30
Nanostructured Polymer Solar Cells D. Xi, C. Shi, Y. Yao, Y. Yang, Q. Pei Materials Science and Engineering California NanoSystems Institute University of California, Los Angeles [email protected] 2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 29, 2008

Nanostructured Polymer Solar Cells

  • Upload
    hua

  • View
    61

  • Download
    2

Embed Size (px)

DESCRIPTION

2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 29, 2008. Nanostructured Polymer Solar Cells. D. Xi, C. Shi, Y. Yao, Y. Yang, Q. Pei Materials Science and Engineering California NanoSystems Institute University of California, Los Angeles [email protected]. Polymer Solar Cell. - PowerPoint PPT Presentation

Citation preview

Page 1: Nanostructured Polymer Solar Cells

Nanostructured Polymer Solar Cells

D. Xi, C. Shi, Y. Yao, Y. Yang, Q. PeiMaterials Science and EngineeringCalifornia NanoSystems InstituteUniversity of California, Los Angeles [email protected]

2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM

April 29, 2008

Page 2: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Polymer Solar Cell

Efficiency of inorganic solar cells: ~10–20%– Current Polymer Solar Cell: ~5%– Max Inorganic: ~40%

No clean room or high T steps needed (large-area, low cost) Flexible panels (form factor) Versatility of polymer structure and property via synthesis Nanostructural tailoring

Konarka

Page 3: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

How Does It Work?

Yu, Heeger, et al, Science, 270, 1789(1995)

Page 4: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Mechanism and Efficiency

ηIQE = ηA × ηED × ηCT × ηCCStephen R. Forrest, MRS Bulletin, 30 (2005) p.28

VOC = LUMO – HOMO – Exiton binding )

Page 5: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Mechanism and Efficiency

Stephen R. Forrest, MRS Bulletin, 30 (2005) p.28-32

RSH = Shunt resistance (quality of diode)RS = Series resistance (quality of contacts & transport in bulk of film)

OC SC

in

V I FFPCE

P

Page 6: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Main Factors Limiting the Efficiency: Low absorption

H. Hoppe & NS Sariciftci, J. Mater. Res., Vol. 19, 1926 (2004)

Page 7: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Main Factors Limiting the Efficiency: Short Exiton Lifetime

A. Haugeneder, et al, Phys. Rev. B, 59(23), 15346: 1999T. Stubinger and W. Brutting, J. APPL. PHYS., 90(7), 3632: 2001

Exciton diffusion length in ordered polymers is 5-14 nm

n

p+-+-+-

n

p+-+-+-

Page 8: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Polymer Blend

Donor/Acceptor Blend (100+ nm)

ITO

Al

N.S. Sariciftci, Heeger, et al.

S. Forrest, et al.

Page 9: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction

Stalmach U. et al, J. Am. Chem. Soc.,122, 5464 (2000)

Inganäs, et al, Adv. Mater., 13, 1871: 2001

Page 10: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Alkoxythiophene polymers?

S**

S

O

**

FETsSolar cells

??

Alkoxy PPV(MEH-PPV)

O

O

**

**

Alkyl PPV

P3HT+PCBM (200nm)

Alkoxy to alkyl:• Larger bandgap• Lower mobility• Less stable

Page 11: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Synthesis of regioregular polymers and copolymers

S

OC10H21

BrBrCH3MgBr

SBrBrMg

OC10H21

S

OC10H21

nreflux, THF

Ni(dppp)Cl2

1 2reflux P3DOT

S

OC10H21

BrBr

1

+S

C8H17

BrBrCH3MgBr

reflux, THF SBrBrMg

OC10H21

2

+S

BrBrMg

C8H17

4

Ni(dppp)Cl2

refluxS

OC10H21

*b

POT-co-DOT

S

C8H17

*a

3

S

OC10H21

BrMg/THF

30~50 C S

OC10H21

MgBr

NS

N

BrBr

Ni(dppp)Cl2/THF & reflux

NS

N

SS BrBr

OC10H21 OC10H21

BB+

C8H17C8H17 C8H17C8H17

NS

NS S

OC10H21OC10H21

n

Pd(Pph3)4/Toluene

K2CO3/H2O

PF-co-DTB

NS

N

SS

OC10H21 OC10H21

NS

NSS BrBr

OC10H21 OC10H21

NBS

5 67

8 7

O

OO

O

Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

Page 12: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

UV-Vis-NIR of spin-coated films

300 400 500 600 700 800 9000.0

0.2

0.4

0.6

0.8

1.0

N

orm

aliz

ed A

bsor

banc

e

Wavelength (nm)

P3DOT POT-co-DOT PF-co-DTB P3HT P3OOT

d

X

X

X

X

X

X

X

X

X

O

OO

O

O

O

O

O

O

OO

O

X

Page 13: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

-8

-7

-6

-5

-4

-3

-2

eV P3HT

Energy Levels of Semiconductors

Ca

PCBM

ITO

P3DOT

Al PF-co-DTB

POT-co-DOT

1.92eV1.78eV

1.64eV

P3OOT

1.91eV1.60eV

Page 14: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Solar Cell Structure

ITO/Glass

PEDOT:PSS (25 nm)

Polymer/PCBM (80-100 nm)

LiF (1 nm)

Al (80 nm)A

Page 15: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Characteristics of Bulk Heterojunction Cells

(AM 1.5G irradiation at 100 mW/cm2).

