundary Layer Tripplng B7

-2 - Effect of Sound and T.rip Wire on E-51 at Rc - 80,OOD 93

-3 - Effectof Sound and Trip Wire on E.61 at Rc = 50,000 g4-4 - Effectof Sound PressureLevel on Lift in CriticalRange g5

vi

00000002-TSA07

Page 7: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

N_enclature

r SYMBOL DESCRIPTION UNITS • •'t .........

c atrFotl chord length ft.

CB drill.I,coefficient_ Dlq . S

CL llft coefficient_,L/q • S

CM pitchingmonlentcoefficient= M/q . S , c

Cp pressurec(_efflcient_ (Pl " Po)/q

Ow wetted area drag coefficient= D/q . Sw

D drag pounds

f camberor maximummean line heightabove chord..1-ine c

g accelerationof gravity ft/sec2

ht heightof bubbleat _ransltien ft.

l Iength ft.

L Iift pounds

Lb total bubblelength _ ft.

m velocitygradientparameter= Yg- cJ.UWK

M pitching moment ft.pounds

Pl local surfacepressure pounds/ft2

Po ambit pressure _ pounds/ft2 •

q fIlghtdynamicpressure= _U=_ pounds/ft2

R reattachmentpoint

Rs arc lengthReynoldsNo. U ._"= _

RN chord ReynoldsNo. : Rc : U_v,_ii

Rtl momentumthicknessReynoldsNo. : --_

R% % at separationpoint : ..J,L._

s arc lengthfrom stagnationpoint ft.

S wing area ft2

viii. !

(

................. "" • " :' . _':'.'.i"-/- ." " ._". " ' ' _t.5"- .... "-'-" " , ....,, • .,- ........ "i

00000002-TSA08

Page 8: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Nomenclature Conttnued

SYMBOL DESCRIPTION UNITS

Sw wetted_rea ft2

SPL sound pressure level db

t maximumairfoll thickness ft.

T transitionpoint

Tu turbulencelevel 'X,IJ_

_i velocityat heighty in the boundarylayer ft/sec

U velocityat outsideedge of the boundarylayer ft/sec

U=, flight velocity ft/sec

V spanwise velocity ft/sec ,

X distancealong strean}direction ft.

AX laminarportionof bubble length ft.

y distancenormal to surface ft.

_ angle of attack - betweenchord line & relativewind deg.

^ incrementof distance ft.6

_* displacementthickness: _ (I- "_) ¢J_' ft. ,

s _ ¢jy 1II momentumthickness= J"-_(/ "O'J ft.

y separationstreamlineangle from surface deg. .,

o pressurerecoverycoefficient- I -

p fluid density pounds sec2ftq

_l absoluteviscosity op_o_u_P,_dssec---r:+-Z-----ft

v kinematicviscosity ft2/sec

viii

:1:2,

00000002-TSA09

Page 9: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

SUMMARY

Experimental_erodynamicpropertiesQf two dlmensionalalrfol1._in

the critlcalehordl_n,qthReynold_number rar}qebetween40,000 and 100,000

have been gatho,red from sourcesIn nine countriesof'the world and from

a seven decadetlme period, The differencesIn 'Flaw_havior in this

re!ilmecomparedwlth lower and higherReynoldsnumbersare dlscus._d,

Informationon flow separation,in partlcqlar,the large lamlnarseparation

bubble is discussedIn detail in view of Its importantinfluenceon critical

Reynoldsnumberairfoilbehavior, The shbrtcomingsof applyingtheoretical

boundarylayer computationsfound successfulat higher Reynoldsnumbersto

tt,e criticalregimeare discussed. The large variationIn experimental

aerodynamiccharacteristicneasurementrideto small changesin amblent

turbulence,vibration,and sound level is._..]lustratedwlth experlmentaldata.

The variationin resultsfrom the best availablelaboratoriesand the

problemof realistic laboratorvsimulatio, of free fliqht conditlons is made

clear. The difficultiesin obtainingaccuratedetailedmeasurementsin

free flightare discussed.

Dramaticperformanceimprovementsat criticalReynoldsnumber,achieved .,I

with varioustypes of boundarylayer trippingdevicesare discussed, !i

The includedchronologiesand bibliographiesare intendedto be the :i

"1most completeavailableon this subject,

The aerodynamicparametersof airfoilsin the csiticalReynolds

number rangewill be comparedin the secondvolumeof this study.

ix

00000002-TSA10

Page 10: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

I .BRIEF.REVIEW_OFAPPL.,!CABbE,AERODYNAMICPRINCIPLES

Boundary_Laye_tr

A comparativelythin_heet of decelerated fluidoriginatingthrough

frictionalongthesurfaceof solids,

Bound______aryL__aa__?_r- Lamlnar

The conditionfoundat lowerReynold_numbersin whichinterchange

of momentumbetweenadjacentboundary_ayorlevelsdoesne_._.toccur_

Surfacefrlctionand flowgeneratednoiseare lowcomparedto---

BoundaryLayer- Turbulent

The conditionfoundat higherReynoldsnumbersin whichinterchange

of momentumbetweenadjacentboundarylayerlevelsdoesoccur,

Surfacefrictionand flowgeneratednoiseare highcomparedto the

laminarcondition.

Coefficientof Lift

The liftforce(L)of a wing,non-dimensionalizedon the basisof CL =L_..L__-projectedwingarea (S)and flightdynamicpressure(q). _oq

Coefficientof Drag- Profile

Thedragforce(D)of a wing,non-dimensionalizedon thebasisof

projectedwingarea (S)and flightdynamicpressure(q). CD =

Coefficientof Drag- Wetted

The dragforce(D)of a wing,non-dimensionalizedon thebasis =D._.D___CW

of wettedareaSW = 25 and flightdynamicpressure(q). sw.q

Coefficientof Mome,nt

The pitchingmoment(M)of a wing,non-dlmensionallzedon the Mbasisof projectedwingareaS, wingchordc, and fiightdynamic CM =

pressure(q),

L

, I ............... " ' "" * _ I__' I- I "" "

00000002-TSA11

Page 11: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

_fflclen.t of Pr_s_,Jr_

The differencebetweenlocal surfacepres_wreat a_y point _n a P'Powing (P) and the free streampressure(Po), non-dimnnBionall;_ed Cp - .....q....by flightdynamicpressure(q),

The mass donBlty|,_c_quAito the weight per unit volumt)dYvldOd. W '_:

by the acce|eratlonof gravity,

Fli ht [)2nam•icPro,_sure

Th_ kl_tic _nergyof the re}ativealrstreamIs equal to the _p.Uproductof one-halfthe i]uid mas_ densityand the squareof q =z.

the flightor free stroa0rlvelocity,

PressureGradiu,nt

The rate of rise or fall of local pressurewith dts.tancealong

the surface _P/as

ReynoldsNumber- Chord

The ratio of inertialto viscousinfluenceson the boundarylayer.

Large valueshelp the boundary_,ayerremainattachedin spite of ,U=cviscous inducedretardationin the face of strong adversepres- Rc • p.....

sure gradients. For a given fluid conditionof densityp and

viscosity _ the Reynoldsnumber is proportionalto the " _ 'I

productof wing chord ,cand true flightspeed U = 1I

,Rey_o]d_sN_umber,_Bou_ndar_y.Layer _I

Predictionof the detailedbehaviorof the boundarylayer is 'e

often correlatedon the basis of either the dlsp_acementthick- R_, U _* i=l - _ •

ness RN R_.., or the momentumthicknessRN R o ' where the U.0 1

local velocityU at the outer edge of the boundarylayer is Re = _ .:isubstitutedfor flightvelocity,

.Separationof the BoundaryLaye_r_:-Laminar

At low Reynoldsnumbersthe frictionretardedflow near the

surfacehas insufficientinertiaor ,_mentumto oppose adverse

pressuregradientsabove a certainlevel,and is actually

reversedin directionand separatesfrom the surfacecausing

large decreasein lift and large increasein drag° At Reynolds

-2-

',..

O0000002-TSA12

Page 12: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

numbersbelow about 50,000 there Is Insufficient dtstance foe the

fl_ to reattach prior tQ the.-traLl._ng (edge,,

tt q_La na rAt _umewhathtgheP Reynolden,mber_ tt ls pe_stble fQr the

Separated laminar be.ndary layer to go throggt_trafleltlon toturbulent flaw _ a free wake, _nd tl_._nreattach to the s.rfa_e

a_ a turbulent boundary layer prior to the tratltng edgn_ The

rngton whore tht_ complexphenomenatako_ placn t_ call_d thelamtnar separation b,bble, and t_ so Important for the range

50,000 _ RC ", 4,000,000 that; an orltlro soctton of th'l_ report(Ill) wlll be devoted 1;oit.

Se_p,ra,tt,o,no,f t;,'hpBPu,,dary L_yo_P._Turbulent

It iS also posstble i_ora turbulent boundarylayer to separate,causinga decrease in llftand a lai"ge..tncrease tn drag,. Thts

can be delayed by increases in chord Reynoldsnumber,extensive

laminar flow aheadof the start of pressure rise, and shapingthe atrt'otl to produce an tntttal steep rise in pressure white

the boundarylayer is stt11 relatively thin, then gradually

decreasing the pressure gradient as the boundary layer thickens°

5u_ctionB_oundarjtLa_..er_Cpntrog.].l

Aerodynamicadvantagescan be achievedby suckingawaythe lower

retardedlayer_.Thismethodcan be usedto obtainlargeincreases

in maximumliftcoefficient,or in thecaseof carefullydistri-

butedsuctionto retainattachedlaminarboundarylayerseven in

the presenceof strong adverse longitudinal and transverse

pressure gradients to theoretically unlimited values of Reynoldsnumber_

T.ht.ckne.ss.: I)t_placement

The boundarylayer displacement thickness 6 * is the degree by

which the potential flow is displaced terom,the wall by the

boundarylayer_ 6 * can also be thought of as the Pequtred _* "/o (1- dyheight of a layer whichhas lostall of itsvelocitywitha

massflowlossequalto thatintegratedthroughthe actual

boundarylayer.

-3-

=:_: ' "_._'. 'c"_ " .-: " . .=:_....... : _: !_'.-},_". -""_T"....... ".;.';..= ..... _'._Z..... 'Z..'.-'"" ,.:....-....... .,;,..-.1.,t_.,,jL':_--:''- .............. --"- w

00000002-TSA13

Page 13: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Thickness- Momentum

The boundarylayer mQmentumthickness -g- is l_e height Qf a

completely stagnant layer which wo.ld have the _amelos_ in o - ft_ _1-(1" _ )dymomentumas that integrated through the act,el boundary layer.

Themomentum1o_ t_ equal to the drag,

Thlckne,_ _ Klnett.c Ert_r{Lyor Dt._tp_atton

6.Tht_ t:hickno_Gfo]low;, the ,ame roa,ontn9 a._above hilt 1II terflL_ _ _ J'o _'l.'-'tdyof Io_ in klnetlcenorfjy,,It Is usefulifl certain1correlatlve : |_'zlwork,

Transition _ Boundar_La_r

At sufflcientlyhighcomblnation,_of Ruyno](Jsnumberand

disturbancelevels,the boundarylayerwhichstartsoff in

thelaminarstategoesthrougha complextransltlon.tothe

fullyturbulentstate. It Is notgenerallyrealizedJust

how far thisprocesscanbe delayedby reducingdisturbance

in theenvironmentor thoseintroducedby thevehicle.The

earlierestabllshedflatplatetransitionlineis still

copiedfromtextbookto textbookshowinga transitionat

RX = 320,000 in spite of the fact that RX = 3 X 106 was jtRX _ 5 X lO6 morerecently.If nowa I

achievedin 1940and

strongfavorablepressuregradientis introduced,as on the _i

forwardpa-tof thicklowdr._gairfoilsor low lengthto !

diameterratiobodiesof revolution,thetransitionlength J

Reynoldsrumberhasbeenraisedto 45,000,000and forsome _icasescould be evenhigher, As statedpreviously,thereis !W

no theoreticallimitto laminarlengthReynoldsnumberwith 1

distributedsuctionflowcontrol, i

Tripp!ngof theBoundaryLa},.er

Tlleboundary]ayercan be artificiallyinducedto changestate ,i

fromthe laminarto the turbulentcaseby introductionof /variouseddyproducers_.itherin theflowaheadof thewing

or on thewingsurfaceitself.Thisis doneto mitigatethe I

effectsof the laminarseparationpreviouslydiscussed.In iI

_4 _

• •....:, - ,..':_:-.:_. -_.:-.._..:-.o..-'-..'_'..-.--..'._--'_.:.,_,.,,...._.:_..,,'-._,,,,.-,..... , ,_ ,,,,

00000002-TSA14

Page 14: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

somec_q" a drasttc Improvementtn wing performancecan beachieved. This s,bJect is Important enoughto constitute a

complotesectton (V) of this repop1_.

The velocityof thevehlclerelativeto the fluldU,,,. By

reciprocity tt is unimportant whether the vehtcle movesthrough

the fluid or the flutd streams past a stationary vehtcle,!

VP1oct ty_?.,Potent1al

The potential velocity distribution about a Shapecan be computed.byinviscid methods, the Neumannbeing currently

most popular° The shapeshould, however, be altered by adding

the displacement,thickness of the.boundary layer and probably

the wake. A newboundarylayer calculation can nowbe computedfrom the altered pressure distribution. This iteration becomes

increasingly important as the Reynoldsnumberdecreases. Where

the laminarbubbleattainssignificantsizeit wo_Idalsobe

importantto Includeitsgeometry.Recentlythe geometryof

the lamlnar.bubble(orat leastcertaintypes)has beendefined.

Velocity- Boundar_ La_e.r

The velocityin theboundarylayerU variesfromzeroat the

wallto U or the potentialvalueat theouteeedge. The exact

shapeof velocityvs.heightcurveis importantto laminar

boundarylayerstability.The concaveprofilesproducedby

strongfavorablepressuregradients(fiowacceleration) _!

promotinghightransitionlengthReynoldsnumbers.The linear

lowerprofilefoundin zeropressuregradienthasa muchlowe_

stabilitylimit,whilethe inflectedprofilesfoundin adverse

pressuregradientsare evenlower.

Viscosity- Absolute '_

Theviscosityor stickinessof thefluidp is theproportional

constantlinkingtheshearstressat thesurfaceto the rateOf

changeof velocitywlthdistancefromthesurface. It is

thereforein unitsof (pounJ)(second)/_ot2.

O0000002-TSB01

Page 15: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

The ki.,omattc viscosity v t_ th_ ratto of the absolute flutd

viscosity to the fluid ma_s denstty. SIn(:_, the ratio appears

tn the Reynolds number, tt 'Is ¢oBvenlent t_ use v fop whichvalues arO available for air as a function of altt.tude tn the,

earth'satmosphereand for water os functionof temp¢_rature.i

The short discussionsgiven above are intendedto help the reader in

absorbingthe main text of this report. The phenomenainvolvedcan

be studiedin greaterdetailin the followingexcellentreferences:

I-1 - Schl-ichtingh Dr. Hermann - Boundary Layer Theory.

First published in German language under the title

"Grenzschicht-Theorie." 1951 McGraw-Hill BookCompany,

Inco 4th Edit;ion 1960,,

I-2 - White, Frank M. - ViscousFluid Flow McGraw-HillBook

Company, Inco- NewYork 1974 :,t

Page 16: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Although thts report concentrates most heavily on Reynolds numbers between

20,000 and 200,000 ttts belteved helpful to present this regime as a band

tn the larger range of Reynolds numbers between 1 and 1,000 m1111onso far

explored by man. Thts ts to show how the peculiarities of thts region are

a ]ogtcal fom of the beautiful and fascinating but ever-changing flow

phenomenaas one progresses through the "Realm ef Reynolds."

Toward thts end, the author bas prepared Figure I whtch presents an outltne

of the flow phenomenavariations, applications to motion tn nature, and

applications to man-madetransportation devtces as a function of Reynoldsnumber.

The lowest straight line provides the laminar flat r!ate frtctton coefft-

ciento The next line up extending from 105 to lOg provtdes the turbulent

flat plate friction coefficient. The remaining two ltnes are the drag

coefficients of spheres and cylinders converted from their normal frontal

area form to wetted area form to be comparable with the plate coefficients.

The marked decrease tn the drag of cy]tnders and spheres at a Reynolds

numberof 400,000 occurs when transition to a turbulent boundaw layer

proceeds ]aminar separattono A similar effect is seen for a 10% thtck

Gbtttngen 801 airfoil at o(= 12°,

The critical Reynolds number is about 70,000 and a hysteresis loop ts found.

In approaching the crttical condition from a lower Reynolds number, the

drag stays high to a greater Reynolds number than that to which the drag

stays low when backtng downfrom a higher Reynolds number.

Weshall now dtscuss twelve Reynolds numberbands from lowest to htghest

with brtef descriptions of the chang|ng flow regtmes and thetr significance

to atuPe's and man-madeattempts for efficient motion of solld bodtes

through fluids,

-7-

O0000002-TSB03

Page 17: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho
Page 18: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(A) VERY_LOW..RE,.Y__NO_L_DSNO_ER

At fractional Reynolds nulrbers, the flow is completely viscous.

Fortunately, even i, nature, wing destgn dooG not occur within

thts region. The practical consi-l_rattons on F.arth are the

falling rates of smoke_dust, fog and pollen particles. Thts

reoime is outside the range of interest of thts _ummary. For

further information see Hoerner, reference II-1.

(B) REYNOLDSNUMBERSBELOW150

This regimebecomesof interestin the d_ign ol turbulence

reducing screens II-3 and smokestreak producing wires II-4for low turbulence wind tunnelso It i_ desir:] that these

devices introduce a minimum disturbance to the flowo. For

Reynolds numbers less than 5 the flow is laminar and completely

unseparated. Between 5 and 40 a fixed vortex pair ls found just

behind ttle wire. For values between 40 and 150, the laminar

vortex street forms. In the case of smokewires, _ value of.

25 has been found to introduce negliglble disturbance to the

stream. The crtttcal RN at which screens produce troublesome

eddies var.tes from about 30 to 60 depending oa the screen

solidity°

(C) REYNOLDSNUMBERSBETWEENlO00 and lO,OOO

Here the flow is stronglylaminarand it is very difficultto

produceturbulentbouhdarylayersartificallyo Many insects

must fly in this regimeand naturehas arrivedat some unusual

solutions° The dragonflyhas :_saw tooth singlesurfaceairfoil°

It is speculatedthat eddies in the troughshelp keep the flow

m attached(II-5)o The conenonT_ousefly wing, when viewedunder

the microscope,has large numbersof fine hai:-likeelements

projecting normalto the surface_ It is speculatedthat these

promoteeddy-inducedenergy transferto preventseparation.Indoormodel airplanesof the microfilmtype operatein this

:-_. regime. Single surfacecurvedplateswhich have been found

to be superiorto flat platesor airfoilsare employed. It

has also been found that the blunt leadingand trailingedge

structurallyrequi_edactuallyenhancethe aerodynamlcper-

formancein this regime. _F_-

L_!I"_:,.._.......•. - .°.-_'--: ...... "" '-.', 5," •'_i "- '"' "....."._.:_i_.- :'_" .,', '_............."....... .

- mltt_m_f l "'I - ..____L,;( " " ..... _ " "_±'_' I

O0000002-TSB05

Page 19: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Bauer (ZI-7) has recently established in careful free fltght

testing that the total drag minusthe induceddrag of hand-launchedgltdor models, non.dtmenetonalizedon the basis of total

wetted area give a coefficient equal to the lamtnar plate value.It seemsthat we have had IOOZnatural laminar flow aircraft in .!

existence for sometimel The other stde of the coin is that these

aircraft can only operate at ltft coefftctonts of 0.5 or less,

Evenso, theirlift-to-dragratiosare the bestobtainableat

thisRNand theirsinkingspeedsare phenomenallylow {considering

the smellReynoldsnumber)due to theirverylowdragcoefficient

and in spiteof thesomewhatrestrictedliftcoefficient.Trim-

ming these models to higher lift coefficients producesa separated ,_laminarboundarylayerwithoutreattachment,lhe liftfalls,the i_

dragrisesby a verylargefactor,and theperformancemarkedly

deteriorates.To date,artificialtJ.ippingof the boundarylayer

has notbeensuccessfulin thisregime. Smallrubberband

poweredindoorscalemodelscalledPeanutscale(II-8)also

operatein thisregimebut theirperformancetechnologyis not

yet as highlydevelopedas the hand.launchedglidermodels.

(E) REYNOLDSNUMBERSBETWEEN.30,O00.AND 70mOO0

Thisregimeis of mostinterestto thetechnicallyo_ientedmodel

aircraftbuildersandflyers. Boththe NordicA-2,tow-line

launchedmodelsailplanesand theWakefieldrubberpoweredmodels

operateherein. Thesemodelsarejudgedon enduranceandmust

haveas highas possiblea ratioof (lift)3/2/dragoInduced

dragconsiderationscallfora highaspectratiowingbut this Im. reducesthe Reynoldsnumber,so greatcaremustbe takenin the

choiceof theairfoilsection-aspectratiocombinationemployed.

Sixpercentthickairfoilscan becomesuperCrlticalnearthe ii

'_ upperend of thisregimeand thecriticalRN can be decreased "

" towardthelowerend by artlficalboundarylayertripping. :4F :k,

:"_ Undernaturallaminarseparationconditions,thedistancefrom

separationto reattachmentcanbe expressedas

RNR - RNs_50,O00o Thus,in the lowerchordRN regimethereis simplyinsufficientdistanceto thetrailingedgefor

-lO-i!)

O0000002-TSB06

Page 20: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

reattachmnt to occur, Nevertheless, excellent performing wtng

sections have.beendeveloped for this regime,

ThisRN regimebecamesuddenlyof nationalinterestin 1978v_en

JPL investigatedthepossibilityof exploringthe plane¢NaPsby

an aircraftflyingin the thlnMartianatmosphere(II-9),The

RN fellrightin thlsrange. It Is alsoof gnat interestfor

RPV aircraftoperatingat extremealtitude-m-lO0,O00feet(II-lO)

in the earth's atmosphere. To date, need for additional lowturbulence laboratory work in this regime has not been responded

to tn the U.S. but a few Europeanlaboratories havecontinuedtheir excellent earlter work.

(F) REYNOLDSNUMBERSBETWEEN70,000 AND200,000

At the lower end of this regime we find the bat in nature andi,

small radio controlled modelsailplanes andmodel powerplanes

as nlan-madedevices. Extensive laminar flow is easy to obtain

andairfOilperformanceimprovesmarkedlyin thisregime. At

the upperend.boundarylayertrippingdevicesare no lunger

neededfor sectionsas thickas 12%, Evena 1go6%thicksection .........

was madeto dellverreasonableperformanceat a Reynoldsnumber

of 150,000with theaidof a tripwire. Thereis a smalldata

baseforthisregimebutmorework is Justifiedin vlewof high

altitudeRPV and lowaltitudemini-RPVinterest.The laminar

separationbubble.isstilla significantpotentialperformance

robberin thisregionof flight. It shouldalsobe remembered

thatthepressurerecoveriespossibleforan attachedturbulent

boundarylayeraremuchlessat low Reynoldsnumberthanat high.

(G) REYNOLDSNUMBERSBETWEEN.200_000AND 700o000

In thisregimewe findman andnaturetogetherin f11ght, Large

soaringbirdsof quiteremarkableperformance,large radio

contrOlledmodelaircraft,footlaunchedultra-lightman-carrying

hanggliders,and thatsuperengineeringtriumph,thehumanpower

:, aircraft.

Again,extensivelaminarflowis easyto obtainand alrfoll

R performancecontinuesto rapidlyimprovecomparedto thatat

O0000002-TSB07

Page 21: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

lowe_ Reynoldsnumbers, There is little worry over reattacbment

fatllng to occur after mid-chord laminar separation, but the

lamtnar separation bubble is still of' _tgntftcant Pelattve

length and doescost someperformance, Onemuststill beconservative in choice of the thickness-camber combination,

Very 11ttle gooddata extsts tn th'ls regtme,

(H) REYNOLDSNUMBERSBETWEEN, .700_000AND3.=.OOO,OOO

The aerodynamicdata in this regime is _.ery extensive ar,d of

vew high quali.tyo Twoearly NACAinvestigations havebeensupplementedby the excellent work at Stuttgart by Eppler,

WortmannandAlthaus,by Harsden_f Edmonton,by LtebeckofDouglasAircraft, and by Somersof NASA,

In the high performancen_zn-carrying sailplane we have mrked

performance improvementover the already highly refined _ IItypes throughextensive natural .laminar flow, TJlts 30-year

old technology is only nowbeginning to seep into the small ipoweredaircraft field. Large RPV'sdesigned for 55,000 foot

t

. _.............. altitudes also fall in this range of wing Reynoldsnumbers,

The laminar bubble can still cause a _ CD of about 0,001at a Reynoldsnumberof onemillion, but _ecomescompletelyunimportant for RN_ 4 X 106. At the upper end of this regime,

qutte large combinations of airfoil thickness and candlerape

permtssible together with far aft location of minimumppessupeo

(I) REYNOLDSN.UMBERSBETWEEN3,000:000 AND%00.0..¢000

There is a large data base from the WW11 era for this realm

of racing planes and general aviation craft, Very low drag

coefficients are possible through extensive natural laminar

flow but it is important to fly at higher altitudes to keepthe Reynoldsnumberper foot reasonably low, Constructional

andmaintenanceconsiderations ape becomingincpea_inglystringent, The laminar separation bubble at mid cl)t_rd is no

longer a problem, The turbulent boundarylayer on the aftpart of the wing can stay attached through very severe adverse

!. pressure gradients with the aid of modernairfoil design methods,L-"

= -

i. -12-

i _L- ' ,',., ," , , • _.._ ..... i, ii-f...... _ • i i ii i iN I

O0000002-TSB08

Page 22: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Various artificial boundary layer control schemesape effecttve

tn producingvery high maxlmumllft (II-11).

(J) R_YNOLD$_NUHBERSBETWEENg.,QOO,QOPAND 4pjOOO,pO_..O

It is still possible.to obtain extensive natural lamtnae flew tn

thts regime through strong favorable pressure gradtent@, for

example, on thick lamtnar atrfotls and on low fineness ratio

bodiesof revolution. This regime has very large payoff tnperformancefor 100%lamtnar flow surfaces whtchcan be achieved

through use of artificial boundarylayer stabtltzation...(for

example through distributed suction) (I[-12)o Suction ts

effective even tn strong adverse longitudinal pressure gradients

and in the. presenceof transverse pressure gradient inducedcross

flow instability causedby wtn9 sweep° Net drag including the costof sucttoo can be reducedto about 1/8 that of turbulent boundary

layer wings, Data base is appreciableo Small torpedoesanddolphins also operate in this regime (II-13)o

(K) REYNOLDS,NUHBERSBETWEEN40tOOO,OOOANDlOg

Vehicles in this regime include large fast aircraft andsmall to

moderatestze submarines, Boundarylayer flow iS mostly turbulent°

In nature, whales also operate in this regime, Little laboratorydata is available to date, The newcryogenic tu_el at NASA '(Langley should provide data in the future,

(L) REYNOLDSNUHBERSGREATERTHAN10g

Large nuclear submarinesoperate at these extremevalues, The

drag is. primarily turbulent fraction drag, There is great interesttoday in finding practical ways to reduce the high Reynoldsnumber

turbulent friction drag in a practical mannerapplicable toextendedcruising duration.

i-

"13--

m _ __• L. " "Gsb ,., .. • ....... -- -

O0000002-TSB09

Page 23: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

FLOVIPHENOMENABIBLIOGRAPHY

II-I Hoorner,SlghardF. - F)_u!dD_namlcD.rag- Publishedby the

author,14B BusteodDrlvo,MidlandPark,Now Jersey0743_ 1965

II-2 Hoerner,SlghardF. and Borst,HenryV, -Flu:i_d_.p_ynamlcLif._.-

Publlshedby theauthors,P.O.Box 342,Brlckto_.m,N,J, 0B723

1970

II-3 Schubauer,GoB. and Spangenberg, G. - "Aerodynamic

Characteristics of DampingScreens" NASATN2001 January 1950II-4 Batell So M. andMueller, T, J, - "Visualization of the Laminar-

Turbulent Transition tn.the Flow Over an Airfoil Using the

Smoke-WireTechnique" AIAA Raper 80.0421 to be presented at1;..+.hAerodynamicTesttng Conference- Colorado Springs,.ColoradoMarch18-?0,1980

II-5 Hertel,Helnrlch- Structure-Form-Movement- ReinholdPublishing

Corporation,NewYork 1966

11-6 Shapiro,AsherH. - Shapeand Flow The FluidDynamicsof Drag-Doubleday& Company,Inc.,GardenCity,NewYork 1961

11-7 Bauer,AndrewB. - "TheLaminarAirfoilProblem"NationalFree

FlightSocietySymposiumReport 1975

II-8 Hannah,Bill- PeanutPower- HistoricalAviationAlbum '_

Publication- TempleCity,California1980 lII-9 Seaman,DroGeraldR. - "A ConceptStudyof RemotelyPiloted

VehicleforMarsExploration"FinalTechnicalReportunder i

Jet PropulsionLaboratoryContract955012 Augustl, 1978

II-lO Carmichael,B. Ho - Applicationof Sailplaneand Low-Drag

UnderwaterVehicleTechnologyto the Long-EnduranceDrone

Problem"AIAA/MIT/SSA2nd InternationalSympoisumon the

TechnologyandScienceof Low Speedand MotorlessFlight.

Cambridge,Mass. SeptemberIf-13,1974

II-ll Lachmann,Dr° G. V. - Bounda.r._Layerand FlowControl- Vo].I

PergamonPress NewYork 1961

II-12 tachmann,Dr.G. V. - BoundaryLayerand FlowC_ntrol- Vol.II

PergamonPress New York 1961

_ ]{I-13 Carmichael,B. H. - "UnderwaterVehicleDragRe._uctlonThrough

: Choiceof Shape" AIAAPaperNo. 66-657- Presentedat Colorado

.:; Springs,ColoradoJune13-17,1966

-14-l

O0000002-T,SBIO

Page 24: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Fluid flo_ sQparatienon man-madedevices ha_ beenone of the most

dangerousand perslsten_;phnnemenain the 1_nghl_toryaf flulddynamlcB,

The deetructlvodynamicresponseof hlun_devices,l.e,,powertrans-

mission 11ne_,suspensionbridgecables,and towingcablesfor underwater

devicesmark oneend of theproblem, The stalllngof aircraftwingsha_

Instlga%edcomprehensive_tudyIn thisfieldfora_ leasta half'century.

Theattemptsto providere._sonablygoodperformanceformodelaircraft

andhighalt(tudemannedalrcraftare oftenaidedby observationof

nature'selegantsolutionsfoundon smallto mediumsizedflyersin the

insectand birdworld,

The literatureis so extensivethatthisreportcanonlyCoverthose

referencesreadilyavailableto theauthor. Theextensivebibliographies

in the referencesquotedheremay be usedto delvefurther,It is

inevi'Cablethatsomeverybasicand helpfulstudieshavebeenoverlooked

due to theshortdeliverytimefor thisreport,

The phenomenaof laminarseparationon liftingairfoilshasa fm_damental

influenceon theaerodynamicforcesand moments.Evenat veryhigh

Reynoldsnumbcrs,leadingedge laminarseparationcan havea decisive

influenceon the stallingbehaviorof aircraftwings.

At chordReynoldsnumbersbelow50,000,laminarseparationwlthout

reat_achmentcan leadto largelossesin liftand dramaticincreases

in drag, It is possibleto deslynthinairfoils,e.g.,t/c_6% of

quitegoodperformanceat chordReynoldsnumbersdown to 30,000. Use

of artificialboundarylayert_'ippingby variousmethods(ascovered

in SectionV of thisreport)can improvetheperformanceof thicker

airfoilsin thisnormallysubcriticalrange. _t Reynoldsnumbers

between700,000and 1,500,000,theboundarylayercanbe convertedto

theturbulentformmoreelegantlythroughuseof the shallowmld chord

adversepressuregradient(calledinstabilitygradient),Thistechnique

is widelyused to improvetheperformanceof laminarairfoilsforman-

_. carry'ingsellplanes. At Reynoldsabove4,000,000,thistechniqueIs nolongerrequiredandwouldleadto a lossin cruisingperformanceif

employed.

-15-

#

iI •, r'l ...........: , ,,"i__" "_E. ""'_s...............

Page 25: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Studtes of lamtnar separation wtth re_ttachment prtor tQ the tratltng

edge [the so-called laminar separatlQn bubble) have been vigorouslypursuedfor the last feur decade_, It 'i_ nowposstble t_ define the

bubble geometryand tt_ Influence on airfoil perfQrmancn,

CHRONOLOGYPRINCIPALINVESTIGATOR5AND_JOR STEPSIN UNDERSTANDING

|

1Year Investigator Contribution Rof

1904 Prandtl DiscQveryof theBoundaryLayer III_1

1914 Prandtl Effectof BoundaryLayerTransition III-2Relatlveto Dragof BluffBodies

1933 M1111kanand K1eln Effectof b.l.trans,relativeto III-3separationpointon airfoilmaximum11ftcoefficient

1934 .Melvi11-Jones Described3 typesof stall. TurbulentIII-4b.1.sep.a; i.e.,leadingedgesoo.withoutreattachment,leadingedgeseparationwithreattachment

1934 von Kamanand DiscoveredR_sep,/_'s'7"anT.is IIl-5Millikan constantfora prescribedpressure

distribution

1938 vonDoenhoff DiscoveredR sep to R trans= 50,000 III-6R sap to R turb,reattach.= 70,000

194U Schmitz Airfoilbehaviorin criticalRN range Ill-721,000tO 168,000.Importanceofstreamturbulence,artificialb.1.tripping,choiceof t/c,f/c,leadingedgeradius

1940 Pfenninger 6% and 9% t/c extensivelylaminar III-8-43 airfoilsat RN betweenI00,000and

760,000. Improvementswithsurfacestepsandwavesa"da_r_cs

1948 MaekawaandAtsumi Separationand transitionstudyon III-9bentnlateR septo R trans= 25,000

if R6sep>1200.ReattachmentfailswhenR lengthis too large

1951 Bursnalland Loftin Foundmid chordlaminarbubbleat III-lOlow_ on thicklaminarairfoil

1951 McCulloughand Gault Defined: (I)stallpreceededby III-llturb,b.l.sep movingforwardfromt.e.forthickairfoils,(2)laminarleadingedgeseparationwithoutreattachmenL(3)"Lamlnarl.e.sepwithreattachmentwhichmovesaft as _ n:Fnc'reases--thlnairfoilstall-16-

O0000002-TSB12

Page 26: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Year Inve_tlgatQr contrlbutlon Reft

IgSB McCulloI_gh F(_und0006 airfoilreattach_'fQr all 111,.12RN of 1,5 x 10t__ 6x10_00Q7 alrfollnot ro_tt_chodforRN :- 6xlOt;00Q7.5 + OQOB alrfQilnot r_attachedforRN ; _xlO('

II)@@ _ault _tudlod I,_.,_p on O01O and 6(31_ OIFI_ III-13t._. _op. otl 5C_ - O1B,

FoundR_*_op _',_no_a_,aX sopw_0.75 ,_0.55,_lam deer by arab.turb a,d Incr RN,Convorcjenceanglo o a_ f(RN),

195fi Norburyand CrabtrOB Mathematlcalpredictionof pressure 111-1.4distributionon airfoilwith a longbubble

1958 Chapman,Kuehn, Subsonicand Supersonic. 400 ,'R_ < Ill-15Larson 5,000,000

(I) Transitiondownstream ofreattachment(2) Trans. betweens_:p4ratlonandreattachment(3) Transitionprior to separation

19_r9 Moore Experii:lentwith steppedplate-l(_w Ill-16press, gradientFor R,s*< 500 laminarreattachment,Fnr R_* , 500 turb reattach- pressurecoefflcientis independentof RN_bubble length= I/RN,For R_* < 500 long bubble-largeeffecton pressure,For R_* > 500 short bubble- no largeeffect on pressu,'e,

Long bubb!e length= f (shapeand _)byenot RN,_ _ihort_bubble burststo

long when {cD_ >00"5c"l)/(l'cpl)> 0.36eve_ when R__

1959 Burrowsand Newman Suctionwithin separationregion 111-17 <reducespressureat forwardend ofbubble and increasesthe pressure :_recoverycoefficient. Size of bubbleand b,l. thicknessdownstreamarereducedby b.l. suction

1964 Tani Confirmedbubble formswhen R.* > III-I8criticaland pressurerecove_

coefficient< critical,R_* criticaldifferentfor cylinders_nd airfoils.Criticalpressurerecoverycoefficientnot unlversal,

-17-

O0000002-TSB13

Page 27: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Year Investigator ContributiOn R_f

1964 Morkovln Separation flow pattern._ behind a III-19cyltnder over complete Reyltoldsnul_..,,urrange, Hnl_xp_cted increaso

0_in drag at Rd .1 . Data ono_cillatoryTift a_ f(RN)

I@67 Roshko Di_c,_so,_the Iimltationsin present III-20theory to dof'Ineseparatedflow_

III-211969 Ga_ter °s . aUl _,f esi/s at bursting

L short bubble lennthlos = const_.n_/(gs

R_ = 64,000sep to reatt_ch_nto 40,000-_50_000 sep. to transition

1972 A,G.A.R,D. Many fine paper_on high lift systOms...III-22, and aircraftsc,l_li_,,

1972 Lalne NavierJ_toXes_,luationsof laminar III-23boundaryseparatlonover step inflat plate

1972 r_obbtnga_van Ingen Defines annle of the senar_tion stream- III-24and K_oi line Tany = - 3 dtoldX/_pl_x=

K/Re sep. Uefi)lespres_drecoefficientat reattachnent

1975 van Ingen Definesbubble geometry,bursting, III-25pressuredistribution--cor_latedwithex_erlment. See figureswhich follow.

1977 van Ingen DefinesX trans.- X sep. as function III-26of osep._Rosep, and turbulencelevel.Corelatfonwith experiments. See figures

1977 Young ReviewsknowledqP._n unswept, and III-27laminarseparationbubble-'s_.gures

1978 Mueller Flow visualizationdeternlined: III-28separationpt. transitionpt._ andreattachmentpt. on airfoilleadingedge for 150,000<RN<420,O00

1980 Batilland Mueller Detailedprofileand platformviews III-29of laminarseparationand transitionby smoke-wiretechniqueon 663-018airfoilat 50_O00<RN<130,000

IgSO Venkateswarluand Finitedifferenceb.l. analysis III-30Marsden togetherwith some experimentally

determlned constants,define locationand geometryof separationbubbleat60% to 70% chord on laminarairfoilat 500,O00<RN<3,000,O00.Predictspressuredistributionand b.l. velocityprofilesdownstreamof reattachment-18-

i.t!_x..",..,< '-'" _/,-...........

.... O0000002-TSBI'I

Page 28: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

--.,.,_.>........._--_,_.,,:,_._._:_:_:_ _,_:._vlf____-_- ;_",,:: _- . T_._,_.......,,y,

F

F!,

_ Discussion

ii_ The formulation of the boundary layer concept by Prandtl in 1904 solved "the long-standing ,_stery concerning the differences tn o_served Elutd

behavior and the tnvtsctd flow theory, By 1914, Prandtl was able to

_/ explain the large drag differences observed by different investigators

for blunt objects such as spheres and cylinders on the basis of the

condition of the boundary layer prior to the flow separation location.

This effectwas appliedto thc stallingof airfoilsby Millikanand

Klein in 1933.

In the WrightBrothersMemorialLectureby Melvill-Jonesin 1934, three

oistirtcttypes of wing stall were described. The thick airfoilgentle

stall in which turbulentflow separationgraduallymoves forwardfrom

the trailingedge, laminarflow separationfrom the leadingedge without

reattachment,and laminarleadingedge flow separationwith flow

reattachmentto the airfoilsurfacedownstreamof separation.

In 1938, yon Doenhoffaccuratelydescribedthe laminarseparationbubble

in an adversepressuregradientand found by experimentthat the distance

from the separationpoin_to the transitionpoint along the separated

streamlinecan be definedas R transition- R separation_ 50,000and

the total bubblelengthas R reattachment- R separation_ 70,000.

In Ig40, Schmitzpublishedhis classicalwork on low Reynoldsnumber

airfoilexperimentsin a low turbulencewind tunnelat G6ettingen.

He clearlypointedout the influenceof stream turbulence,and artificial

boundarylayer trippingin extendingg_od airfoilperformanceto lower

Reynoldsnumbers, liealso recommendedoptimumvaluesof airfoilthick-

ness, camber,and leadingedge radiusas a functionof Reynoldsnumber

for flight in the low turbulencefree atmosphere.

At about the same time, Pfenningerwas exploringthe limitsof airfoil

drag reductionthroughextensivelaminarflow in a low turbulencewind

tunnelat Zu¢_ch. He found that the perForn_nceof 6% and g% thick

propellerairfoil_ectionscould be improvedby boundarylayer tripping

using air jets normalto surface,large surfacewaviness,and backward

facingsteps in the surface.

-!9-

F .. 00000002-TSC01

Page 29: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Thwart:now t'ollowed |ntcnsJw invt:stJgatJ_n,_ _f fluw _paration, lamtnar

LTuhl_l_s,alul airfoil _t,alling b_;havl_,', In 1_, Mat,k_Wa and AtsulltJ

ill Tokyo d lsc_wred their flow t"t:,ltt_tchm_:nt did m_t t_c_:ur wtm_l the

bubble le.n.qthRtWIlold._llUiIIb_.rexceededa rrii.it:,llwllue of about

75,0Iltl,In i.ht._early to toldI95tls,McCullnugl|_md Gault wt:reable

t(} define the t,hrem type_ of airfoil stall first noted by Nelvill-

Jones in flre_i: detail t_ t,eMIIS(_f the pertin+:nt: boundary layt:r papa-

meters,l'heyfound that I{_*at st_,paratlonhad l,oexceed 500 forreattac_mlentto occur In sI_'oll;l_dversepressuregradi¢mts, They

found the laminarlenqthin the _eparationbtlhbleto be 75% to 85%

of tl_etotal bullblelengthand definedthe angle of closureof the

flowwith the surfaceafter transitionas a functionof Reynolds

!iiIn 1959,Moore found that when Rs*at separationwas less than 500,

a 19]t9.laminarbubble fo_nedwith very largeeffectson the pressure

distribution,but thatwhen R_*sep exceeded500 a short bubble

formedwith only small local effecton the pressuredistribution. :'I

They also found that even when R_*sep.exceeded500 and a short bubble Ji

initiallyfor_d, that it could burst to the long bubble type when the ._

angle of att_u'kwas increasedand the requiredpressurerecovery

followingsep,_ratlonexceededa value of

o _:(Cp recovery" Cp sep.)/(l.Cp sep.):0.,_6

In an extensiw_,sunm_aryin Iq64,Tani pointedout that R_* criticalat

separationand the criticalpressurerecow:ry,.,seemed t.obe different

for cylinders,_nd,_irfoils.

In I_)69,Gaster furtherdefinedthe conditionsunder which short bubbles _!

.._ couId burst itltolong bubblesas -_,'(_s"hCAllll''c.ritlcalas a functiollof R0 '_iat separation.