Polymer Polymer:PCBM Jsc Voc (V) FF (%) PCE (%) (w/w ratio) (mA/cm2)

P3DOT 1:1 0.14 0.02 26.5 0.0007

POT-co-DOT 1:1 0.60 0.22 41.2 0.054

PF-co-DTB 2:1 0.74 0.83 25.5 0.16

PF-co-DTB 1:1 2.92 0.78 32.8 0.74

PF-co-DTB 1:2 4.00 0.76 44.6 1.27

PF-co-DTB 1:4 4.31 0.76 48.6 1.60

Page 16: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

IPCE plot of PF-co-DTB/PCBM (1:4) BH cells

400 500 600 700 8000

5

10

15

20

25

30

35

EQE

(%)

Wavelength (nm)

EQE (%)

Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

Page 17: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

C60 PCBM vs C70 PCBM

300 400 500 600 700 8000.00.10.20.30.40.50.60.70.80.91.0

[60]PCBM [70]PCBM

[60]PCBM soltuion

[70]PCBM solution

Abso

rptio

n [a

.u.]

wavelength [nm]

Y. Yan, et al., APL 89, 153507 (2006)

Page 18: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Absorption of PF-co-DTB/[70]PCBM blends

Y. Yan, et al., APL 89, 153507 (2006)

Page 19: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

AFM of PF-co-DTB/PCBM blends

Tapping mode Phase mode

PF-co-DTB: 1[60]PCBM: 4

PF-co-DTB: 1[70]PCBM: 4

Page 20: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Cell performance vs. PCBM concentration

0

1

2

3

4

5

6

7

25

30

35

40

45

50

55

60

30 40 50 60 70 80 900.0

0.5

1.0

1.5

2.0

2.5

30 40 50 60 70 80 900.72

0.74

0.76

0.78

0.80

0.82

0.84

Polymer: [60]PCBM Polymer: [70]PCBM

Jsc (

mA cm

-2 )

FF (%

)

weight percentage acceptor [wt.-%]

PCE

(%)

Voc (

V)

weight percentage acceptor [wt.-%]

Page 21: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

IV Characteristics of polymer/PCBM BH cells

0.0 0.2 0.4 0.6 0.8 1.0-7

-6

-5

-4

-3

-2

-1

0

1Cu

rrent

Den

sity (

mA/

cm2 )

Voltage (V)

Polymer: [60] PCBM = 1:4 Polymer: [70] PCBM = 1:4

Page 22: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

EQE of polymer/PCBM BH cells

300 400 500 600 700 8000

10

20

30

40

50

60 Polymer: [60]PCBM =1:4 Polymer: [70]PCBM =1:4

EQE

(%)

wavelength [nm]

Y. Yan, et al. APL 89, 153507 (2006)

Page 23: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Other Small Eg Polymers

P1 P7 P8 P5 P6 P9 P0 P2 P3 P4-5.6

-5.2

-4.8

-4.4

-4.0

-3.6

-3.2

-2.8

-5.06 -5.1-4.92

-4.64

-5.36-5.52

-5.1 -5.02

-4.47 -4.55

-3.29 -3.32-3.14

-3.3-3.1

-3.6-3.7

-3.25

-2.87 -2.91 LUMO HOMO

Ener

gy le

vel (

eV)

Polymer type

Page 24: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Nanorod/Polymer Blend

7nmx7nm

7nmx60nm(Huynh W.U., Science 295,2425, 2002)

Page 25: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Porous TiO2 / Polymer

Sintering TiO2 nanocrystals + P3HT

Quantum efficiency only 6%Due to incomplete filling and random distributed inferface

Well ordered 8nm pore TiO2 film + P3HT

Incomplete PL quench due to twist of polymer into 8nm pores;optimized infiltration depth 20nm, QE, 10%, power efficiency 0.45%

(Kevin M. Coakley, Adv. Funct. Mat 13, 301, 2003)

Page 26: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction Based on CuPc Nanowires

ITO / CuPc / PTCBI / BCP / Ag

Power efficiency 2.7%

(Fan Y., Nature Materials 4, 37, 2005)

CuPc nanowires by CVD. Scale bar: 500 nm

PCE

FF

Voc

Page 27: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid

transparent electrode

top electrode Au

p-Conjugated polymer

n-semiconductor

ITO/PEDOT

Diameter ~20nm, Height ~200nm Space between rods ~20nm

Two bicontinuous phases, effectively split exciton before recombination

Carriers have straight pathway to electrodesPrevent holes from reaching the negative

electrode and electrons from positive electrodes

Page 28: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid: Polymer nanotube array

a

b

c

d

e

b

100 nm

1 m

500 nm

Xi et al. Nanotechnology 18 (2007) 095602

Page 29: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid: CdS Nanorod array

CdS + PT by electropolymn CdS + P3HT by infiltration

500 nm

Page 30: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Summary

• Alkoxythiophene is a useful building block for highly-conjugated, low bandgap (co)polymers.

• BH solar cells based on PF-co-DTB and [70]PCBM: Jsc: 6.34mA/cm2Voc: 0.76VFF: 50.5% PCE: 2.4%

• More work is needed to improve mobility and band edge matching (PF-co-DTB: h = 2x10-5cm2/Vs)

• Interdigitated p-n nanohybrid is a good architecture but challenging to fabricate perfect nanostructure/material