From the e,orly l_)70sto tlm presenttin_,,VilliIngenand his colleaguesat,

llelftUniversityin the Netherlandsand Young and hi._colleaguesat the

Universityof [.t)ndot_hay(_.nl,ldeimpre._iw,._trid..,,_in correlatimlvarious

IlN:thods of COlllplltJng the fluw '..;=)par,ltitm, bul_lq_, I_ehavior, and resul ttn!l

twes._ure distributions with carel'u'lly cont_'oll¢,d _,×periments. Presentlyo1 Venkat.esworlu ,rod Marsd(m haw, apl)lt_,d p¢_werful Finite dil"ference

calcul_iti_mst(_ tim IW',flq¢'mwith _,t_c_)|tr,lgin!lm,,_ulI:_. Muell=_r and his

O0000002-TSC02

Page 30: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

colleagues at Notre Dameare continuing the excellent flow visualization

work begun by the late F.N.M, Brown In wind tunnels of very low turbu=

lance level providing excellent detatls on separate boundary layer

tran_Itlonand reattachmentat chord Reynoldsnumbersof BO,O00 to

420,000. The clearestphotographsof flow separationfrom both blunt

objectssuch as spheres,and on alrfoilsat angle of attackmay be

found in F.N.M.Brown'sremarkablebook, See The W_nd B1o_._..ww,ref. III-3?.

The text is also one of the n_st i11uminatingto be found in the long

historyof fluld dynamics.

It must be emphasizedthat it is still necessaryto proceedin a semi-

empiricalmanner in predictingseparationfor a new case, and inevltably

there are disappointmentsjust when one feels that thingsare well

enoughdefinedfor engineeringpurposes. In 1972, Laine at the University

of Helsinkisolved the NavierStokesequationsfor the separatedflow

from a rqarwardfacingstep on a flat plate. Thompsonof MiSsissippi

State University,referenceIII-31,is presentlyattemptingto correlate

similarexact solutionswith the experimentalwork of Muellerat Notre

Dame. The computerrequirementsare formidablebut such calculatlons

shouldeventuallyproviderealisticresultsfor even the most complex

flow separationproblems.

CalculatingFlow BehaviorInvolvingLaminarSeparation

It is desiredto calculate:

I. The locationof laminarseparation.

2. The angle of the separationstreamlinewith the surface. I

3. The lengthalong the separationstreamlineto transition.

4. The angle of closureof the separatedboundarylayerwith

the surfacefollowit_gtransition.

5. The locationof reattachmentwith the surface.

6. The lengthof run after reattachmentrequiredfor the

boundarylayer velocityprofileto returnto normal.

7. The criteriafor which reattachmentdoes not occur.

8. The effectof the foregoingon the pressuredistribution.

g. The effectof the separationbubble on boundarylayer velocityprofiles.

lO. The penaltiesin drag, lift, and moment _or those cases where

reattachmentdoes occur.

d

-21-

00000002-TSC03

Page 31: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

The separation bubble geom_.try as outlined above ls sllown in Flgure III-1,from the tnittal yon Doenhoff concept of 193H through several intermediate

experimenters and concluding wtth the detatled 19_ description of

Vonkatesworlu and Marsden sht_wnin Figgv'o III-2.

1. The lOcatton of laminar separation is shown In the upper plol; of

Figure111-3 in terms of tlleboundarylayer shape parameter

H_ep = 3 + O.0713/msep as a functionof m _ - o. dUT-" _" Theintersectionof the laminarboundarylayer H historywith tile

criti¢:alvalue gives the desiredlocation. Some typicalvalue_

of R_* at separationfound on spheresand cylindersas afunctionof Reynoldsnumber based on diameterare shown in the

middle figure. Valuesof R_* at separationfound for variousairfoil,angle of attack,chord RN combinationsare shown in ....

the lower figure.

2. The tangentof the angle of the separationstreamlinewith

the surfacetan y is shown as a functionof R¢)at separation

on a logarithmicplot, upper figure 111-4and in cartesian

form in lower figure III-4. The scatteris small and the

definitionquite good for objectsas diverseas cylinders,

flat plates,and airfoils. Correlationwith smoke line flow

visualizationon a Wortmannairfoilfigure III-5 is seen to

be excellent.

-" 3. von I)oenhofffound during his low turbulenceplate measurements

under adversepressuregradientsthat the Reynoldsnumber

(basedon local potentialflow velocityand the length from

separationto transition)was about 50,000. Some recent

measurementson a Wortmannairfoilgive valueswhich range

w from 37,000at ROsep = 175 to 70,000at R%e p = 415. FigureIll-6. The valuesfound for bubbleson swept wings vary from

)T) 42,000 to about 60,000,while those found on a cylinderwere

much higherthan those found on airfoils.

_ An excellentcorrelationIs providedby van Ingen in the form

|04/R%ep. vs. A,/Osep_ROsep.with an assistingvariableinthe form of ambientturbulencelevel expressedas a _.of stream

velocity. The experimentalvalues fell on predictioncurves

obtainedby integratingthe amplificationof snBll disturbances

"eLL.-

•.'_i, , . . . _ ,,,_ ,. ....._ ,,,_ ,__,,_,,__%_.. , "......._ "_i

00000002-T$C04

Page 32: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

to ratioswhich varywith the ambientturbulencelevel,

The resultsappear here as figure Ill-7,

4. yon DoQnhoffin his originalconceptof the laminarbubble

suggesteda closureangle of 15° from the separationstream-

ltne based on the typtcal spreading angle of the turbulence.Maekawaand Atsuml found a value of 17° to fit betterwith

their observationson separationover a sharplybent plate,

Gault found in his study of the NACA 0010 and 663-018

airfoilsover a range of anglesof attack of 4° to 15°

and chord Reynoldsnumbersbetween2XI06 and 6XI06 that

the closureangle varied from 15° at high Reynoldsnumber

to as high as 52° at low RN. These valueswere based on

the assumptionthat the separationstreamlineleft tangent

to the surfaceand laterwork has Shown this assumption !!to be incorrect,

5. A constantbubble lengthReynoldsnumber (basedon the

potentialflow velocityand distancefrom separation ]

to reattachment)of 70,000was suggestedby yon Doenhoff.

Experimentalvaluesfor the 0006 airfoilare 48,000+59,000.

For the 0009 airfoil72,000+79,000,and for the 66018

airfoil62,000+]14,000.The value for mid chord bubbles

on thick airfoilsare 120,000to 240,000. See figure III-8.

6. The distancerequiredfor the reattachedboundarylayer to

recoverto a normalturbulentform followingthe bubblewas

first noted in the excellentsummarypaperof Young as beingm

equal to 100esep.for the case of unsweptwings, I00 to 150esep.

for a 26.5° swept wing and 150 to 300esep.for a 45° swept wing.

i 7. The point of most practicalinterestto the strugglingapplled

-_ aerodynamistwho must predictstallingbehavioris to define

when a short bubble (whichhas rather limltedeffectson, pressuredistributionand thereforeon lift, drag, and

," pitchingmoment)w111 burst to the long bubbleform. The

first conditionis that R_* at separationmust exceed500

if a short bubble is to form. For lower values,the bubble

is long and in many cases reattachmentis not possible, Even

-23-

'_i._;. ..................................... _,.,,. ., V , ......... 1

""' 00000002-TS005

Page 33: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

when ROsep exceeds 500, the resulting short bubble willeventually burst to the long bubble type when angle of

att(ickis increasedsufficiently, In IgBg, Moore in his

experimentson a steppedflat plate found that this {iccurred

when the differencebetweenthe pressurecoefficientat

reattachmentand the pressurecoefficientat separation

dividedby (I - the pressurecoefficientat separation)

exceededa value of 0.36. (Cpreattachment . Cp sep)> 0.36.

See figureIII-9-A. In 1969 Gasterput it in termsof the

adversegradient(whichis nearlyalways linear)for the

same regionbetweenseparationand reattachment.

t)s . A_.L = a Functionof Rosep' Son_ experimentalAx

resultsof non-burstlngbubblesobtainedin tests Of a

Wortmannairfoilare c_nparedwith Gasters limitingline

in figureIII-9-Bfor valuesof ROsep less than 500.The _ value for burstingare given for McGregor'sairfoil

at three anglesof attackfor chord RN between0.7 X I06

and 2.7 X lO6 in figureIII-9-Cand for a Piercyairfoil

at Rc = 1.7 X I06 in figure III-9-D. The More criteria

of%r_t = 0.36 seems to be adequate.

8. Pressuredistributionson wings at very high Reynoldsnumbers

in the absenceof flow separationcan be accuratelypredicted

by inviscidflow calculations. At lower Reynoldsnumbers,in the

absenceof flow separatio_a more accuratepredictioncan be

made by adding the boundarylayer displacementthicknessto the

wing profileand re-computingthe pressuredistributionfor this

combinedshape.N

A short laminarseparationbubblewill cause a local flattening

of the pressuregradientin the regionof the laminarportionof the bubble,followedby a steep pressuregradientin the

:_ turbulentbubble region. At reattachmentthe pressure i

! recoversto the same value presentin the absenceof the short

I bubble. -24-

i!r" •

00000002-TSC06

Page 34: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

A long bubble causes very large changes in the pressure distri-

bution, The negative pressure peak ahead of the bubble is

greatly diminished as is the ltft. Figure III-lO-C clearly

shows the difference between long and short bubbles. Figure

III-IO-A shows the difference in the pressure distribution on

a cyltnder wtth transition preceedtn9 and following separation.

Figure III-IO-B shows the pressure distribution chal)ge on a

thick atrfotl as One proceeds from a moderate Reynolds number

with a short bubble to a lower Reynolds numberwith a long

separation bubble which does not reattach. Figure III-IO-D

provides pressure distributions for a 45° swept wing with

short separation bubble along the complete span, E shows short

bubble inboard and long bubble outboard, and F shows leng

bubble along the complete span.

Computation of the pressure distribution under lOng bubbles

with either reattachment or non-reattachment is probably

academic since one wishes to design to avoid this condition.

Under a short bubblej a good engineering approximation can

often be obtained by using the data on Separation point,

angle of the separation streamline, length to transition,

clostng angleo and total bubble length previously presented

to define the geometry of the bubble. Then assumean almostt

constant pressure value from separation to transition equal

to the separation value, Next draw a linear pressure rise

from transition to the reattachment point where the reattach-

ment pressure is equal to the value with bubble absent,

A more exact solution may be found in reference III-30 andwtll be discussed at the end of this section,

i

9, Detailed measurementsof the distorted boundary layer veloctty

profiles within short and long bubbles on a 45° swept wing in

both chordwtse and spanwtse direction are shown in figure III-1].

Correlation of measured with predicted chordwtse boundary layee

veloctty profiles for a mid chord bubble on a thick atrfotl

wt11 be presented in a following section.

-25-

_e_,• "

00000002-TSC07

Page 35: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

10. For the case of short bubbles with reattached flow the

pressure distribution is not altered enough to mrkedly

affect ltft and movement. For leadtng edge short bubbles

one often finds a change of 11ft curve slope and moment

slope at the angle of attack where the bubble forms. The

small changes whtch do occur could be accounted for by

integrating the slightly altered pressure distribution,Short bubbles cause a small but measureable tncrease tn

drag which has been found by Marsden to be about

ACDo= 0.001 at Rc = 1X 106 for mtd chord bubble on thtcklamtnar airfoils°

A Cpmpartson of Experj,nen,t With the _st Cpmplete SeparationBubble Calculations to Date

Reference III-30 by Venkatesworlu and Marsden is certainly the culmination

of the long efforL to understand and predict lamtnar separation bubbles.

The reader will have noted a great deal of experimentally guided emptri-

cism in most of the foregoing discussion. Reference III-30 reduces this

to a minimum and uses finite difference calculations to provide an improved

theoretical prediction. The case covered is the mid chord laminar

separation bubble on a thick laminar NACA663-018 atrfoil Comparison

of theoretical predictions were madewith experiments at Rc = 0.8 X 106,= 2°, and a turbulence level of 0,02% at Edmonton, and with experiments

at Rc = 1.7 X 106, _ = 0°, and a turbulence level 0.2) from the NACAmeasurementsof reference III-lO. The schematic diagram of the bubble

is given in figure III-2. The total length of separation (figure III-12)

comparedwtth three experiments can be expressed as Lb = 75/Res. The

corresponding bubble height at transition (figure III-13) is expressedht 4.8 X 106

by _-"_= U _/_ Re 2 The excellent agreement of computed b.1,

proftles wtth those measured at Edmonton is shown in figure III-14,

including the region downstream of reattachmen_, This is most important

for the calculation of the drag.with a bubble present. Excellent agreement

is found tn figure III-15 between the predicted and experimental pressure

)

00000002-TSC08

Page 36: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

distribution. The history of the boundarylayer shape parameter H is

given in ftgure III-16. Comparisonsof predicted and experimental

(reference III-10) boundarylayer profiles Including the Pegton

following reattachment ape shownin figure III-17. This fine studyreference III-30 presently available only from the University of Alberta

has been submitted fop publication to the Royal Aeronautical Society II

of the United KingdOm,

00000002-TSC09

Page 37: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

• I' ........1r¸'", ! ......... "_I

" _V F'("_I_QtlAt,ll"_

(_retlQn Bubble :_ a i'o¢hmont Horbur#tlnclCrnbtreQ'sslrnp'.d]cdmodel er flclW plltlem whh a bubble, <

YonDo_nhulT's¢onwptN'bubbleformnllon,

l ......i°" il -,.io._.......,,.- _-_!....I........I..................................... till' # "I - PRI_SSUIIE

0.1 ,-14l, f X_Ii,t',OISTtlI_U_N

llil,l \d....-"]lui,l_/IJIJl+" I1 III It,_ i .....

,<<,,,..... < ,>".;<<,.,,._,',o';__,v_ _, ' I __7-L.... L%.. ]• "_ '_ # " I _-f " , "r ' Iti_tll AI ,iLl, IIN/I..-" ,,_",..-,-_' • T ,,,^_,,o_', -- _._L.

,,..,- \ . °*-S, ] i°.,..., C '5 ' LIY, IIhI'.N' ". IN,

• ' ' _" IILVIiISI rir, w vulitt_, *0'0_ LI

I I'.li dill', lilllill It Ill I1| I IhUli if '_lll,il _Itlllll I',,I,Id.' Ill ,t t,i _,i.il;') . "0'1

I

°'_1-" 1-.77--il _'_.u_TlI=l .Itl .....;!'--I"/"."-I'ilu_lul._._;T,.t_._,i>

oi I ";?._ _il ,11

s r'_ . ol_._.l..... __':i_.'_t__!_rz/__.A", _.',";_ _'," '_'i', v _ I ' I -iO • r_+ 140I ..i_-l@ I III,

', ....... l: ..... l',,_ " (' ; ' I __',l _f_i._ I.i.._,,,,,'7' It I MoTTL£O I_ATrERN......-.,......... .-.,,.y,.._-_ •

..f : ;, -,,. ,, ' _,_, 1

LA !rlPIII_D,CX PATTERN

%1..... .... _. __./ i I "Le iI rl,l 1,1,1e i "=l " • I "

,%' ',li/rl', ,,i I'U.I'I 151t.AUY_.ll,!_KE,,'" I J E:ANU

7-."?,'-_'zr,.-. ' -_ Iv/I:: r-._,, t rt III1ULI_NT _FFU_ OM

h) SI:_t'I."l oF li,'l,,k_' I'h",' l;I,,._,'In[l lho "",',',I"_. lt,AIIIIIXtIOWNSTNIrAM:.' :," ; I/,_,,pArtlLY UPSTNEAt,t

li' 'tl',"',ll I'llll 't'li l_il' (R' ',Jill I !11 _': ..,,.I.. (/_/ % ,'ll,lll!;ll i_"11 '1' t ;ill,l _lll' l,"',itl Iqii _'1_ 1!4 .... .,./Ol_l.-.-,-.,.:.-._.,,..#.-i,,# r...#,..l,..i._.i.._

' *- .M.!(IKI Etllttf I

-_._ t PPF' AFIANCI;O_:SMOHE

J.. :, TI,, :;,'l,_ii ,'_ l,m II,lhhl, 1 l',l,i ,_i,i,,.t 'l lie .%ti'tlt'tlile _.,Ii.i bilt_i,le tlhl_ln, ted lly tl',c l'hiw ov,:i"Ll' _,'i,,il.ll 1, ,_1tt l_ I::ll,'rh.. ill 'i. _1Ilcp, ,_l_.'p hvltthl ,{I131; in. l)i.t,ii,cc sit' lth'p frt_l-ii ll_allilit:

c¢l}.,v 6'.'t ili, Ul_' .51_ft./_"¢. /_I'" 6...0,

iL FIGUREIIl-I LAMINARBUBBLEGEOMETRY

-2B-

!.

_':.-_• .4

O0000002-TSCIO

Page 38: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho
Page 39: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

__ T'_ : .̧........... +.- .. ,...._..-._,--_ ...................

r ........ ,+.m...._:....l--{- -4,_,,....... .'.,,L._ '_

........... _,_ .....L-I_. b,

............. _ ....._i_,-i F_;

...... 3Or ........

..... 211 _ ,v+._+

ll(m+ for hlm, _I,,'+'I,,I v,,I, I. " /

hoh=lhm' of lh,' bO.l.l,.p --. / " '22 ....la).r +'q. _ lon_, '+" ,

----I,ffl

F-

4000 I * " ClrCt+'_r ¢yl;;,'_'= Clrculor cyllnder43• v ¢trcu;or cyitndor3 • /J d. [_.4cm I

, e rJltpfic cyl_n_e'_'s_ '_ _ d • I G.4 cm (wllhwlro) I=: * o _phore'_ • o d e31*7 ¢_ ___._.._._ '

;++?o

" I_.,.' "._ .!. ! ....

!....i:: -il('._O'B t _ 4 I 2 ,_ 6 6 to

IO-_R 10"sR

CaK'ulatcdbounda_'-laycrReynolds number _t ._paratlon on clrculoZ

c)iindcr,e_.lipticc)iindcrand sphere.

_., t.! v-:.-' ,y+r :,,.:yncL",' Nt,.'-1+.+: :,+t_,:'.a.";,do_

[]- tT.vpoof RcfcrCnca

G _ `'C '+) it= ....

J'8 ".lO+ $';" ,_93 i 0'22 ShOrt |8,224'_'_ i hmg9'0'

(_1.\_,:,', 5.S x t? _ 4<? .(10 j I 22 sltert 19,22

_06 2._,::10s _.0° 5"0 29 ._h_,rt 28b.5° 350 IcP._

4.6'<lOs 6'50 071 0.24 short 2S

?.0 "_ 392 long 286'8'.:I0 _ (_.0' 774 0.21 sho,'_

O<Y,_8 2 0 '.'I0" S.O: 5)2 0 27 .,h,,:t8._o 3._2 lor_

4.0 " lO_ 9'0+ 812 0'24 s:',,+rt 2_tO,U_ 42_ l_,_

FIGURE III'3 LAMINAR SEPARATION PREDICTIOll_3o-

00000002-TSC12

Page 40: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

OtillIINAI,,PAGEl_lOF POOR QUALITY

I','.'/

!' _ \. v l_i_ fl:_t f ,',_J ;,*_f.'.,,o401"I r \ \ t_ (t',l 7lift,,,1d','.4cdhnd?f

t .Cl",:j L _,_ '_. , (I.) /_{flll'm d'a _Jl.ifldao|',.'1;,_) -',_.\ I {i4 I._rt,t I.y,v,,l:]01rr,'l

: 0,4{} _.,p, fii._ '_',,.t_,l))" _LI_'%. n If)" '._t,c_rifl..t| l'lal,_

,} ,, %

{it0 , (!!_),,,P _\,l,

Ou"_ \'_'N'

°°" '

o0_ ....._.,__.,.__,_ .,_,.__,_.___.,...,.-,_L'C._ "10 20 40 60.{'0 100 _L_O I_00_00 If/JO _.CO0 ',

-il ......v (a) flat fios_d a_.rafod_, (b) '/.3n',mdia cyba_ar

0/, II .,(c, !,CCmrndiacyhn_r20_ b I (d) i,,,o body,>. _Sti,_rn_h_:rt flat plate

l :",1%'1 ._,_.-_. 15 (Re):.;.;p (_ux {1_l'OfOl[ )& u,- o (f} sh,-rt ftal_ Hate. '

I vlt ( ;t_'piI 0.3 II (l]) ton_ fl;lt ptai._

.\\ (';_t_.;p)

0 /00 2'.g !:00 600 _t,iO E.C#J 'ti;O ODD

FIGUREIII-4 SEPARATIONSTREAMLINEANGLE

-31-

I_"." : ._'......... :..: :::.::.:::_ .... --,_:.tL ";,.: ........<,,........,,_,.,,,...+_........ :: ,:...:,:c....._,_:_ ' "_:.:." ...: :.,.::-'.'.J<,_",.--.:--.,_.'.:.,........:.--_..._..-..-..,-."_;.

00000002-TSC13

Page 41: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

tl,_.,, I,I ll.' ;,. I, i_|tilirl., uDt.,l,i,'d t_! il, c I;,,rii',',i:i a|ilull ,,; _.

i,l_,,l'iii" .ll _llli !,{, (l_l.

_{ilu{l. e{p

FIuUI,E III-5 SEPARATION STREAMLINE ANGLE

-32-

--i-_li_'.;i":",.""" "" "" ....... ' "-""......-" -" :':!"::':*'""-:"--':'--:;'--'_' :- " :'--4

00000002-TSC14

Page 42: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

OF pOOHQUALi'r_'

5Q@ ....... I-.......Io-rnqc_suredW_'Im_nne,rf_Jl

_# elrIo,, _ - ¢yllndor t

I ' _2_ _ " . . no,,, 1b°7 I I i i ,, ) b_,_(:cl,_Fod"

t. _ I_ J .=%, I . | ¢ylin¢¢, II :

_;_._ ^xlO=on =a I_¢m_=lonof <X;,),0ep 200 ............. '_ _j" "_'-_1_.;_ ,"e-",_--._.;_b_,moat:_,,,_' i'

_ZrI;o4l (O) .n,l thv cylIt,,Ior i r ,_...+,._. T,...Z_.:_...,.,._.tf_:,,ID,,-:, rich (&) .,)4 vL&hot,=(III) _,_.ra V_cenl u Plul | .... _. ....J .... '_. "' I _'

, o ........_ --_ "'--_ .... _o_'--',._-_oo'-'_ i

tS" &t

I)

1".;'

_e

_'00 4,00 Ht,__0_'

FIGUREIII-6 TRANSITIONBUBBLELENGTH

-33-

_;:_.= ." ::.............. -,_,,_ .... :::-.... :L:::: = _::-_"""--:: -::.........:-"""_____':'"ii'-" - _"""""" ": .... """""_:°"" ' ' ' i

00000002-TSD01

Page 43: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

1ORIGINAL PAGE ISOF POOR QUALITY

L='

!

-34-

00000002-TSD02

Page 44: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGINALPAGEIS

.....II:i-i.....i......Ii !....I.... -; i i '°'

* ! ,'_ I n _ I i'DLe"

.-- =^^_ ' /% ',_, , .

° ' ° ........'i0,4 ¢,6 0,0 I _ 4 _,; 1,3 I

rl. Vnrinlion o£ l_tlh_le k,nl_lh I_tll h_or, d.ll'_.lc|ycl' P,o)'II_,_IOIn|lml_cr It ! 4 b 0 7 0

,_,. ,_,8x tO*o

tOO0 .......... "*'1".... "T'-" "_""--"*'_1 ........ n IOt`

/I

0,2 600 _-.:.._"- -- -I IO_

_,, .oo_......t..... --:-_---,_---,' ---i ,°' "

I ....................0 _" ?00 ................ , , I I0

I k_L_] _ !. (,_,.o,.}

L 4 5 0 ? 6 P _ot_, a, deq

i_o _!_l _"

_' C,_,,'t,1;He_$|_,,umt'.',y-l:tycr Rcym,ld._mm_hcr at scpnr_tlm',, ]en,t',th _r

_ _ ,, _'3× ltP.

t_r,_,_:' ,.,_._ _ IrOOf O.S ...... _....--'_,,_,,_-_.."......'----__._0

.....'........'....... ! _.L/'b..i

,-_. I _, ¢ 5 o:-_ , I0 "° R

: Calcul_tcdb_ttnd;_ry.l,tycrP,_).no|clst'e,m_bcr=_t,_¢|,,II',HIL,n, '._.,o_._'_t11or

5ubhle nr.dp:-c_1_'_,rc:c_chv_ecl'fi:(onIr,,rX..'_CA_.ols _<,_,._,,i;:,,,<_ionnt ,t - IS°,

FIGURE lll-l_ TOTALB" ,I.F lENGTH

-35-

00000002-TSD03

Page 45: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

11ORIGINALPAGEISOF POORo"_ IT:Y

blLP HF,IGIIT _iO_,nIN.El _ t, "0 13U IN...................... 0"._0............ - ......... " -

O.?b .........................if" O'Pfi............................

O'F.-q . / ._--_"_-- "I_ i.....-I- .- o,_c .,__f............... AI Vnri:,thm of

0'I_ .....l ...................... 0'15 --_I.......................... lllld_r/ I will! I_,

o,i_..........................._io i/.......

oo,,.........................°'°'_.................._o:,_,,_,,,_ , i,1 I

L........... _oa-'-----_ob.... Ioo " ' 030............."*_ '_ ......I........boo s__ ,oo I"s \@

!:

0.1,-...........

I

i .......- '.....; ,t.'_o! _-----__ I ,_'_D i . . _o#- i ,_" o.,......___--_ .......................',........

I : I I II !I ] I Ii , . i I ....: ;' ' I 'oj..........ZoO 300 ,tOO bOO

l_Osop

= !0,1 ,_------T'3.0.4.2, 7,6 o; ii i :ii i' ! I B ,,,°.,,.o,_o,o,,.oo._.._o,.o..' I I .(Eq. 31) an4 G1.ntor;_pre_;.;_trogradientII I I ! 'I " : J ,, , [or clo:_;.,d'separ,,th_n bub!,h,, , --'- == p,_rdl...t_r . .

O I 2. $ on th,' _¢vrt::.._an n[r_oil,I0"_R

C V_riatlonofpressurerccovcwcoci'lldehtwithR_noldsnumberetcoastantlncklenccs.Crabtrc,z's_,n_'lysis_) of cxp_!,'_nl,_,ld;tlaon McO_c_.ot_s

I |051 model.

i

0*4 r .... _ ...... r .......... -

" I i i. I I-- .,"_I I •: 0'$ .... _ -_---,---....I-....t?

• _ 0._ ....

I ! _1 ,

I 1 ,0 .... ' ' J

±_ O V_:ri,_lionofpre_:_re rcc,werF ¢ucffici,,:,t',_ilhincidenc¢at _ -,1.7 x I0_.

_' Cr,tbtrcc'san.ol)'rb,_:_ of M.:Crc_:e,'s expcrh:,_.mql ,I_t,t cn a T';crcyaerofoil.

FIGURE III-9 CRITICAL BURSTING PRESSURE COEFFICIEb!T

-36-

, ",, ._ _:';"_""-':_:"'"'_"'_" '..... "......... "_...................... _--" I_................ " _ fr i 'i -'_ii_.'iiiiiiII i i " i i I I I

O0000002-TSD04

Page 46: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho
Page 47: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

_'l'i_Ai++,,+.;,.,,, t i

ORIGINAL PAGE ISOF POOR QUALITY

/

t-F D

,. I • +' ,, aO " _.... ' _ I: n h o [ F o I_ +.

(_ o +IIQ t' 61 0 P• 0 0 H¢r r_l Irlp i_

,;11, "1° ',, ,, ,lg' ,. ' o o in ¢ ,.1+" , r, _I n_' r, i o ++o n"

..... ,,, ?, <_ ,.,., _° _ ,,i, t- poi+

I t t.| .... -I n lit ,+, . _, ,,, ,.. .l .,,..,....i ,+ ,\ ,+ ,:I i- " _,i _',1

',ls,lllt_,,i, ++If,,,_,l Ill.hi • .il +i,lll1111++)Ijili.i I",I:l'li+lllIH,_i si"l'l b0l,l,h

L' i'. ++' +,,+;i ,s,,,,,+.iql,+l,,.il: h _+ ll..'ll I l,.,,h,,,,+ +,I, '. l,,,,hl,++,,tl'+i,,,,i,.sp,.,+_+i, l.,,,,,li,,'i_+di,IHh.hh1_+,

1' lhi+'i +_++,,l+i si,slrpillll,,+tll,% II "t_

...... ":I< '<"" .... '+itO l'i Pi 111% ¢1"1

I_" ct, X-12 l, X'1? e¢ o

• ! °B + B _ o, ., . lz 0 + .... iti,,+ I:'I I.,

" " -a -"+i A "a o co - + A ,I ',, <'(+ 0 0"_ 0 0 0 +.) 0 0

tl 0 ( 0

)¢10 0 0 0 P+) iO00 0 0 0 U"O 0 0 0 t

: '°'!::;+ L i , > ++, +<l I, : I ..... V- __t +..+. -.-t 1+_._i .... ,'_.L. -- l lX__L+__a.....a ,+.+

I'li .lllil ISp%+,'tlllli), lil,lhll"_ ,it tl*ltlllUt +l|l.llllA hv llllXlllilll%ll,ll I tilllll, ( h,,I,+lili+e tiltkll) lu,,h!. ', ,11I .ll i, iIl,i +lp,li ++lispII IIllllil|_l111 t +lillilt

ll'ili I'mll hllhhh' ll.iii l.. Bl,ilt i.'

I:, | I h +.%, • |' ]4 It +,+.+.,'1_+,l',i,I (l)_'/I,al)

I t"lt., iitltl II. t I. til+,, ¢In 0 ........ -i_ '

I II i,i X*l"lj`,iit II,_o I. I', ll" i_ I it I+_ _ O B

I " --"<1 " ° " +_.., _+ o ti l + --......

+_iil i.: " I J ,+. o t) i+ o° o o o° ."

"Ill t ,, , l, 0 I<++ r+ i I , )v 0 0 0i+

,, ,, o Z ............ "<1 + "

1 (+ o l ,.. C, n ,: o o u 0

,+ .. , ,+, o ,+ o° i_' o _ ""

i <, <, o <_ ,.+ o ,.+ <' / +o,,+.,.,...,,

o o t U*?t Ill +.v'-

I '_, '. _ ° o "_. o° _ _, _ •.... " ' _ 2 X._i_ir, t)

..... <, ,,,.<.<'.,.<¢- <.o1' tl () " -

I ' :_.... t .......i ---P _.... i. _i ++__ .l ..... + .......

..... , ++, , , o ,t -[", ,v '?V, t lu_..lv,-,e It'll'. Ilil i 'llllll` + .ll i,llltlllS illsIIIk_lll IId+itlidil •+

%[_IIIAI++k+vii I It+ I ,I It %,1! i Ill it ,+++;'+11111It'l+ll'l_l''

FIGIIP,F tit-ll BOUNDARYLAYERVELOCITYPIt'FILE

..38-

I

OOOOOO02-TBD06

Page 48: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGflNALPAGEI_IOF po,- . .O_JALITY ,,

t

'

, 1.b!o.lo .... .

D'V_nkate;warlu [11l ,

: ftin [12]0.05 -.-. O Bur_n_ll& I.o ,-" ......

X .ult['r]l .. ,,,: i

:1 l _LL0 ........... " l_____..____1- . ._,.l_._ml j i • ..... L- | ,W.I_..P o_ _,

400 " 500 600 700 800 900 1000:. ,'

"" R0slFIGURE III-12 - Bubble Len£1tk ' "" , '

s'

• v

D Ven'katE_swarlu[11] '" ' iO Bursnall & Loftin [12] ,.

6 -- A Gault [7] I . . ,_,"4'. '

\u . htl 4.exYo6i-4,1"14 - _.=1_-_: - : _-....6

lid 2 -- ' '-

i-) . , _ "

_) IxlO3 1.5xlO3 2 xlO_ 2.5xi0 3 ""

,oiC:-I,_,

: FIGURE Ill-13 - Tr_nsil:ionCriterion Ba_'edon Bubble lle_ghtand

IL Reynolds I_lur,lbf,r. .. " :

'" - 39". i',

_._ _" "''" ?.; " __ .:........l,,,.'.'v" ,' "; ', ........

00000002-TSD07

Page 49: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGINALPAGEISOF POORQUALITY

Page 50: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

-41-

00000002-TSD09

Page 51: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIaINAt.eAG_I_ !' OFpoO_qUA61._

1

-47-o

,_-__.

• :• _ ....... - . ,......... ,-,,,- ....", ",-,' , ,,,,...._'"ii, '_"i ......... [I" "--n- I ....... I

00000002-TSD10

Page 52: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

FLONSEPARATIONBIBLIOGRAPHY

III-I Prandt],L, - Verh.3d Int,Math_.angr- lleldaIbergTran_latedas NACAT_chnlcalM_mora_-_B_m452

te

!II-P. Prandtl,L -_hre, 4th Edition.Frledr,VIewe_,_-_raunBcllw_l g I.q44

III-3 Milllkan,C. B. & K1¢_In,A, L, - "TheEffectof Turbulence"AircraftEngi_erlng,Vol,B, No. 8, August1933,p, I(_g-174

III-4 Jono:_,B, MOlvllle- "Stalllng"- Journalof theRoyalAoronautlcalSociety,Vol.3B,No, 285,Sept,1934,p, 753-770

III-5 yon Karman,Th, & Mi111kan,C. B, - "OnTheTheoryof LaminarBoundaryLayersInvolvingSeparation",NASARep,No. 504, 1934

III-6 yon Doenhoff,AlbertE. - "A PreliminaryInvestigationof BoundaryLayerTransitionAlonga FlatPlatewithAdver;ePresSureGradient",NACATNB3g,1938

III-7 Schmitz,F. W. - Aerod_',,amlcsof The ModelAJrpiane.Part l-AirfoilMeasuremen-t's'_,'LudWigPrandt1Pr1zefor Ig41,translationby RedstoneScientificInformationCenter

III-B Pfenninger,We - "Investigationson Reductionsof Frictionon Wings,In ParticularBy Meansof BoundaryLayerSuction"ETH Zurich- Translatedas NACATM NO. 1181 ._

IIII-9 Maekawa,T.& Atsumi,S. - "TransitionCausedby the Laminar 1

FlowSeparation"- NACATM 1352 ,'I

Ill-t0 Bursnall,W. J. & Loften,L. K. - "ExperimentalInvestigationof LocalizedRegionsof LaminarBoundaryLayerSeparation", ..NACATN 2338,AprilIgsl

III-ll McCullough,Go B. & Gault,D. E. - "Examplesof ThreeRepresentativeTypesof Airfoil-SectionStallat Low Speed",NACATN 2502,SeptemberIgBl

m 111-12 McCullough,GeorgeB. - "TheEffectsof ReynoldsNumberon theStallingCharacteristicsandPressureDistributionsof FourM,_deratelyThinAirfoilSect.lens".NACATN 3524,November1955

_,,. lll-l:; Gault,DonaldE. - "AnExperimentalInvestigationof Regionsr: of SeparatedLaminarFlow",NACATN 3505,1955

'i

, Ill-14 Norbury,J. F. & Crabtree,L. F. - "A SimplifiedModelel_the iIncompressibleFlowPastTwo-DimenslonalAerofoils with a Long I

• BubbleTypeof FlowSeparation",RAETech.Note.No. Aero2352,June1955

-43-

""'"_ " "" " " _,;_-_._"_';_!,_;,,," ":"v,'_''_,," • ",,,,-:_":_;_--_......"_::: ",',.,:,"" -....................• " ""' "....... " t

00000002-TSD11

Page 53: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

III-15 Ct_apman,DeanR., Kuehn,DonaldM, & Larson, HovlardK."Investigation of Separated Flows In SupersonicandSubsonicStreamsWithEmphasison the Effectof Transition",NACAReport1366,1958

Ill-16 Moor_,T. W, F, - "SQmaExper.im_ntson the Reattachmentof aLaminarBoundaryLayerSeparatingFroma RearwardFacingStepon a FlatPlateAerofoil"

,, II

III-17 Burrows,F, M, & Newman,B_ G. The Applleatlonof Suctionto a Two DimensionalLaminarSeparationBubble",Miss.StateUniversityAerophysicsDept,Report#27,Oct.1959

III-IB -Tan,,Itero- "LowSpeedFlowsInvolvingBubbleSeparations",Progressin AeronautlcalScience,Vol.5_ p. 70.103,'Pefgamoh"Fress,T9_6-4..... I I I

Ill-19 Morkovin,M, V. -."FlowArOt=ndCircularCylinder- A Kaleidoscope' I iSof ChallengingFluidP1enomenaSymposiumOn FullySeparatedFlows.

ASMEConference,Philadelphia,PA,May 18-20,1964

III-20 Roshko,A. - "A Review of Conceptsin SeparatedFlow",CanadianCongressof AppliedMechanics,Quebec,Hay 1967

III-21 Gaster,M. - "OnThe Stabilityof ParallelFlowsand theBehaviorof LaminarSeparationBubbles",PhD Thesis,Universityof London,1963. Alsosee BritishARCR&M 3595,1969

III-22 A.G.A.R.D.- "FluidDynamicsof AircraftStalling"ConferenceProceedingsLisbon,Portugal,Apeil1972

III-23 Laine,S. K. - "A TheoreticalStudyof the Effectof a Stepin a FlatPlateUponthe LaminarBoundaryLayer.NumericalSolutionsof the NavierStokesEquations",Dr.of TechnologyThesis,HelsinkiUniversity,Finland,1972

III-24 Dobbinga,E.,van IngenjJ. L., Kooi,J. W. "SomeResearchOnTwo DimensionalSeparatiOnBubbles",..Foundin ReferenceIII-22,1972

III-25 van Ingen,J. L. - "On theCalculationof LaminarSeparationBubblesin Two DimensionalIncompressibleFlow",AGARDSymposiumatGottingen,May 1975,AGARDCP 168

Ill-26 van Ingen,Jo L. - "Transition,PressureGradient,SuctionSeparation,and StabilityTheory",AGARDConferenceProceedingsNo. 224,Lamlnar-TurbulentTransition,1977

III-27 Young,A.D.- "SomeSpecialBoundaryLayerProblems"20thLudw|gPrandtlLecture,Copenhagen,May 1977Z. Flugwiss_WeltraumforschI 1977Heft6

-44-

..... ' '" " ...................... " uuuuuuu TSD12

Page 54: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

III-28 Muel]er, T. J. - "Visualization of the Separation and _;ubsequentTransition Near the Leading Edgeof Atrfol.ls", ATARConferenceLangleyResearchCenter,March197B

III-29 Batill,S, M. & Huellar,T, J, - "Vlsualixationaf the Laminar-TurbulentTransitionin the FlowOveran Ail"foilUsingthe Smake_WireTechnique'",AIAAPAperB0.0421,March]980

III-30 Venkatesworlu,K, & jiarsden,D, J, - "Predictionof BoundaryLayerDovelopm_ntIn tho Presonceof a Laminar._eparatlonBubble",Un'Iver._ityof Alborta,Edmunton,Canada,1980

III-31 Thompson,J,F,,Turner,L,0Boarde_,J, H,, Kwon,J, li,,andLong,W. S, - "NumoricanSolutionof tho Navlor-S1.oko_EquatlonsforArbltraryTwo-DlmensionalMultl-ElomentAir.f(dIs,"Lang]eyResearchCanter'ATARConferonco,March7-9,lg7B

III-32 Brown,F,NoM.- SeeTheWindBI_Universityof No1_FeDam, F(}r--t"IC_ne,Indiana,copyrlght1971,F,N,M.Brown

III-33 Russell,J, M. - "Lengtha,_dBur.stlngof SeparationBubbles",NASAConferenceon Sc'lenceandTechno]ogyof LowSpeedandMotorless Fltght, March 29-30, 1979

III-34 Herring,R. N. & Ely,W. L, - "ImprovedPredictionof Laminar

LeadingEdgeSeparation",NASAAdvancedTechnologyAirfollResearch. Vol. I CP-2045, Hamptor,,,VA, March 7-9, 1978 ...

III-35 Gross,L. W. - "ThePredictionof Two DlmenslonalAirfoilStallProgresslon",NASAAdvancedTechnolo_AirfollResearchVo].I CP-2045,Hampton,VA,March7-9,1978

-45-

L i

=;:"-.':. '_"_i±_"...........:.,"",.,: i_;,_v-- ,/':_-".,,:"/""............._",'_.......:_ ' ' "_-,,._.... '":.'_.....--:..... "............ "

00000002-TSD13

Page 55: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

I

IV, LOW REYNQLDSNUMBERAIRFOILCHARACTERISTICS

A. LABORAT{]RYTEST DATA

HistoricalRev_nv1

In the first two d_cad_ of the century,the early state of wind tunnel

d(_vel(_pmellto_aslonud te._tln.qat ,_fficientlylow Reynolds

number_to h_ _f l.ntern_tto thi._._:udy,R_f_rencesIV-l, 2, and 3 orb

frnm thlB nra, The turhulencnInv(_IBof the_e facilitieswere lower

th_n tha_ for thi_ p_rlnd in the Unlted State_,but even so,required

,I_ome_orrectlonto an (_ffectlveRoynold._numberhigher than the actual

t()_tRoynold,_number, Alt;hou,qhno_ a ri_Iorouscorrection,the data

_hown In Fi(IureIV-I Indlcate_good correlationof higher turbulence

testdata shift()donly in RN with accuratelow turbulencetest data.

Referen_:eIV_I is a very early s(_tof systematicdata showingthe effects

of thicknessand undercamberon sharp nosed airfoilsat a Reynolds

numberof 40,000, Tlleseresult_might have been lost in the mist of

timewere it not fo_ the sharp eyes of Krou_ein ReferenceIV-C, D and H.

Likewisethe systematicairfoildevelopmentsof WWI of referenceIV-2

might l_avebeen lost _o Americanr,_odelalrplanebuilder:,had not !:

Dr..AlexanderLippischrememberedthem. He spent many hours pouring '

over.theold data and selectlngthe most suitablefor model airplanes.

His gift to Americanmodel builders,referenceIV-7, lackedonly the

correctiontO effectiveReynoldsnumber. This led to somewhatopgimistic

performancepredictlons.

The first real understandingof the low Reynoldsnumber problemon wing

sectionscame with the work of Schmitz,referenceIV-4, Continuouswind

tunnelrefinementto a turbulencelevel near that of free flight

revealedthe difficultyof obtaininggood airfoilperformanceat

low Reynoldsnumber (17,000-_80,000)in the absenceof hl.ghambient

turbulence, He discoveredhysteresisloops in the lift and drag values

of airfoils_n the criticalflow regimeand the effectivenessof artificial

turbulenceproducedby a wire in decreasingthe criticalReynoldsnumber,

He providedthe first attemptedrecomn_.ndationof optimumvaluesof .....

airfoilthicknessand camber,and their positionsas well as leading

edge radius,all as a function,of Rc, ReferenceIV-4 is the one funda-

mentalbook which shouldappear in a_y low Reynoldsnumber library,

-46-

O0000002-TSD 4

Page 56: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

r_

1,6 ....... I ................,p ,....-... f" I

//i ............... tl ............

1,0 ..... / ...............- "'-'- " ......................................................e ['i

o,o................ .-- 3cl- R_ 12oooo tl,o,_........_,................... 1....... - ............. _'.............

•_" ,_-, 11--o/, ....... ',", i..... / I \

o,2..................F- i..... ) ......................... - .......

O(x

[-oo2.................._......I...........,_.....i..............................................0 0°02 0,0_, 0,0(; 0,08 - 8 - 4 0 4 e 12 ..0,12 -0,0:I - 0,0/_ 0 ,I

-_ L'_- CV/_ _. "-"U_.'-""(_m .--C._*""'CrN25

FIGUREIV-I

-47- !

O0000002-TSE01

Page 57: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Pfenningerin Z.richstudiedairfoilswith exten_ive,lamlnarflow, IV-5

with and withoutdistributedsuctionat Zurichin the early 40's,

l'hes_experlment,_in a low turbulencewllldtunm_1showedremarkably

low drag value._for 6'X,and q% thick laminarairfoilsat Reynolds

numbersbetweenIOO,OllOand 760,000. He also showed the effectiveness

of leadingedge air Jets, surfacewavltless,and rearwardfacingsteps

in the upper surfacein reducingthe drag at certainReynoldsnumbers,

The sole contributionof NACA to airfoilinformationat RN<700,O00

(once the importanceof ambientturbulencewas recognized)is tt_

data of referenceIV-6on a thick laminarairfoilshowingthe decrease

in performanceas the Reynoldsnumberis decreasedto a value of 230,000.

Suzuki of Japan attemptedfree air testingby use of a whirlingarm.

He experienceddifficultiesin reducingthe data to absolutenumbers

but felt the comparativedata was valuab'le.IV-8.

FollowingWWII, a group o_ model aircraftenthusiastsin Englanddid

extensivelow RN aerodynamicwork in three differentlow turbulence

wind tunnels. ReferenceIV-9 and IV-lg.

A very large systematicallyderivedseriesof airfoilswas developed

at G.E. in 1954and-testedat the wind tunnelat West VirginiaUniversity.

The data was shiftedto an effectiveReynoldsnuplbergreaterthan test RN and

is bslievedby this writer to be valid. This data is mo_t usefulin

studyingsystematicvariationsin thickness,camber,and form over a

RN ran_u of 70,000to 565,000. IV-lO.

Pfenningerreturnedwith a remarkabletest of a 4.8% thick,4.2% camber

laminarairfoil in 1956, referenceIV-If. These experimentswere done

if_a flow tube of very low turbulenceat a singleangle of attackover

m a RN range of 20,000_g2,000.He was able to show the beneficialef.fect

:: of multiplespanwiserunningchrodwisespaced tape stripson the upper

!-_ surfaceand the necessityfor placingthe first strip furtllerforward

.. as the Reynoldsnumber decreases.

_ Charwat_referenceIV-12,continuedwork startedwith Pfenningeron the

bird-likeairfoilsectionof VladamirSeredenskyand obtainedah

il excellet_tset of test data for 30,000_RN<110,000.

;

O0000002-TSE02

Page 58: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

An extremely thorough set of tests w_e conducted by Kraemer who had

worked with Schmttz at G6etttnflen and may be thought of as a continuationof the earlier Schmttz work. Data from four different atvfotls wtth and

withoutartificialturbulen_:t_,wires ts presentedin referenceIV-13.

Additionalsystematlcand dotalledmeasurementson GBettlngenalrfolls

of _, IP.,16 and 20_,thicknesswere performedby MusemannIn 1959.

ReferenceIV-14.I

The measurementsat MississippiState University,referenceIV-15,were

conductedin an unusualfacilitywith the wlng extendingspanwlsebeyond

the edges of a free Jet.

An excellentreviewof a few alrfoilssuitablefor model aircraftwere ..

reviewedby Thies in referenceIV-16. The review by Rebel on 29 MVA

airfoilswith Reynoldsnumbersadjustedto correcteffectivevalues

plus 18 later Goettlngensectionsfrom low turbulencetunnelexperiments

representsthe best set of easy-to-readalrfollpolars available.ReferetlceIV-17,

StartMiley chose the designof low Reynoldsnumberairfoilsas his

DoctorateThesis at MississippiState Universityin 1972. He made some

measurementswith a model airfoilmountedon a sailplanein the turbulence

free atmosphereto confirmhis design theory. See ReferenceIV-lB.

In 1971 Patricksumarlzed softieof the work of the BritishLow Speed

Resea.rchGroup in an Americanpublication,IV-I9,since the limited

reportsof LSARA had long been unavailable.

AlthoughWortmannof Stuttgarthad been primarilyinvolvedin sallplane

airfoildevelopmentat RN = 700,000to 3 X 106, he did investigatean

excellentairfoil,the FX 63-137 at RN between280,000and 700,000,IV-20.

This sectionwas used on the BritishPuffinman power aircraft.

_= A largenumberuF airfoilshave been testedin a small wind tunnel in

Milano,Italy,by Bosco and reportedin 1972. IV-21

• Data from a low turbulencetunnelin Czechoslovakiaon the low cambered

_ 795 was made availableto model buildersin 1974 as well as the NACA.

4412. IV-22,-23. ,I

!

-49-

_,'_",......." _ "___" " '" = "_F/:.-.:,_-T_'T" r',,',,',,'_''--_"'"".........""" "'_; =''""......... :_", , i i i i Iiiiii

O0000002-TSE03

Page 59: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Also in 1974 ttendrtcks wa._abl_ to Lest a complete A/2 model sailplane

in the low turbulen_:e tunnel at DOTft University in the Netherlands, IV-24,

In tile sameyear Do LaurJor and ttarrts a_ the Battelle Institute put to

rest the furor over the Kltne-Foolnman stopped airfoil reputed to have

magical properties by mea.surtng it as inferior to everything in sight, 1V-25

Model builders received some very useful new results tn 1976 when Phtlltp_

on _abbatt¢ol in England tested both the popular American Gard Ltnstrum

Phillips airfoil and the Eppler 3_7 in the low turbulehce wind tunnel at

Cranfleld, IV-26. This work was continuedby P_trick. IV-2_.

Meanwhile,a group at the Universityof WesternOntarioin Canadawere

attemptingto developlow Reynoldsnumber airfoilsfrom theory, A few

were testedIn a low turbulencetunneland reportedIn referenceIV-27,

The finestmeasurementsat low Reyno_.dsnumbersare presentlybeing obtained

at Delft University. Tests of five airfoilswere reportedIn reference

IV-29 in 1977. These resultswere comparedto G6 795 resultsin a paper

by Girsberger. ReferenceIV-30.

In 1978 the writer presentedsome long lost data on the thin lamlnar

Pfenninger048 airfoilwith multlpleupper surfacetrippersto modellers

in referenceIV-:_2.In the sameyear, he sun_arizeda11 availablelow

Reynoldsnumber,low turbulenceairfoildata in connectionwith the Mars

aircraftproject. ReferenceIV-31.

Prof. Marsdenof the Universityof Albertahas developedtwo differentlow

_ drag airfoilswith slottedflaps for high performancesailplanesand light

power planes. Hls measurementsextenddown to Rc = 500,000,where these

relatively-thick,alrfoilsare still performingwell. IV-33.

m McMastersat Boeinghas recentlydevelopeda thick symmetricalstrut

_ fairingfor RN.between250,000and 1,000,000. Tests have been conductedand correlatedwith theory. Refe.renceIV-34.

In 1979, Patrickof Englandpresenteda fine paper to the BrlstolInternational

RPV Conferenceshowingdata from the Cranfleldtests and new free fllght

data obtalnedIn the U.S. on radio controlledsailplanemodels. ReferenceIV-2,'_.

In 1980, Derlllaof MIT sent data obtainedon the Llssanen7769 Llebecktype

alrfollused on the McCreadycross-_l_annelman poweredairplane. The tests

were _onductedin an open Jet wind tunnelat a RN of 277,200, IV-35.

-50-

_£ __ ............................ " " "all' ...................... I "m;" ................. I II ............. IIII I I.... I "_lll"lTlllT' 7 ...... i--f "_-'" = -1

O0000002-TSE04

Page 60: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

In February19BO, Dr, van Ingen sent the latestdata from Delft University

on a curwd platewindmillairfoilwith tubularspar, referenceIV-36,and

the _agerlyawaitedtest data ml the very promisingEpplerE-61, reference

IV-3_i.This thin, cambered,theoreticallyderived(referenceBook No. 9)

sectionwas recomendBd for testingby the writer in 197B as having the

most interestingpote,1_ialfor effI,:ientflightin the criticalReynolds

number ranoe. The pr,._liminaryresuII,are most interestingand a more

completerepurtwill be availablewhen Mr, deVriesreturnsfrom militaryduty.

McMastersin referenceIV-3Hpresentsa fascinatingcollectionof aero-

dynamicdaLa on flyiwlgdevicesrangingfrom insectsat RN _ I00 to aircraft

at RN _ 10,000,000. Hls Low Speed AirfoilBibliographyreferenceIV-3g

is usefulmainly for the Reynoldsnumber regimeof 700,000and above.

Gooden,referenceIV-40,extendedthe measurementson a popularthick

Wortmannsailplaneairfoildown to RN = 500,000in a very detailedstudy

in the excellentDelft Universitylow turbulencewind tunnel.

ReferencesIV-41,IV-42, IV-43and IV-45 presentmeasurementsat Reynolds

numbersgreaterthan 700,000b_t-_e valui_blein boundingthe region of

interestto this report.

A1thausin referenceIV-46 presentswind tunnelmeasurementson airfoils

with flaps,down to a Reynoldsnumber of 700,000. J

In 1980 a largecatalog,referenceIV-46,containingcoordinatesand

perfor_nancedata for 30 airfoilsin the model aircraftReynoldsnumber

range becameavailable. The measurementswere made by Dr. DieterAlthaus

in the small low turbulencewind tunnelat the Universityof StuttgartmB

_ in West Gei_ny. A n_del chord of 4.72 inchesallowsmeasurementdown to

a chord Reynoldsnumberof 40,000while a 7.85 inchmodel chord allowsmeasuren_ntup to 250,000. The turbulencelevel is 0.08% of free stream

velocity.

Elevenof the 30 clean airfoilswere also testedwith a single two dimensional

trip strip on the forwardupper surface. Three of the models were tested

with trailingedge flaps at severaldeflections. Thicknessratiosvaried

evenlyfrom 5.?% to 15_ with an additional33% symetricalsection.

Cambervaried from 0 to 6.7%. Locationof maximumthicknessvaried

from 19.6 to 33.9% and locationof ,1_ximumcamber from 30.9 to 56.5%

of chord. !

O0000002-TSE05

Page 61: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Six sectionswere deslgnQdby Dr. F. X. Wortmann,three by Dr. D. Althaus

and nine by Dr. R. Eppler,all of Stuttgart. AIso includedwere two oldOt

Gottingensections,six old NACA sections,two Clark Y ._ectlons,plus the

Sokolovand K-2 Russiansections. This catalogis unique in having So

many sectionsaccuratelymeasuredin the same facility. Many of the older

sectionsare of interestbecausethey have been used by model builders

in the past. The new Stuttgartsectionsare of interestsince they

have been base4-_._odernboundarylayer analyslsconcepts.

Muellerof Notr_ Dame has been doing basic researchon low Reynoldsnumber

laminarseparationbubblesin an excellentlow Reynoldsnumbersmoke tunnel.

In referenceIV-4B he describesleadingedge separationonan NACA 663-018airfoilat Reynoldsnumbersof 50,000and 130,000.

At the author'sinstigation,Dr. Muellerdirectedgraduatestudent

T. F. Burns,referenceIV-49,to measurethe performanceof the Eppler

61 and Pfenninger048 airfoils. Using a force balancefor drag, the

measuredperformanceof these sectionswas markedlylower than previous

wake rake drag determinationsperformedat Delft and at Stuttgart.

These discrepanciesin data from three differentbut excellentlow

r, turbulencetunnelsare now being activelystudiedby Mueller. Resolution

of this problemmay have far-reachingconsequenceson futureexperi_ntal

: airfoilperformancemeasurementmethods.

-52-/

O0000002-TSE06

Page 62: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

CHRONOLOGY

PRINCIPALINVESTIGATORS,LABORATORIES,REYNOLDSNUMBERRANGESAND AIRFOILS

YEAR INVESTIGATOR LABORATORY R.N. _ AIRFO.ILS REF

Igl2 Bairstow& Natl. Physics 4,40,000 Flat bottom sharp IV-IJones Lab England nose varioust/c.

Mid t/c upper surf.with variousunder-camber.

Igl7 Hunk & G_ettinqen I06,000 MVA 29 airfoils IV-2H_ckel Germany 128,000eff. variousthickness

170,000 and camber

1920- Langer& GBettingen 400,000 Large familiesof IV-31932 Schrenk Germany 680,000eff? airfoilsof various

thicknessandcamber

1937- Schmitz GBettingen 17,000to Flat plate_curved IV-41939 Germany 380,000 plat% 12%t 4%f and

20%t 6%f airfoils

1940- Pfenninger ETH lO0,O00 Laminart/c = .06 IV-51943 Zurich, 760,000 f/c = .027

Switzerland. Laminart/c = .09f/c = .029

1944 Quinn & NASA Langley 230,000to NACA 653-418 IV-6Tucker USA 9XlO6 a = l.O

LTT, TDT, & NACA 00127'xl O'

1950 Lippisch Goettingen I06,000 Reviewof Munk and IV-7Germany 128,000 H_ckeldata

170,000 29 MVA airfoils

1948 Suzuki WhirlingArm 45,000 Clark Y,6409,6412, IV-81952 Japan 120,000 G_ 500, 227

M6jR series_curvedplate

_: 1954 Patrick& Battersea 25,000- ISACSON64009 IV-9Keating Polytechnic 630,000 M.A.R.P.6309e

England1954 Deslauriers Univ.of W.Va. 70,000- 27 systematic IV-lO

1955 USA 565,000 variationsin t/cand f/c + NACA65-41065-(12)10BR,I0C4/25C50

1956 Pfenninger Low Turbulence 20,000- Laminar IV-llFlow Tube USA 92,000 t/c = 0.048

f/c = 0.042

-53-

I.

• _ ........ _ '- . - ._ , , , |= i I II ...... i

O0000002-TSE07

Page 63: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

YEAR INVESTIGATOR LABORATORY R.N. AIRFOILS........ REF

1967 Charwat Low Turbulence 30,000- Sereaensky-bird IV-12W.T. at USC,USA110,OQQ airfoil

t/c _ 0.10Sharp I.e.

1957 Kraemer GUettingen 21,000 GB 801 t/c - 0,1 IV-13Germany 170,000 flc = 0.07

GB B01 paper coveredGB 801 with lowerl,e. cut-outGB 803 t/c = 0,06f/c : 0.07G_ 804 t/c : 0.06f/c = 0.067

1959 Musemann GBettingen 17,000- Go 795 796 797 IV-14Germany 410,000 798

t/c : 0,08 0.120,16 0.20

1959 Murphree Miss. State 150,000 Eppler No. 49 IV-15Univ, USA t/c = 0.07

f/c = 0.07

1963 Thies Goettingen 42,000 M.V.A123, 301, IV-16Germany 168,000 Go 795 Go..801,

801 paper covered,803

1965 Rabel Goettingen 21,000 29 MVA airfoils IV-17Germany 380,000 18 Go airfoils

1972 Miley Miss. State 600,000 Miley MO 6-13-128 IV-18Univ, USA

1971 Patrick 3 wind tunnels 32,000 LDC 2;LSARA IV-19in England 55,000 Droopsnoot,G_417a

BenedekB-8258bvB B-8356b_NASA 6409

1972 Althaus Stuttgart 280,000- Wortmann FX63-137 IV-20,- Germany 700,000

• 1972 Bosco Milano,Italy 41,800- Bo 545-310Clark Y IV-2160,000 Eppler385,3.8.7,392,

> Fukuda I0 Go 496,500, 546, Hill SR2

7. NACA 0009, 0012, 4212,4412, 6412, 6409

41974 Horeni & Czechoslovakia20,000- G_ 795 IV-22

Lnenicka 250,000

-54-

O0000002-TSE08

Page 64: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

YEAR INVESTIGATORLABORATORY R,N, AIRFOILS REF

1974 Ln_nt_ka Czechoslovakia 20,000- NACA4412 IV-23250,000

1974 Hendrtcks Delft univ. 39,600- Gerontmo IV-24The Netherlands 60,800 t/c = ,0761

f/c - ,0724

1974 DeLaurier & Battelle Insti. 23,000 Flat plate, stepped IV-25Harris Columbus,Ohto wedge, NACAO012t

USA Circ. Arc

1976 Phillips Cranfield 25,000- Gard,Linstrum, IV-26Institute 80,000 PhillipsBedford_ Eng. Eppler 387

1976 Eggleston Univ. of 66,000 (A) t/c = .06 IV-27WesternOntario, Recoveryfrom 17%Canada (B) t/c = .06

Recoveryfrom 71%

1976 Patrick Cranfield ? Eppler 387 IV-281977 Institute

Bedford, Eng.

1977 Volkers Delft Univ. 60,000- Doublewedge, IV-29The Netherlands 500,000 curved plate,

FX66-S-196VIEppler 385 and 387

1977 Girsberger Goettingen 20,000 Go795 and IV-30Germany 250,000 Eppler 387

1978 Carmichael Capistrano 20,000 Surveyof 27 Low IV-3IBeach, lO0,O00 RN AirfoilCalif.USA Characteristics

1978 Carmichael Capistrano 23,000 Pfenninger048 IV-32Beach, 90,000Calif.USA

1979 Marsden Univ.of 500,000- MarsdenSF 154 IV-33m Alberta 1,200,000 cf/c = 0.17

Canada tit = O.154

_ 1980 McMasters BoeingAC 250.000- Symmetrical IV-34= USA 1,000,000 t/c = 0.288at .31c

1979 Patrick DelftUniv. 60,000- Eppler387on all IV-jIB_=_ 200,000

Cranfield Insti 40,000-I00,000

R/C FreeFlight62,000-320,000

1980 Derilla HIT Open_et 277,200 Lissaman7769 IV-3SWlndTunr,el

-55-

D j

n

C-' ,' ,':, ,,-i ,L ,',- .; i_l i I I I :1 I Illl ill ii1' I/ III I Iii

O0000002-TSE09

Page 65: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Year Investigator Laborator_ RN Airfoils Reference

1972 Llebeck,R. McDonaldDouglaslO6 Liebeck IV-45laminarLiebeckturbulent

197B Althaus,D. Stuttgart, 500,000 60-126 IV._l_Germany to H-2

1,500,000 06513764,-012LIII-142K

1979 Bruining,A. Delft University60,000 Circ. ARC IV-37The Netherlands Plate

lO0,O00 I0% Camber200,000 6.67% C Tube

Spar

1980 deVries,J. Delft University50,000 EpplerE-61 IV-_WIThe Netherlands 80,000

1980 Althaus,D. Stuttgart, 40,000 to 30 Airfoils IV-47Germany 250,000

1980 Mueller,T.J. Universityof 70,000 NACA IV-48Bati]l,S.M. Notre Dame 66018

1981 Burns,T.F. Universityof 46,000 to Eppler 61 IV-49Notre Dame 210,000 Pfenninger048

-56-

\v ; "...... _.TI................ ...-,_a'..,..._.-._'_;r........,,_,i,' , "" ''; r':' " , , _m ,_ - " 1

O0000002-TS E10

Page 66: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

DISCUSSION

In predictingfree flightperformancethroughuse of wind tunnel airfoil

data one must be aware of th_ pitfalls. Small changesin ambientturbu-

lence,tunnelnoise,model vibration,and model surfacecontamination

can have largeeffectson aerodynamicperformancein the criticalReynolds

numberrange.t

The data referencedin this repprthas been limitedto experimentsin

low turbulencefacilitiesor_ in some cases, to data where the Reynolds

numberhas been adjustedupwardby a factor based on the ratio (sphere

test criticalReynoldsnumber in free flightover spheretest critical

Reynoldsnumberin the particularwind tunnel).

When performancecriticalparameterssuch as maximumlift coefficient,

maximumlift/drag,maximum (lift)3/2/dragor minimumdrag of various

airfoilsare comparedone could easilybe led into a poor choiceof

airfoilfor a particularapplication. It is necessaryto examinethe

completelift vs. angle of attack curvesand llft vs. drag polar as well

as pitching_ments vs. angle of attackfor the entire Reynoldsnumber

regimeof the applicationin order to n_ke a wise choice. Some examples

of low Reynoldsnumber irregularitiesfollow.

-57-

°

O0000002-TS E11

Page 67: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

Lift vs a and Lift Drag Polar Shap.3_

In the critical ;.,._..,lds number rftngo, lift vs. angle of attack

and 1Lft vs. drag curves undergo distortions relative to thQ

forms to _lltch we are accustomed at high Rcynolds number. One

can classify _he form_ in f/v_ cat_agorlos,sho_m In F$gu_e IV-2

and dlscnssod below.

CD vs. CL Fornl Description

A Almost constant drag over a largo lift raugo

AI Smooth drag Increases above and below designpoint

B Smooth drag decrease to a high CL desig_ point

C Noticeable drag increase in the mid CL r_ngo

O As in C'with a measurable hysteresis loop

E Rapidly increasing drag to_#ardvery limitcd

CL max

CI, vs. ci Form

A Linear, well behaved as at.high Reynolds number

B Nol1-1inearin the mid CL range

C Hysteresis loop in the mid CL range

D Hysteresis loop at or beyond " max_L

E Very limited CL max

Various degrces of the above distortions appear. It is possible

that some C form polars are nctually D type but that i_sufficient

data points were available to reveal the hysteresis loop. The same mf_ht

be suiclfor the B and C lift vs. ctcurves. In general, a given

airfoil's characteristics will regress from thc A or B types at

higher Reynolds number to the C, t).and E types _s the Reynolds

number is decreased. At a given Reynolds numbcr, excessive

thickness and/or camber is more likely to result in distorted

lift and drag curves than a more judicious choice. The B and C

type polars will often give the highest I/1_ and 1,3/2/D values.

-58-

tt*n

l

00000002-T$ E12

Page 68: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

:LIFT DRAG POLAR FO_l4_

,.i.

cL eL,, q. q el." c_ _ c_

lIFT VS.¢i. l,'t,Rt..S

/ _

/ ( -/----,,&Jrm,jn,n -- :z: "_' -

A D c D E

FIGURE IV-2- 1IF" VS. DRAG A!,D lIFT VS._9'(Lkl'tS

-59-|

Lf: .........................

O0000002-TS E13

Page 69: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

OF POORQUALIW

E type behaviQr (vory low perfoctnaneB) can occur with _ too thin, !

too little c_mhec aectlon _a well a_ wl'_ha too thick _ecglon and :

_hould ha avoided in the range 20,000< )_<i00)OOO, D _ype bohavlor i

ahould al_o ha avo_dud bocau_o of possible wild fllBht dynamics,

A modacaCo amoun_ of C behavior _eom_ to be a_oelatod wi_h _he

hiBh_mt L/D _nd L3/2/D airfOilu when _h_ R_ynaldu number i_ Juu_

ar:_lan_- and a_m porh_p_ ha _olera_d,

A very n_._p l_.ft, curve alnp_ J.n often found a_ nt_:_D.,e nng.lat_ of

a_tnck In the _r_lcal- I_ tangle, 'rhit) boo h,on ospl.oin_d by tim f

beautiful smoke pie,uriah take.n n_ No,re Dame by Burnn) ,hmnot'_) and

Muo_It_r,IV-49, Tho flow :If-)unabl,,to follow around a thin, throb(wad

airfoil nose ag nosatlvc a, The ooFnration t;au_e,.l a _ymmo_rtcal uhapo

of the outOr flow )inca. It ta at) _l' _he camber hau been _(_movod and

a _,_oop drop in lift occur_ over a small attgle of' attack ran8o.

b. J_P..J'J,ER E I___RRESULT,qIN THRE._LOWTU)_BtH.,_CE'rt)NN__.:L,_tqq

_1._t:__4____roduct i onq

The survey conducted by the author attd published in reference [V-31

pointed out the desirability of testing the Epple,_ 61 siace theory

predicted it to have low Reynolds re.abet performance superior to any

sections tested to date. ddYries, Hegen and Boermans, working unde_

the direction of Dr, van Ingen at Delft University, IV-36, in lhe

Netherlands, and Thomas F. Burns, working under the direction of Dr.

Mueller at Notre Dame University, IV-49,.have both conducted such tests.

The Eppler 61 wa_ also included in the large number of airfoils tes_e3

at._he University of Stuttgart) IV-47, by Althaus. ,,i

Ch_r.ac_a_isticsat R = 50,000c

Lift drag polat_ from the three facilitles..a.r.ecompared in.Figure

IV-3 at a chord.Reynolds number of 50,000. The Delft.data were

taken at 50,000, the Notre.Dame data at 46,421 and the 40,000 and

60,000 d_ta were averaged to produce the Stuttgart curve. Rather

pronounced C type behavior is noted. The Delft data give higher

llft and lower drag at optimum llft than the other two tunn_s,

and come very close to Dr. Epplerts theoretical predictions, IV-D-9.

The Stuttgart results are very similar but optimum CL is lower and

-60- i

_i_,,_ :.:.'._.'"." ' ..... ..: .:', L:_.: " '." - "_'""" .:,::,---:,':,:::::'-" ';. "'_:"..i :: ..... _f,._!" -_ .::':".":i::' -. " _ ,.i, :': -- "'i'",_-"_,"V_;"" '7 .... ,"_"_

00000002-TS E14

Page 70: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

-61-

O0000002-TSF01

Page 71: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

drag at optimum CL la higher than at Delft, The Notre Dame data

agree with the other two at CL = 0,9, but _h_ drag at optimum llft

does not fall back to a greatly reduced level as in the other two

tunn_ts° Differenea_ in (L/D) max and (I,3/2/9) max ar_ approalable°

Dol_t i,39 01.fl 72.8

Stuttgar_ 1.31 39°7 44.9

Notro Dame 1.20 14.8 16.2

|Characteristics at R = 80,000 |

The comparison at 80,000 Rc appears in Figure IV-4. The behavior

is still distinctly C type. The Delft and Stuttgart data are similar

but the Notre Dame data do not show any drag decrease above CL = 0.9.

The Delft and Stuttgart max performance numbers are now reasonably

close but the Notre Dame numbers indicate much lower performance.

Facility Optimum CL Maximum L/D Maximum L3/2/D

D_ift 1.4 63.6 75.3

Stuttgart 1.3 61.0 69.6

Notre Dame 1.2 23.1 25.3

-62-

.........• . '" .... 00000002-TSF02

Page 72: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGINALPAGEIS

J-J

-63-

O0000002-TSF03

Page 73: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

.Dy_._h)}:tp_tit}_)!2lftlle Throe Wind Tunnels

1 ' " T 'I ttml l)ol.ft ,_tutthart Notrp l}amo

'l'ypt, ? Non--rotur11 Non-roturll

t: 1"otit_ $4pc t I o11 tk_tJtgotlll I Rue t a1114111_11" Re,et an_Itl] ar

Ih,tght 4.1 ft 1.2,1 ft 2.0 l't

Width 5.9 ft 1.97 ft 2.0 ft:

l,eugth ? 2,02 ft: 6,O ft

t11"o88 St t:t. 1ollal 22.3 ft 2 2.38 ft 2 4,0 tt '2Al't','l

Power ? 1.0 ll.P. .1.5II,P.

/_ i} I° ill'l'urb. l,eve,I ,U...3a at 1'31 fps 0.08% 29.5<U,,'<88.6 fps

l,I ft: Measurement Strain (;age Balance Strain (;age Balance Strain Gage Balance

Drag bleasuremetlt Wake Rake Wake Rake Strain Gage Balance

blonlet_t b|ea stlremen t None None None

Other Oil Film -- Smoke Streams

The nle_lsttrellle|lt of drag by ,'..'_e balance method at Notre Dame could be

the explatiatton of one low indicated performance, llowever,.they did do

,1 lot of work oil repeatabil.tty and study of edge et:feet,'_. While complete

data was not "tvailable, the previous table reveals that all three facilities

-'Y are of reasonably low turbulence level. Since tile Notre Dame turbulence

i8 slightly higher than tile other two tunnels, we cannot challenge tile

better performance numbers at Delft and Stuttgart on tile basis of aII

31 turbulence induced increase in effective Reynolds number over Notre

Dame. As will be discussed in V, the ambient noise level eat 2 provide

I a large benefit in the critical Reynolds number range similar to a trip

-" wire. At present, [ do not have noise level measurements for Stuttgart

mid Notre Dame and only limited data for Delft.

,._" A_ mentioned lu the historical review, work is now in progress by Mueller

el Notre Dame which may shed light on the dtscrep_mt its between low

Reynt*lds IlUlnbor airfoil drag mt:asuremelltt_ urging strain gage or wake rake.

JI

-64-

"'_ '" " ,.. .. : ,- .,r.--._-., , .:_,..:_e ......... " '.... : 1), , ..... , .... ; -'" " ............. ";. "n"'('" I *,;

O0000002-TSF04

Page 74: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

We can al_o compar_ results of tt_sts of two other Epplor airfoils

in t.ho Dt_lft', TV-29, lind _tuttgart, IV_47, tunnels,

Airfoil R_ynolAm No. (L/I))MtIx (L3/2ID)Max

llolft Stuttgart llolft _qtutt;gnrt

E°385 60,000 38 47.5 46.5 48l.O0,O00 63 q3 ?3 55

1.-187 60,0{}O :18 't6 Jfl 3hIO0,000 .55 54 55 58

The agrcemt, nt is qu:/to good for the E-387. 'rile differences tire greater

for the more heavily cambered 385. The differences are not predominately

in favor of either wind tunnel at either of tile two Reynolds numbers.

(c) Other rest Methods

It _s apparent that performance measurements of high performance airfoils

.j. in the critical Reynolds number range is tricky even using modern low

turbulence tunnels and instrumentation. One would llke to obtain the

data in tilenoiseless low turbulence regime of free flight. Free flight

gliding of complete models as discussed in IV-B provides the proper flow

regime but. is complicated by:

lW (l.) I,aunehing and flight dynamics

(2) Atmospheric motions (if tested outdoors)II1

m. (3) Uncertainties in calculation of induced= and parasite drag

_ One:would llke to see a test section developed (with strain gage balance%,

9 for lift and moment and strain gage plus wake rake for drag) and mounted

on some sort of noiseless vibrationless carriage. Perhaps a tensioned

I w.lre guided scheme with falling weight drive? The space requirements,

time at steady speed, and data recordlng/storage plan all constitute

,:ompllcatlons. One could well find new disturbance sources as serious

at_ tht_ uoi_e and turbuletwe problctu._ of the present tunnels. Still,

?lit' st'hetllt2 tier:8 I1O[ at_pt_Ol" llllpOS_tb,lt,.

-65-

O0000002-TSF05

Page 75: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(d) Alrft_ll Porfortaanco CnmpgUrt.apn___n

Tht_ vt_ry .l_lrgt _ amotmt: _lf .tt_w Roynt_ldn numbt_r tlSt'ft_t.l, d;lt_i aw_tlablo from

tht _, 1ant t_ovon dt_t, tld/_tl _illd frt_;n nttlo dlfft, rt*nt natlt_ntt will bo prt_aotlt:_ti

.t.ll t'tlllVOlltOIl|: fl_rra fol" tllo tlt_Hl.t_ll t_.llg.lnt,tw tn Vol.ttn|o II of thin ntudv,

-66-.

b

O0000002-TSF06

Page 76: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

LABORATORYDATA BIBLIOGRAPHY

IV-I Balrstow,L, and Jones,B. M_Ivill- "Noteson the Propertiosof Airfoilsas DeducedFrom the Resultsof the VariousAeronauticalL_boratorie_".BritishR&M No. B3, March IgI2

IV-2 Munk, M, and H_ckel "Messargebnisseau_ den TocbnischenBorichtenT.B.I und _I der Flugzeugmoister_i".G_ttingenIgl7-1B

IV-3 Langer,R. and Schrenk,O."NeuereProfilunstersuchtlngen"and "Untersuchungweiteror Joukowsky-Profile"In - Ergebnisseder AerodynamischenVersucbsanstaltZuG_ttlngenIV LeiferungMunchenund Berlin_g32

IV-4 Schmitz,F. W. - Aerodynamics of the Model Airpla_Part I- AirfoilMeasurements_'Translationby Redstone_rsenal-No_."_2,-T96-7_ OriginalPublication- GBttingen1942

IV-5 Pfenninger,W. - "Investigationson Reductionof FrictiononWings, In Particularby Means of Boundary-LayerSuction"Translatedas NACA TM No. If81, 1946

IV-6 Quinn,J. H. and.Tucker,W. A. - "Scaleand TurbulenceEffectson the Lift and Drag Characteristicsof the NACA 653-418a = l.OAirfoilSection°" NACA ACR No. L4HII.WR L-138. Ig44

IV-7 Lippisch,A. M. - "Wing Sectionsfor Model Planes"Air TrailsPictorialMagazine- April and May 1950

IV-8 Suzuki,S. - "WhirlingArm AirfoilTesting"Work done in Japan.Reportedin Model AeronauticYear Book..byFrank Zaic 1955-56

IV-9 Keating,F. A. and PatrickT. - "AirfoilTest Work of the ModelAerodynamicsResearchProject." 1954 M.A.R.P.SymposiumReport.Also reportedin BritishModel AircraftMagazine,Feb. 1956 ..

" "AIV-IO Deslauriers,E. J. - Simple Blade ProfileSystematic"GeneralElectricTech. InformationSeries DF54A6T49B12-15-54and "BladePerformanceat Low ReynoldsNumbers"G.E. Tech.InformationSeries R54AGT6051-14-55

n

IV-ll Pfenninger,W. - "ExperimentalInvestigationof an AirfoilWithHigh Lift to Drag Ratiosat Low ReynoldsNumbers." NorthrupAircraft Inc,NAI 56-188ReportNo. BLC-84 Feb. 1956

IV-12 Charwat,A. F. - "Experimenton the Variationof AirfoilPropertiesWith ReynoldsNumber." Journalof the AeronauticalSciencesMay 1956

-67-

II I I illllllll .... " '_'- """ ' - - I [l" III11

O0000002-TSF07

Page 77: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

IV-13 Kraemer,,K,,- "AirfoilProfilesIn a CriticalReynoldsNumberRegion"GoettingBnReportForschungauf dem GebietedesIngerieurwesensBd 27, 1961 Nr, 2 S 33/46

IWl4 Muesmann,G. - "Measuremen•tsand BoundaryLayer Observations_n aThickenedBlower Profileas a FunctionQf the ReynoldsNumber"Z Flugwiss7 (9),253.2641959

IV-15 Murphree,D, L. - "MeasurementsOn A HighlyCamberedModelAirfoilSectionAnd ExperimentalTechniques"AerophysicsDept.ResearchNote #8, Mi_s. State University,April 1959

IV-16 Thies,W. - "Fl_gelprofilemit geraderUnterseite"Swiss Aero Revue - January1963 and February1953

IV-17 Rabel,H. "ModellflugProfile"- Munchen 1965

IV-IS Miley,S. - "An Analysisof the Designof AirfollSectionsForLaw ReynoldsNumbers." MississippiState UniversityPh.D. 1972 -.UniversityMicrofilms,Ann Arbor,Mich.

IV-19 PatrickT. J. - "The Low Speed AerodynamicResearchAssociation1947-1954"FourthAnnualSymposiumof the National•Free FlightSociety.1971

IV-2O Althaus,D. - "StuttgarterProfilkatalogI."Institutfi_rAerodynamikund Gasdynamikder UniversitatStuttgard1972

IV-21 Bosco,A. - "AirfoilSectionsfor FlyingModels"

Ass,elazione Sportiva AeromodelIistica 20081AbbiategrassoMilan, Italy,December1972

IV-22 Horeni,B. and Lnenicka,J. - "AerodynamikaOpravdusModelarska"ModelarMogazine4/1974

IV-23 Lnenicka,J. - "Reportto Pierpontof NASA Langleyon the CriticalReynoldsNumberof the NASA 4412 Airfoil." CzechoslovakiaApril 1974

IV-24 Hendricks,F. - "AerodynamicMeasurementson the Wing of theGeronimoA-2." The NationalFree FlightSocietySeventhAnnualSymposium 1974

IV-25 DeLaurier,Do and Harris,J. M. - "An ExperimentalInvestigationofthe AerodynamicCharacteristicsof Stepped-WedgeAirfoilsat LowSpeed." AermlcanInstituteof Aeronauticsand Astronautics. 1974

_• IV-26 Phillips,W. H. - "Low Speed Wind Tunnel Tests of Two Airfoils, Suitablefor Models." NinthAnnual Symposiumof the National

Free FlightSociety. 1976

-68-

O0000002-TSFO8

Page 78: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

iiIV-27 Eggleston, B,-"The Destgnof Atrfolls for HlghLift/Drag Ratios I!

at LowReynoldsNumbers."CASlSymposiumon RecreatlonalAlrcraftoToronto,Canada. September1976

IV-2B Patrick,J, T. - "Alrfol]sDown to CriticalReynoldsNumbersAnd thePerfor,mnceof RemotelyControlledGilders",BristonUKRemotelyP11otedVehiclesInternatlonalConference,3-5 Sept.1979

IV-29 Volkers,D. F. - "PrellmlnaryResultsof WlndtunnelMeasuremegtson SomeAirfoilSBcti_nsat ReynoldsNumbersBetwuen0.6 x I0°and 5.0 x 105." Delft University of Technology, Dept, ofAerospaceEngineering - MemoM-276. The Netherlands. June 1977

IV-30 Girsberger,R. - "Ergebnl_seyon Wlnd.kanalmessungenanModellflugprofilen."SwissAeroReview. 12, 1917

IV-31 Carmlchael,B. H. - "Surveyof Two DimensionalAirfoilDataBetweenReynoldsNumbersof 20jO00and 100,000."StudyforDevelopmentalSciences Incorporated. Ctty of Industry, Caltfo ..91744,April1978

IV-32 Carmlchael,B. H. - "A SignificantIncreasein Llftto DragRatioof Airfoilsat Low ReynoldsNumberThroughtheUse of MultipleTrippersandLow DragLaminarFlow." AnnualNatlonalFreeF11ght

SympOsiumReportFor 1978 i

Ha eden D - "Wi-dT - IIV-33 r , . , unnelTestsof a 15.4%Thick6LaminarAirfgil 1WithSlottedFlapat Reyno]dsnumbersof 0,5 x 10 to 1.2x 10°."

!Universityof Alberta,Edmonton,Canada. UnpublishedNotes.1979

IV-34 McMasters- "ThickStreamlinedStrutTestResults."Private 1Communication.February1980 '

IV-35 Derilla,M° - "Testsof theLissaman7769Airfoilat a RN of277,200in theM.I.T.OpenJet WindTunnel." P_ivateCommunl-cation. February1980

IV-36 deVries,J., Hagen,G. H. & Boermans,L.M.M.- "P_el!mina_Resultsof WindTunnelMeasurementsat Low ReynoldsNUmberson AirfoilSectionE-61." Dept.of AerospaceEngineering,DelftUniversityof Technology.PrivateCommunicationfromDr.J. L. van Ingen,February18, 1980

I IV-37 Bruinlng,A. - "AerodynamicCharacteristicsof a CurvedPlate'_ AirfoilSectionat ReynoldsNumbers60,OOQand I00,000and_ Anglesof AttackFrom-10 to +90 Degrees."DelftUniversity_. of Technology,ReportLR-281,May,1979.

_ IV-38 McMasters,J. H. - "AnAnalyticalSurveyof LowSpeedFlyingDevices - Natural and Man-Made". Proceedingof the 2nd Inter-NationalSymposiumon theTechnoloyyand Scienceof Low-Speedand MotorlessFlight. Mass.Inst.of Technology,September11-13, 1974

-69-

i " " ' ........ _ "'_ I I"II_IF"-''-_'- "" - |

O0000002-TSF09

Page 79: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

!IV-39 McMasters, a. H. - "Low Speed Atrfotl Bibliography". Technical ""

Soartng, Vol. 3, No. 4. Fall 1974

IV-40 Gooden- "Experimental LowSpeed Aerodynamic Characteristics ofThe WortmannFX66-S-196 V! Airfoil". Technical Soaring, Vol. 5,No. 3, March 197g

IV-41 Btngham, 8. J. and Noonan, K. W. - "tow Speed AerodynamicCharacteristics of NASA6716 and NACA4416 Atrfotls wtth.35-Percent-Chord Single-Slotted Flaps", NASATMX2623

' IV-42 aacobs,E. N. - "PreliminaryReport on Lamlnar-F10wAlrfollsand New MethOdsAdaptedfor Airfolland Boundary-LayerInve=tigations. NACA ACRj April 25, 1939

IV-43 Loftln,L. K, and Smith, H. A. - "AerodynamicCharacteristicsof 15 NASA AirfollSe;tionsat Seven ReynoldsNumbersFrom0.7 x I0° to g.O x I0O_. NACA TN 1945, 1949

IV-44 Quinn,J. H. and Tucker,W. A. - "Scale and TurbulenceEffectson the Lift and Drag Characteristicsof the NASA 653-418= - 1.0AirfollSection". NACA ACR No. L4H11,1944

IV-45 Liebeck,R. -"Wind Tunnel Tests of Two AirfoilsDesignedforHigh Lift WithoutSeparationin IncompressibleFlow". DouglasAircraftCompanyReportMDC J5667/01,August 1972

IV..4:; Althaus,D. - "Measurementson AirfoilsWith Flaps at MediumReynoldsNumbers". TechnicalSoaring,Vol. V. No. 2. December1978

IV-47 Althaus,D. - ProfilpolarenFb_ Den ModelflugN V. Neckar -Verlao- Villingen- Schweinningen1980

IV-48 Mueller,T. J. and Batill,S. M. -"ExperimentalStudiesofthe LaminarSeparationBubbleon a Two DimensionalAirfoilatLow ReynoldsNumbers". AIAA Paper 80-1440,July 1980

IV-49 Burns,T. F. - "ExperimentalStudiesof Eppler61 and Pfenninger_. 048 Airfoilsat Low ReynoldsNumbers". GraduateThesis - Notre

Dame University- Indiaaa..January1981

-70-

' ." , . _ """ .:"'T_ ' _" _, _'_L_'_'_ "'''-'" " _" "" , ,.. _ "' - .... _J_l. ,_, I ......... I II I I I II II I ' II

O0000002-TSFIO

Page 80: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(B) DISCUSSIONOF FREEF_IGHTTESTING

It is moredtfftcul_ to obtatn rellable experimental atrfo11 data In the

crtttcal Reynoldsnumberregime than at higher Reynoldsnumber, An excel-

lent comparisonof three different experimental methodsts given by Phtlltpstn Reference 1V-59, The first ts the laboratory or wtnd tunnel approach

covered in the previous section. The remaining two tnvolve measurementsin free fl'ight, The first conststs of straight gltdes 'In a large roomOe OUtof doors, in which distance covered, altttude lost, and ttme are

recorded. The gllde ratio can be obtained from the forward speedand

the sinking speed, and, knowingthe wing loading, one can reduce the results

to a lift, drag polar for the completeaircraft. By subtracting the theore-

tical induceddrag and the estimated parasite drag due to fuselage, tatl

and trim, one can obtain the two dimensionalairfoil lift, drag polar, The

majority of the references in this section employ this method, The develop- !ment of a refined methodof thts type ts described tn Reference 1V-54..

This writer was privileged to witness this development,tn which the

student Hoffmenencouragedby Dr. GusRaspet andaided by GuySt, raP(all of Mississippi State College) slowly discovered the problemsand

cameup with Increasingly improvedsolutions. A sparta1 launching rat1 ']

withfallingweightacceleratorwas usedto improvethe steadystate,on

speed,on g11depathlaunch,so necessaryto prevent1ongitudlnaloscilla-

tions. The useof tworeferencehorizonlights,a lightIn thesldeof

_ the.modelaircraft,an opencameraplacedbeforea whirlinginterrupter ,i1

disk,coupledwith launchingin a darkenedlargeroom,constitutedthe

finalrefinement.The slopeof the interrupted11ghttracewith respectto

_ thereferencehorizongavetheglidepathangleandthe interruptionpattern

gavethe flightspeed. Thls typeof testingwas simultaneouslyand inde-

pendentlycarriedto the samedegreeof refinementby Maxlmi]lianHackllnger

m who obtaineda minimumslnkingspeedof 25.1cm/secand maximumglideratio

of 17 on a Nordic A/2 modelsailplane, References IV-35 and IV-71. Even

_: wheng11detestsarecarriedout In a largeroomone mustbe carefulthatthe resultsare not influencedby possiblemicrometeOro]oglceffects When

_. conductedoutdoors, thts problembecomesvery difficult Just as tn the per-

formancetesting of ma,,carrying sailplanes. As gltder performance Improves,(flatter glide slopes and lower sinking speeds) the percent error Intro-

ducedby vertical atr motion andalso horizontal wind tn ground referenced

-71-

i

" =........"'T_:_ _ _;_ _=x_':::_""'"_ _'_T'=_'_r_'-C "::.."!'... .......' _ ,, i, ,'_T;,,(_,°,:_';,_

O0000002-TSFll

Page 81: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

measurementsbecomeslarger. The advantageof this stmple type of test

ts most pronouncedfor very low Reynoldsnumberstesting where glide islope_ are steep, roomstze requirements are mode_tmand internal tnstru-

mntatlon ts not possible, See for example H_ckltnger IV-71, tatlless i_microftlm mod_l RN- 11B0, Gibo and Pallett, deceasedbutterfly RN, 2700,

IV-70o Hackllnger IV-SBmIndoor Microfilm 3120_7310oRaspet-ZanontaSeedRN - 6000,IV-53,HarlandjMlcrofllmIndoormodelB,200_12tgO0,IV-64,

, McBrideIV.30,IndoorMicrofilmmodelRN - 12,800,BauerIV-_6,hand

launched.gliderRN - 15,000,and Newman,IV-BB,artificialdragonflywing,

12,000-,,60,000.

k somewhatless precise methodoften used by modelbuilders is to ttme severaldescentsfromthetop of a towlaunchlineof knownlengthin the early

morningwhenvertical air currents are not likely to be large. This ts

only useful for comparisonof different conftgurattonx and is fraughtwtth uncertainties. Nevertheless, tt was usedas the basts for the

statisticalanalysisof ReferenceIV-61in an attemptto definethe

mostsultableairfollselectionparametervaluesforA/2 modelsailplanes.

A morerefinedoutdoorglldetesthas recentlybeendevelopedfor radio

controlledmodelsallplanesby Rawdon,IV-69. Eachmodelis flownseveral

timesat a givenlongitudinaltr_msettingovera course. Groundbased

recordingof starttimeand altitudeand f_nlshtimeand altitudeare

madeforconsecutivepasses,180° differentin heading.The lattercancels

out thehorizontalwindbut scatteris stillintroducedby smallvertlcalair currents.

PhillipsinIV-59describesa methodwhichIs insensitiveto airmassmotion.

It obtainsthemodeldragto liftratioas the tangentof thesum of a free

floatingvaneangleanda pendulumanglewherethe formeris measuredfrom

thelongitudinalbodyaxisand the latterfromthe normalto thisaxis.

It Is necessaryto placethe vaneoutsidetheupwashfieldto thewlng

or to correct for it, and it is necessary to dampthe pemdulumand onlyread whenit ts steady. Although thts methodhas not beenwidely used

as yet foreithermodelor man carryln9sailplanes,it wouldseem%o

holdgreatpromisefor freeflightmeasurements.

i .

O0000002-TSF12

Page 82: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

CHRONOLOGY

FREEF,LIGHTTESTING_

YEAR INV£STIGATORTYPEOF MODEL..... WINGSECTION RN .... REP

1934 McBrida IndoQrMicrofilm CurvedPlate IV.50

19BO HQlbrQQk Handlaunched Sore_n_kyAirfoil_001000 IV_61.glldnr DlffusorTip

Flying Wing

1951 Jex Tow llnoglld_r SL 6205NACA6409 60,000 [V=5_I.SARAS II andS II Rever_ed

1953 Rasper ZanonlaSeed Membrane- Single IV.B3surface AR _ 2,65

1954 Hoffmann Tow lineglider NACA4612 40,000 IV.B45" chord 60,00045" span

19S5 Hacklinger NordicA-2 Hacklinger 30,000 IV.B5ModelSailplane

1956 Hindes Tow llneglider NACA6409 40,000 IV.B6

4" chord !48" span

19577 Anon ModelSailplane Flatbottomt/c = IV-B7 i0,093 AR = 8.4 !

1964 Hacklinger IndoorMicrofilm CurvedPlate IV.,BB !

1970 Phillips R/C Model 200,000 IV-59Sailplane Not GivenNordicModel 30,000 !

Sailplane "11971 Ovelmen& Wakefield NACA6407,5 30,000 IV-60

Meuser Aspect Ratio - 19.2 t

1970 Allnut & Nordic A/2 Model 21 Successful 40,000 IV-61 ,Kaczauowskt Sailplanes Airfoils

1974 Hartman No_dicA/2 Model Eppler 58 & 59 40.,000 IV-62Sailplane plus three other I

camberroods. t1973 Ntppert 3 Nordic A/2 model Not Specified 40_000 IV-63

Sailplanes

• -73-

........ 00000002-TSF13

Page 83: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

YEAR INVESTIGATOR_PE OFMODEL WINQ5ECTIO_ RN _F ....

1975 HAMan _ndoorMIcrafllm CurvedPlate fi,200 IV-64" 12,_0

1975 flad_s NordicA/2 Model B-B4BB-fat Root 42,B00 IVy66Sailplnn_ B-6466-fAt TIP

1970 Bauer PapOrhand-launchedThinPlato5nctlon30,000 IV-66

Balsahand-launched_ ElementAlrfol1_16,000 iG1idOr_3 NordicAI_ On_wlth_ _Iom_nt4O,OOQSallplano_ airfoil

1976 Bauer NordicA/2 AB-@O0B CH407 80vO00 IV-67SatlPlano_FAI PowerModel _ Element Atrfotls 70,000

1976 Newman, Indoor'Glider McBrideB-7Curved35,000 IV-BBSavage& 40" span plateSchouella 5" chord Dragonfly 60,000

1977 Rawdon RadioControlled NACA6412 2R-12 62,000 IV-69Sailplane Models Rawdon12.5%t 320,000

3%f

1979 Gtbe& Deseased Flat Plate 2700 IV.70Pallet Butterfly 4900

1955 Haekllngor NordicAI2 Model HA-12 39,000 IV.71Sailplane

1961 H_,cklinger NorelcA/2 Model. HA-12 39,000 IV-72SailplaneMicrofilmTatlless CurvedPlate 1150

-74-

Iii_ _=='_ , , .... _ ,._* • • . ." ' " ...... }_?.L/..._.j.?. IF' T.;' E L I.. " " '_.... _. ' ,4

_-. ..4". _ .'_.......... " ' ;/ "__'_' . . . ,_.'........ _'",,, p" ',........... _,",""-, T_" =

O0000002-TSF14

Page 84: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

; FREEFLIGHTBIBLIOGRAPHY

IV-B0 McBride,J. W. - "SomeTechnlcalNoteson the PresentIndoorAlrfol1"- In JuniorAeronauticsYearBook- By FrankZalc

L Ed. 1934

_ IV-B1 Holbrook, C. T. - "SomeStudies on Flytn9 Wtngs._ IAS Student;_ BranchMeetln9at Tuscaloosa,Alabama.Aprll21 22, 1950

C IV-52 Jex,H. - "NarwhalGlideTestResultsat ReynoldsNumber=

, ' 60,000." Tests Conductedat Mass. Inst. of Technology- 1950-1q51IV-53 Rasper,A. - "GlidePolarof a ZanonlaMacrocarpaSeed." Indoorglide tests conductedat MississippiStateCollege,1953

IV-54 Hoffman,Gilbert- "AerodynamicMeasurementsat ReynoldsNumbersBelow100,000Obtainedby a FreeF11ghtG11deTechnique."Presentedat 5thAnnualSoutheasternIASStudentBranchMeetlng.April1954

IV-55 Hacklinger,M. - "Effectof Turbulatorson theG11dePe:-fornmnceof an A-2 ModelSailplane."Presentedat the 1955Low SpeedAeronauticalResearchAssociationMeeting. R.Ae.S.Library-London,England.November12, 1955

IV-56 Hindes,S. - "GlideTestsResultson a ModelSailplane."Presentedat the 1956LowSpeedAeronautiCalResearchAssociationMeeting.London,England.M.A.R.P.Report

IV-57 Anon- "GlideTestsof the BasiliskModelSai]plane."BaslerSchulen- SwissAeroReview

IV-SB Hacklinger,M. - "TheoretlcalandExperimentalInvestlgatlonof IndoorF1ylngMOdels."Journalof the RoyalAeronautlcalSociety.November1964

IV-59 Phillips,W. H. - "Experimentson Methodsof Measuringthe LiftDragRatioof Airfoils."NationalFreeFlightSymposiumReport.1970

IV-60 Ovelmen,S. and Meuser,R. - "TheFlightTestingof 13 WakefieldPropellers."- IncludesglldeteStof model. FourthAnnualSymposiumof theNatlonalFreeFlightSociety.1971

IV-61 A11nut,P. J. and Kaczauowski- "A RelationshlpBetweenBasicAirfollParameters/AspectRatioand Rateof Sinkof NordicA/2Gliders."NatlonalFreeF11ghtSociety,ThirdAnnualSymposiumReport. 1970

IV-62 Hartman,P. A. - "IntuitiveAirfoilTheoryand ConstructionofSolldWings." NatlonalFreeF11ghtSociety.SeventhAnnualSymposiumRepcrt. 1974

IV-63 Ntppert, V. - "Indoor Nordic Glider Tests." National Free FlightSociety Digest. November1973.

-75.

00000002-TSG01

Page 85: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

IV-64 Harlan,Ro B. - "DragElementsof IndoorModelS" NationalFreeFllgh_SocietySymposiumReportfor 197S

IV-65 Hadas,A. - "AerodynamicCharacteristicsof a HighLiftTwoElementWing- An ExperimentalStudy.' NationalFreeFlightSocietySymposiumFor Ig7s

IV-66 Bauer,A. B. - "TheLaminarAirfoilProblem."NationalFreeFlightSocietySymposiumReportfor 1975

IV-67 Bauer,A. B. - "FunandGangswith FAI Flappers,"NinthAnnualNational2teeFlightSocietySymposiumReportfor 1976

IV-68 2¢ev_nan,B. _,, Savage,S. B., andSchouella,D. - "ModelTestson a WingSectionof an AeschnaDragonfly."McGIIIUniversity,Montreal,Canada. Ig76

Iv-6g Rawdon,B. - "PreliminaryReporton L/D Trials."PrivateCommunication(to be pub)Ishedin the 1981NationalFreeFlightSocietySymposiumReport).Ig7g

IV-70 Glbo,D. I. and Pallett,M. J. - "SoaringFlightof MonarchButterflies,DanausPlexlppus(lepldoptera:Danaldae),DuringthelateSumer Migrationin SouthernOntario."CanadianJournalof Zoology,Vol.57, No. 7. 197g

IV-71 Hackllnger,M. - "Flergmessungan elnemSegelflugmodell"AerodynamlscheVersuchsanstaltG_ttlngenDated30.4.1957.TestsPerformedin 1954. Alsopresentedat LSARAMeetingR.Ae.S.Llhrary,London,EnglandNov.12, 1955

IV-72 Hackllnger,M. "Gel_steund ungel_steFragender Modellflugtechnlk"Winnerof Otto-llllenthaland ludwigPrandtlPrize. DesBuchderluft@ahrtundRaumfahrt,BondVl,DeutscheVerlags-Anstalt jStuttgardIg61

IV-73 Czepa- "Czepaon Airfoils"- ModelAirplaneNews,August,Septembe_-lg57 _

-76-

O0000002-TSG02

Page 86: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(C) .LOWREYNOLDSNUMBER_A]RFOILDESIGN

Until quite recently, the design of _trfotls for Reynolds numbersbelow

about 1 x 106 has been primarily empirical tn nature, guided by observa-

tions of nature's solutions for insects, birds, and small fish, and

. aided by inputs from low Reynolds number smoketunnel flow visualization

and force measurements, In the early years, considerable o_timtsm was

generated by the beneficial effect of tunnel turbulence level in artificially

raising the critical Reynolds number of airfoils which operate well at

increased RN but have very low performance in frea flight at the true

value of lower Reynolds numbers, The brilliant pioneering effort of

Schmttz (reference IV-4) introduced realism tO the game. Technical

aeromodellers, armed wtth the Schmttz results, now began an empirical /

development which, due to their competitive spirit and keen powers of !Jobservation led to some remarkably good atrfo!ls which work well in the !

real world of free fltght at low Reynolds numbers in the earth's atmosphere.

The question nowarises as to whether the present]y available powerful

analytical atrfo_l design procedures can lead to dramatic additional

improvements ove_ the present empirical state of the art as had occurred ................

in the Reynold_ .,_._ur range of 1 x 106 to 3 x 106,

Systematic series of aircraft airfoils were originally designed by NASA

by wrapping the best thickness falrtngs about the best camber lines where

both had comefrom long years of empirical experience. This work of the

20's and 30's was followed in the late 30's by the development of laminar.

airfoils with improved favorable pressure distributions forward of more

aft minimum pressure points and improved linear pressure recoveries aft

of minimumpressure through rear surface cusptng, See Reference IV-A,

These airfoils were excellent at Reynolds numbers above 4 x 106 but

often gave disappointing results at RN's of 0.7 x 106 to 2,5 x 106.

The performance in this regime was remarkably improved by the efforts

of Wortmann, Reference IV-J, and Eppler, Refel_nce IV_, and together

with smooth, wave-free composite construction led to large improvements

in the performance of man-carrying high performance sailplanes for the

past 25 years, (To date, these advantages have been avoided by all but

=i a few Europeanpower plane buildersand some Americanhon_bullders,i

ii -77-

I H " _1

00000002-TSG03

Page 87: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

The brl111ant appllcatlon by Llebeck (Reference IV-K), of the Stratford

(Reference IV-B) concavepressure recovery led to drag reduction andltft increases at RN= 1 x 106 to.a level previously thought to be

impossible.

Meanwhile,technical aeromodellers continued to design tmprovedairfoils

' for 20,000 < RN< 300,000 ustng empirical guidance from the few lowturbulence low RNtests available, andchecking every step of the way

with what workedtn the real world of free fllght contests. See

ReferencesIV-C, D, E, F, G, H, 0 and IV-51.

In 1972, Mtley investigated the theoretical lower ltmtt of Reynold_numberfor which the Wortmann,Stratford, and Ltebeck techniques might

apply and set a lower limit of Rc = 300,000. Heconductedtests of the

Hiley H0-6-128 atrfotl designedaccording to theory in the free atmospherenlountedon a sailplane with excellent comparisonwith theory at Rc = 600_000.

To date only R. Eppler and W. H. Phillips have attempted to predict the

of airfoils at Reynoldsnumbersless than 300,000. tlift-dragpolars

TheyhavebothusedtheEppler_thod IV_ and IV-R. Resultsmay he found!

in IV-T,IV-U,andAeromodellerBook (9). Thecalculationsceaseupon

separation.TO datethecalculationshavenotbeeniteratedfor the

boundarylayerdisplacementthicknessnor is thereyet provisionfor

including th_ effects of _ separation bubble with reattachment.Comparisonof tn=ury and experiment for the Eppler 387 is seen in Figure

= IV-5to be quitegoodat Rc = 200,000but furtherin errorat Rc = I00,000.

a An excellentreviewof theprospectsfor theapplicationof modern

airfoildesigntechnologyto the lowReynoldsnumberregimewas provided

m_ by Russell in 1975, ReferenceIV-P, andclearlypointsout theproblems- associated wtth separation. He suggestedthat the exact solution of

I NavlerStokesequationsas appliedby Lalne,ReferenceIII-23,in_ 1972 to the flow over an aft facing step on a plate could eventually

be applied"tothelow RN airfoilproblem.Sincethe computerrequire-mentsareso formidable,it is morelikelythattheapproachof ;!

Venkates_oriuandMarsden,ReferenceIII-30,will be attemptedfirst, i)l

-78-

k '

00000002-TSG04

Page 88: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGINAL PAGE ISOF POOR QUALITY

A

1 ITca I .....

l ...... -- :..T"-- ........................

Theorellsche Polaren ..... ., ._, "_"

I : T_-1-1 ...................... _ ""P,_,,,_307 -I .,'-_<-_'_"="-

I'i_ i ..........................._;Joo-To:---/- ' _..........J ._ l--_*.........

,,o...... . _' ._..,oooo°_ •'--.-............ -_ _-................ .. :'.'2_ _

..................... -/- ..................7 _-...... _..,::I,.......... __

_P,//__f: / .

"--I .... _ ................ _t .............. /- ...... T---_' lenzdruht --"/__j mlt Tuvbu- :,ii

i , " I j i ........ "f

___ _"._\ - ,,,__

, I , , 1....5 10 1$ 20 I000 CW

Verg|uJch dot theoretzschen Poloren mit dun in Dolftgeme_senen Poloron

-J

:JF

FIGURE IV*5

Page 89: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

The Eppler type calculations seem to be fastest, and equally accurat_

when comparedwith others at RN_=IO6, Someaspects of the methods gtven

in IV-M,N, q and S may constituteadditionalrefinements. The most

helpfult_chniquein reducingtime and cost of airfoildesign at RN_IO6

is given in referenceIV_V. The man mu_t definitelybe kept in the loop

to keep from being swampedwith usel_sscomputerprintout.

Recently,McMastersand Henderson,VI-W and IV-X, have been exploringthe

possibilityof extendingtheoreticalairfoildevelopmentto lower Reynolds

numbers. It is highly likelythat significantimprovementswill evolve

from this talentedteam.

At present,sumnerof 1981, John Roncz has been using a modifiedEppler

programto optimizethe designof canardsurfacesfor sailplanesand

sport planel_atchord Reynoldsnumbersdown to 380,000. He also closely

followsthe laminarbubble studiesof Dr. Muellerat Notre Dame, John

is fascinatedwith the entire Reynoldsnumber range and it is his hope

that laminarseparationbubblecharacteristicsderivedfrom the smoke

streamphotographsand measurementsof Muellercan be added to the Eppler

;7 airfoildesignmethodand by keepingthe man in the loop it may eventually

be possibleto predictanalyticallythe lift curve and lift drag polar

distortionswhich are found experimentallyat 40,000<RN<380,000

It would appearthat the theoreticalairfoildesigncalculationssO nobly

startedby Epplermay soon be refi.nedto allow accuratepredictionsin

the criticalReynoldsnumberrange. It may Just be that when we arrive

there we will have rediscoveredthe better airfoilsalreadyempiEi._a].ly....

developedby the technicalaeromodellers.m:,

J

-80-

...... - ......... "..... _=, " '-:" Z .. II " _1_1_:= "=uS" I" llnl I 1r "

00000002-TSG06

Page 90: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

LOW 8EyNOLDSNUMBERAI,RFOILpESI.GN,BIBL_IOGRAPHy

Discussionsof theproblemspeculiarto thedesignof airfoilsin the

crlticalReynoldsnumberregimemay ba foundIn thebookson Technlcal

Aeromodelllng at the endof this secttnn and in the previously citedreferences,

, I'1, 2 II-l, 2, 5, 6, 7, g III-l, 2, 6, 7, 8, 18, 23, 21_

III-27, 28, 29, 30, 31, and 32

IV-5, 6, 7, 9, lO, 11, 12, 13, 14, 15, 18, 19, 26, 27, 28, 29, 30,31, 32, 33, 34

The followlngreferencesaredirectedSpeclflcallyto theactualairfoll

design problem.

IV-A - Abbott, I. H. and von Doenhoff, A. E Theory of W!ngSectionsCopyright 1949. Dover Publication NewYork, NY1959 1

B - Stratford,B. _. - "ThePredictionof Separationof the Turbulent IBoundary ,'_ "La.e.. Journalof FluidMechanicsVol,5 1959 ..

!C - Krouse,d. R. - "Effectof Undercamberon Endurance"ThirdAnnualSymposiumof theNationalFreeF11ghtSociety1970

:e

D - Krouse,J. R. - "Effectof AirfollParameterson FlightDuration"NationalFreeF11ghtSymposium1971

E - Bogart,C. W. - "A NewFamilyof FreeFlightAirfollsfor a11" Occasions"FourthAnnualSymposiumof theNationalFreeFlight

Society 1971

. F - Monson,D, - "SomeAspectsof AirfollGeometry"NationalFreeFlightSymposium1971

G - Monson,D. - "SomeAspectsof AirfollGeometry- PartII" iFifth Annual Free Flight SymposiumReport 1972u

_ H - Krouse, J. R. - "Airfoil LeadingEdgeBluntness, Goodor Bad"!_ Fifth AnnualFree Flight Syhlpostum1972/

_. I - Miley,S. J. - "AnAnalysisof the Designof AlrfollSections: for LowReynoldsNumbers" Mississippi State University_ Dissertation 1972

J - Wortmann,F. X. - "A CritlcalReviewof thePhyslcalAspectsof• AirfollDesignat LowMachNumbers"NASACR-231S1973K - Llebeck,R. H. - "A Classof AirfoilsDesignedfor Highllftin

IncompressibleFlow" Journalof Aircraft,Vol.lO October1973

i!i -81-

00000002-TSG07

Page 91: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

IV-L - Eppler, R, - "Direct Calculation of Airfoils FromPressureDistribution" _SA TTF-15,417 1974

M - Bonnet, E andG_ngrt.ch,P. - "Prediction of Atrfotl ReelFluld Characteristics at SubsonicSpeeds" Rockwell InternationalL.A. Dtvtston NA-73-771ApPtl 1974

and Vanderplants, G. N, AnN - Htck_, R. M,, Muman, E.M., - "Assessmentof Atrfotl Oestgnby NunmrtcalOptimization"NASATM-X-30921974

0 _ Bauer, A. B, - "The LomtnarAJrfotl Problem" Nattonal FreeFltght Symposium1975

P - Russell, J. - "Prospects For The Application of ModernAirfoilDesign Technologyto the LowReynoldsNumberFlow Regime"National Free Fltght SymposiumReport 1975

Q - Narramore, J. C., Olander, R, D., and Stearmanj R. O. -"The Devel.opmentof a ComputerAtded Atrfotl DestgnProcedureIncluding Preliminary WindTunnel Experimentson a LowReynoldsNumberHigh Lift Section" AFOSR-TR-76-O5361976

R - Eppler, R. andSomers,D. M. - '_ow SpeedAtrfotl DesignandAnalysts" NASALangley AdvancedTechnologyAirfoil ResearchConferenceMarch7'9, 1978

S - Kennedy,J. L. and Marsden,D. J. - "A Potential FlowDesignMethodfor MultlcomponentAirfoilSections"JournalofAircraft,Vol.15,No. 1 January1978jpp 47-52

T - Eppler,R. - "SomeNewAirfoils"NASAConferenceon the ScienceandTechnologyo@ Low Speedand MotOrlessFlight March29-30,1979

U - PhIIllps,W. H. - "EpplerCalculationsof the Polarsfor SeveralChamplneModelAirfoils"PrivateCommunicationMarch1979

V - Narramore,J. C. and Yeary,R. D. - "AnAirfoilDesignandAnalysisMethodologyUsingthe InfOrmationSystemsApproach"Bell Helicopter Textron Report, Fort Worth, Texas 1979

W- Henderson,M. L. - "Inverse BoundaryLayer TechniqueFor AtrfotlDesign".NASAAdvancedTechnologyAirfo11Research,Vol.I,NASACP-204B,1978

X - McMasters, J. H. and Henderson,M. L. - "LowSpeedSingleElementAtrfotl Synthesis". NASAConferencePublication2085, Part 1, Science andTechnologyof LowSpeedandHotorless Flight. Hamp'-_, VA. March29-30, 1979

; -82-L

: "-_" -_'L_.l_ :'" """ _ "' _' _ .... ...... '

..... 00000002-TSG08

Page 92: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

LOW REYNOLDSNUMBERAIRFOILDESIGNBIBLIOGRAPHY (continued)

IV-Y Galloway,C. R. _ "Applicationof AdvancedAirfoilsto HlghAltitudeLong EnduranceRemotelyPolotedVBhicle_'AlrFareFlightDynamicsLab. ReportTM-77-10-FXM,December1976

IV_Z Llebeck,R. H. -"Superlift AirfoilDevelopmentProgram" iAlr Force FlightDynamicsLab ReportTR_76-110,October 1975

IVoAA Eck, B. - "EverythingYou Ever Wanted to Know About 50B Fins"Tank Talk, 1691B HerfardRoad, Monkton,MD 21111,January1979 I!

IV-BB Safer, F. G. -"SupercriticalAirfoilSectionswith Slotless I_FowlerFlap_ for Glidersand Motorgliders" TechnicalSoaring,Vol. VI, No. I, SeptemberI980

IV-CC Cgglest()n,B. and Surry, D. - "The Povelopmentof Now A-2 AirfoilsAided by Computer" 1980 NationalFree l'lightSympOsiumRepor_

IV-I)DDraisey,S. - "OptimizedAirfoilsat Low ReynoldsNumbers"Universityof WesternOntarioFacultyof EngineeringScience.DegreeThesi.s,March 1978

IV-EE McMasters,J. H., Norovik,R. H., Henderson,M. L. andSandvig,J. H. - "Two AirfoilSectionsDesignedfor Low

ReynoldsNumbers" TechnicalSoaritlg,Vol. VI, No. 4, June !.;1981. Publishedby the SoaringSociety of America

IV-FF Roncz,J. - "Low ReynoldsNumberAirfoilsDerivedby theModifiedEppler Program: Unpublishedto date. Private _,communicatior_,July-August1981

-_3-

......... -.... " - ............. '""' ' _ " ;:" ' " ..... " "-lit " - ....

00000002-TSG09

Page 93: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(D) BOOKSONTECHNICALAEROIVJODELLING

(1) Zatc, F. -Model Aeronautic_Y_arbOpk1936.36,_37, 3B, _"_-!;2_-133,BB;.56,57-5B, 59-61, 74-Ei5ModelAeronautic Publications, Box13B, Northrtdge, Caltf,

(2) Grant, C, H. - "ModelAirplane Dostgn, Theoryof Flight- 1941"Notice in Free Flight _;octety DtOes_for December1974 that ttts to be republished

(3) Schmttz, F, W, - Aer()d.ynamtcsot' the Mode!.Airplane -. 194.2Part 1 - AtrfoT1"_e_Suremeh-ts- Transl at lOfl-byRddst-o-neArsenal,November22, 1967- Originally Published Gotting_,, 194P.

(4) Zatc, F. -Model Gltder Design- 1944ModelA_rona'uti¢Pub_lca_l'ons, Box 135, Northrtdge, Callf,

(5) Hoffman, R. Jo - ModelAeronauticsMadePathless - 1955_del Aeronautlc PubllcatlOnS,-Box135, NorthPtdge, Caltf.

(6) ZatcD F. -Ctrcular Atj'flow - 1964ModelAeronautic PUblications, Box135, Northrtdge, Calif.

(7) Malktno O. -_r, fotl sections (For ModelAirplanes)UpperHurt, NewZealand May1971

(8) Dalb¥, E. andCusick, C. - Bookof.Air.%tlsF.A.I. Model Supply - Phoenlx, Arlzone--85068

(9) Eppler, R. - Mode)-Techptk-BeraterIdTB-1 Eppler ProflleMTB-2 G.oBseglerr.- Hochltestungessegler- Spectal- FlugmodelleVerlag fiJr techntk undHandworkA&BLederthetlBaden-Baden,Germany1977

(10) Pressnel, M. -Aerofoils for AeromodellersPttmanPublishing Corp'.Fearon Pub. In(_. 6 Davts DriveBelmont_Calif. 94002 USA1977

(11) Sl_ns, M, - Hodel Aircraft Aerodynamics3 Model& Allied Publlcatlons - ArgusBooksLimited

14 St JamesRoad,Watford, Hefts, England1978

(12) Althaus,D. - Profilop_o]a_renFb'rDenModellflug.._ N V Neckar- Ve¥1ag'ag--V'S--_V--V-lTITngen- Scl_wenningun1980

(13) Musil,M. - AerodynamikaModernichLeteckychModel_=. NaseVojsko- Praha_19'7-8

(14) Althaus,D. andWortmann,F.X. StuttgarterProfilkatalog!F. Vieweg& Sohn. Wiesbaden; _e-st_Germanyig_'l

(15) NationalFreeFlightSocietyAnnualSymposiumReports- Ig68through19Bl. Can be obtainedfromFredTerzian,4858MooreparkAvenue,San Jose,CA 95129

-84-

00000002-TSG10

Page 94: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

V, BOUNDARYI,AYFR TRIPI'INt; DI':V[CI'S

A, t-Ilstorl.cal review

The pionoorlng l¢_w Roynolds numh_r tnvosttgntY_ons of Sehmttz

(Roforonee lV-4] lncludod tt_._ts In which the porfarmanao of th_"} no

.,,, thick 6B 625 W_l:_llIarkodly improvod at Rc=82,000 hy ti turlml_meo

wire pla_eed ahond of tilt: loading c,dgo, _h_Llar It_rgo porformance

lml_rovon_ont:_ wt_ro oht_ttnod lit Re_I_II,(IIIIIwith a w:tr_, grid placedahotld ot' tho illodol,

AIt_o In tilt, l_),lilttl, I'l'ollllingqr (ltot'orqne¢, IVoS} Invq;_ttgatqd tho

eft'oct o|' aft flwlng ;_op. _, In _hq Ul_pOr ,_m'faco, ._u_t'a¢o wuvlno;f:_,

l_ml _i:lr ,Iot:_ blt_whlg _;hro_t_h the UplX,r mwt;aeq _i" lnm l:llir tiIrfoll._

|'t)P I{e)'noldt_ nttll|bt, r,q o1" 250,(1111) to 1 x lil (_, lie lil._o noted tho

reduction In drag :it high lift coefflclqnt at subcrtttcal airfoil- (1IRt:yll_,lds IIttlllbqr conabinations, All of the._e devices ¢lltl_O early

enough boundary layer trans|tion to allow bottndary layer roattachment

forw/trd ot r tile trail:log edge. The lower the, Reynolds number, the

t'ltrther forward nut,_t lilt' trip device be located to ensure reattach..

meat forward of tile trat l|ng t;dge.

The rest:arch be_;un by Schmitz was continued IW _'r_wmer including the

effect',_ of trip wires (Reference IV-13). Pfenninger (Ruferences

lV-ll, 1V-32) inw, stigated multiple surface mounted boundary layer

tri.ps on a thin airfoil down to Rc_21,I)O0. Bounda_'y layer tripping

was also inclttded in a_rfoil tests by Phillips (IV-26), Volkers

(tV-2_], tlendricks t 1V-24), anJ Eggleston (1V-27 and IV-C(1). Hacklinger

has stt_d_ed the effect of trips in free flight (IV-55 and IV-71).

Nost recently, addit_tmal data ts available from the low turbulence wind

tunnels at Delft (IV-36) and at Stuttgart (IV-47) trips were used on

a large number of airfoils.

The only atte!npt to evaluate the relative advantages of various types

;: of surface trips was the study of Shoal, Reference V-1.17

i •

-85-

00000002-TSG 1

Page 95: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

B, Various Mothoda of Boundary Layer Tripping, (See Figure V-l),

l, Increase tl_e free stream turbulence by placing a wire or grid

of wtros in tht_ flow ahet/d of the wtn/_.

2, Beam sound energ), at the t'orwurd upper wing surface with a

fv'oquoncy calculated to be most crttlcnl J_t the test tte),n_lds

lllllllbOr,

3, VllJri:tlngthe wln_,nt ¢rltl_'alfr¢,qm.lcy,

,I, llulldlI1gwavo,_of crltl,_:,alwnvo lowlgthIntt_the .plmr wl1_g,_urfl.'o,

' !.g, III_0of lll'tl'ill_lll_,qtOll:l Ill the IlPllOl'wlpt, Slll_fIll'O,

o. llondl1_l;oI'multlplo ,_qmtiwl,_onnmlng t:ap_:_to the lqq_ol'wln_;

illlr|'Ii¢o,

7 One or ,lore spanwt.qo running wlrq,g o1' strtp,_ bolldod to the upper

wI nt,, surface.

8 A spanwlso row of small rtl,ht crtcular ,:yl indors bond_d to tl_e

tripper wing stir{ace.

9 A Sl)anw;se running strip of IlUlltil'Jlo spherical beads bonded .:o

tile Ul_per wing stlrFaco.

10 A sp'mwtse run,lit_g raised or recessed st, rrated strip {llama :;trip]

bonded to tile upper wtttg surface..i

11 A spanwise row of holes through the wing allowing air jets to

blow uut normal to the upper sul'face.i

12 A sharp leading edge at high anglo of attack.

13, Normal sections at high angle of attack and low Reynolds number

often automatically provide early enough transition to avoid 't

the, non-reattachment problem. ,,

It would be desirable to know which type of boundary layer trigptng would

be Ol_timum for any given Reynolds number. It i.: known that:i

I. laminar separation bubbles are small enough at chord ,,t

V:N > ,lxlO (_ to Ii|.tke art it'tcial tripping tlnnecesstlry. !

2. It soeltls very dlft'ic.ult and perhaps illlpos._ible to effectively

prevent non-reatt(tched separ, ted flow at lift coefficient

.tl.8 at chord RN ;! lO,t_O0.

i: -86-

00000002-TSG32

Page 96: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

ORIGINALPAGE18oFpoorquALm'

Page 97: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

._, At 300,000 < RC < 4xlO fi, the instability gradient a_ a tripping

device 1V-,! seems to Im an excellent method af limiting the

adverse effects of laminar sop_lrntian lmllbles,

.I, Far II)O,IIII(I ¢ i1¢ < 5[Ifl,/IflII, surt'a¢o wavlnvss, and aft fac|ng

steps are helpfill tellq_i.ng devtzos [TV-5],

5, A tt'ip wire lOq, chard tlhfuld nf wing lemllng edge Improvoae

_Irl'ollI,II__ttlilhlltloli_rii_low _._ ,i(J,ll(|i},

t,, M tlm I!t79Intt,rnlttlonall:vooFlight Model Alrfail Moot, tho :I1

IIIfD!'d pl't'Vll|i'llt l)'po of h,1, trlplu,r wii,i tl initiate crot_;4-_q¢1ion i

,_i}Jllll_t_fi_.,rllllIlilU _,vldw.,, L,Itlwv !tlll_IIo ur two Ill t_orlo,_, 'rlwt_t, !Wol'O |'Olllld Oll thq |'Ol'Wlll'd Ilppt, r ._tlri'lwot& of wlll_U_, horl_o_l_Jl

trill., lilld I_ropoller_, IliO:_t of w)llfh wqrt, Ol_el'litlll}i lit tl I{N range

of ;,.O,O(!l}to 7(},000, I did not r;e_,3odlmtqmlomll trlpg such a.q

_ t'owof pln._or'a ._telpof _,,m_tllb,.,ad_.The Israt,ll team hml

the lllmqt.qol_hl._tlcatedtl'ip. It w:t,.,a reve.q,qedllamastrlp on

the l'm'wardUl_l_t,rwi,g sm'l'act,,'l'herear edge was flush with

the wing, 'l'hvwing ._teppeddown to a thlnne_'leading pot'tion

ab_'tq_tly,The face oF tlw l'm'wardl'acingstt,p was saw-toothed

In plan form, thtt.q prodttc!ng a theee dimensional dtstttrbanee

to the boundary layel'.

7, With the exception of ShoaF's p'tpe.', V-l, the writer has not

seen comparative quantitative data on various t.vpes of b.1.

t rippers.

DI St,llSS 1( N =C. '' " ]q

1. Two Dimensional Tcip Strip on Forward Upper Surface - Stuttgart I

Data

Two dimensional airfoil mounted trip strips were employed in

some of the Stttttgart measurements. Trips appear on three

airfoils at R = 40,000, ntne airfoils at 60,000, and tenc_,it'foils at 100,000 R .¢

1-88- !

• .),

_" .'-'_" ., " '_' -"'.:::-,_ _'_ .-__._" "_ " "_L .......... !. : ._ ",F" , .: ...... :....... L_ , ,_.... ? - , _ - :, .'_._. .:.'_ ,_...__.'__".. '_'.__'__!.._

00000002-TSG]4

Page 98: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

AirfOil Trip Location Trip Height Trlp Width ', , .......... ,,, .; ............. • .......... ,--. 7

FX 60.100 0,20 X/C 0,3 mm 2 mm

FX 60-126 0,10 0,3 mm ..... 2 mm

FX 63-137 0.20 0.3 mm 2 mm

FX 62-K 131/17 0.205 0.3 nun 2 nun

FX M-2 0.030 0.3 mm 2 H

_t 79-100B 0,0625 0,45 mm 2 nun

AH 79-_OOB 0,0875 0.3 mm 2 nun

AH 79-100C 0.23 0.5 mm S

B-193 0.10 0.3 mm 2

E-193 0.23 0.3 mm 2

E-203 0.083 O. 15 nun 2 mm

Sokolov 0.092 O. 3 mm 2 n_

..... J .....

In general, a performance improvement and a reduction in polar

and lift curve distortion wlll result from tripping an airfoil

at Reynolds number lower than the critical value for the bare

airfoil. Pcrfo_nance decrements are gonerally found when trips

are-_etained on airfoils at Reynolds numbers greater than the

. b_re airfoil critical. The effect of .012 inch high by .08 inch

wide rectangular cross sectioned upper surface trips located at

.03 <_ " "3 on (L/D) max is shown in Table I, the effect on

• iS shown in Table 2, and the effect on polar and

rms appear in Table 3. The performances of all Ii

. improved at Rc = 40,000, the performance of 55%

were improved at Rc = 60,000, and the performance of 33% were

_mproved at Rc = 100,000. The effect of the trip on the FX 63-137

at 60,000 was very dramatic, bringing an airfoil which sim_ly

could not be used at that Reynolds number up to quite a commend-

,_ble performance.

A somewhat unusual result was the effect of the trip at 100,000

Rc improving the AH-100C from a Incdiumperformance to top perform-

ance. Thc trip improved the polar and llft curve forms for the

. -eg- C -

00000003

Page 99: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

i

TAB!,E I - Tit[P I_FI,I!{;T ON (_.X

AIR FOIl, Rc - 40,0ll0 I It - 60,000 Ite - 100,000,

- mi+_,_J.... vi+ri,+_i:_-i+-_,.... 'rrq, -Si+ar+TC++-"i

--++_"" + - "I

M=2 17 29 20 I 37 46,5 48.6 ,

E- l,q3 26 30 38 i 38 47.5 41I

Sokolnv 31,6 35 34 45.5 61 58

!;X63- 137 8.2! 40 46 43

FX60_ 126 30 [ 37.5 52 50

FXbO-100 32 I 38 $9 49E-203 40 36.5 45 46

I

i All IOOB 40 39 5.5 50

All ]OOC I 38 t 38 .54 6.5

+ZK,tSt/t7 tO°f_ S2 4_1K131/17 15°_ 42 43

TABI,E2 - TRIP I'FI'+ECTON (I3/2/I))MAX

AIR FOIl, R 401000 R - 60,000 R = lO0,OOOC C ,C

Baro'l T'rip 'Bare l;l'[p _ Bare Trip

M-2 13 23 23 37 38 48

E-193 ..... 28 • 30 49 40 49 42.2

Sokolov 37..5 39 52 53 70.5 67FX63-137 5.4 45 51 49

FXOO-I2b 33 37 .53 42

FXO0-100 33 - 32 58 46

E-203 42 38 50 43

All IOOB 47 45 _2 5b

_1 lOOC 38 4_-. 5_ 70 "

62K131]17 10°_ .59.3 54

62K131/17 15°6 Li ................. [__+. ,t9 48

-90-t

iI

00000003-TSA03

Page 100: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

-91 =I) i

I

...... '. ,' -'-" " " "" ....._ ..... h,,_," - " .........._ ' ')" ...... r t " .,"'_---. 7 ..

00000003-TSA04

Page 101: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

FX 62K 131/17 with deflected flap at a small decr_me.L in (L/D)

max and (L3/2/D) max at Re - i00,000, D_tailed comparison of bare

and tripped palate and llft ourves should provlde addi£1onal

insight on optimum use of boundary layer trips.

'Pile effect of 0•5% chord diameter wi_e located 2% chord above the

chord line and I0% chord in front of the loading edge on the polar

and lif_ curve at Re - 80,000 and 50,000 i_ Bhown in Figures V-2

and V-3• The wire completely removes the large drag increase at

medium lift coefficients and takes the sag out of the lift curve,

An appreciable loss in (L/D) max and L3/2/D results. It is

unfortunate we do not have data on the E-61 with an upper surface trip.

(c) Effect of Beamed Sound Pressure--Delft Data

The beneficial effect of beamed 105 db 300 cycle sound at Rc - 80,000

is shown in Figure V-2 and the effect of 104 db 145 cycle sound at

R ffi50,000 is shown in Figure V-3 The remoeal of the drag increase I'C • ..........

at medium llf_ coefficleats an& removal of llft-curve "sag" are now

obtained with less dost in (L/D) max and (L3/2/D) max if one does not

consider the drag equivalent of the power required to produce the

noise• Tile effect of the sound.pressure level in db at optlmttm

frequency on the llft coefficient in the "sag" region is shown ini

Figure V-4. Note that the sound level in the Delft tunnel is 74 dbi

without the tuned noise maker• This d_a.pelnts out once more the ii

complexity of the aerodynamics of airfoils in the critical Reynolds 1

number range so nobly pioneered by Schmltz and Pfennlnger.

-92-

00000003-TSA05

Page 102: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho
Page 103: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

00000003-TSA07

Page 104: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho
Page 105: NASA Contractor Report I05003 · SUMMARY Experimental_erodynamicpropertiesQftwodlmensionalalrfol1._in thecritlcalehordl_n,qthReynold_numberrar}qebetween40,000and100,000 havebeengatho

(D) BoundaryLayer Tripping.Bibliography

Discussions of and in manycases data from boundarylayer tripping

experimentsmayba found in references; IV-4, IV-5, IV-B, IV-l.1,

IV-13,IV-P.2,IV-24,IV-26,IV-27,IV-29,IV-30,IV-31,IV-32,IV-36,

IV-43,IV-47,IV-4B,IV-4g,IV-55,IV-71,IV-72,IV-73,and in the

booksIV-3-1,3, 10, 11,12, 13,15,as woilas in:

V-I Sheaf,H.C.- Characteristicsof TurbulatedAirfoils,

ZaicIg64-65Yearbook.

V-2 Hacklinger_M. - ArtificialTurbulence,Zaic1955-56Yearbook.

V-3 Christi,C.M.- TurbulentFlowAirfoils,Zaic1955-56Yearbook.

V-4 Gillesple,W. - RubberPower& Turbulators,Zaic1gS7-58Yearbook.

V-5 Baxter,D. - RubberPower& Turbulators,Zaic1957-58Yearbook.

V-6 Pearce,F. - AirfoilTurbulators,Zaic195g-61Yearbook.

V-7 McBaine,C.K.- Letteron MultiStringerTurbulator.

Zaic!959-61Yearbook

V-8 Neustein,J. - Experimentsat LowReynoldsNumberS.

PartI - IsolatedAirfoils.Cal TechReportNo. 6, March,1957.

-96-

..._.,,_,JL::.zL_ _ "" .-' .... *, , ,,,i,, "

00000003-TSA09