20
Nanopositioning for the ID16A-NI endstation F. Villar, P. Cloetens, A. Joita-Pacureanu, L. André, P. van der Linden, O. Hignette, R. Baker, C. Guilloud, J. Meyer. MEDSI - October 23, 2014 - Melbourne

Nanopositioning for the ID16A-NI endstation...ID16A-NI NANO IMAGING BEAMLINE Page 2 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar Biomedical

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Nanopositioning for the ID16A-NI endstation

F. Villar, P. Cloetens, A. Joita-Pacureanu, L. André, P. van der Linden,

O. Hignette, R. Baker, C. Guilloud, J. Meyer.

MEDSI - October 23, 2014 - Melbourne

ID16A-NI NANO IMAGING BEAMLINE

Page 2 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Biomedical research

Sub-cellular processes

Anti-malarian drugs

Dubar et al, Chem. Commun.

Nano/Micro-Technology:

3D Integration

Voids in Through-Si-via

Bleuet et al (CEA-Leti)

ID16B-NA 165 m

ID16A-NI 185 m

UPBL4 Layout

Optics Hutch 34 m

EXPERIMENTAL TECHNIQUES

Page 3 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Magnified HoloTomography X-ray Fluorescence Microscopy (2D/3D)

Ptychographic Nano-Tomography (ultimate resolution)

Probe Object With F. Pfeiffer et al.

YZ scan resolution 5nm Run out < 50nm

Y

Z

X-rays

Page 4 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Vacuum + parasitic movements < 50nm

Correction of the guiding errors of a rotation stage by piezo actuators

Rotation stage

20

0m

m

Page 5 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Vacuum + parasitic movements < 50nm Movement of the hexapod is made under the control of capacitive sensors

looking at 2 metrologic reference surfaces.

12 capacitive

sensors Reference surfaces

20

0m

m

Page 6 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

X-rays

The hexapod is also used to scan

the sample (2D fluorescence

microscopy)

20

0m

m

0

1

2

3

0 180 360

µm

angular position (°)

Tz error without compensation

ROTATION STAGE ERROR COMPENSATION

Page 7 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

1µm

L Ducotté

0

1

2

3

0 180 360

µm

angular position (°)

Tz error without compensation

ROTATION STAGE ERROR COMPENSATION

Page 8 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

16

17

18

19

0 180 360

µm

angular position (°)

Tz error with compensation

1µm

1µm

0

1

2

3

0 180 360

µm

angular position (°)

Tz error without compensation

ROTATION STAGE ERROR COMPENSATION

Page 9 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

1µm

17,160

17,170

17,180

17,190

0 180 360

µm

angular position (°)

Tz error with compensation

10nm

ASSEMBLY ON THE BEAMLINE

Page 10 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

ASSEMBLY ON THE BEAMLINE

Page 11 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

ASSEMBLY ON THE BEAMLINE

Page 12 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

X-rays

ASSEMBLY ON THE BEAMLINE

Page 13 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

KB optics

fixed curvature 17keV

Focal spot size 20nm

R. Baker

X-rays

ASSEMBLY ON THE BEAMLINE

Page 14 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

95mm working distance microscope

In situ visualization of the sample during

alignment.

O. Hignette

X-rays

FIRST RESULTS ON THE BEAMLINE

Page 15 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Focus size: 75 nm (July 2014) → 50 nm (August) → 30-40 nm (September)

Horizontal

FWHM

31 nm

Vertical

FWHM

40 nm

A. Pacureanu, Y. Yang, F. Fus, S. Bohic, P. Cloetens

Scan of a knife-edge with the piezo-actuators

FIRST RESULTS ON THE BEAMLINE

Page 16 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Focus stability:

1 nm repeatability for successive knife-edge scans

Down to 6 nm (!) over 8 hours horizontally

Down to 30 nm over 8 hours vertically

5 nm

~ 8 hours ~ 9 hours

40 nm

Horizontal stabilty Vertical stability

refills

FURTHER WORK : THERMAL DRIFT

Page 17 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Measure and control the position of the KB

relative to the sample : 3 laser interferometers

Reduce the heat sources

(2 of the 4 motors switched

off on rotation stage)

Thermal modelling

of the station

+ temperature sensors

Reduce the sensitivity to heat

change (invar)

~ 9 hours

40nm

Long term drift

in the Z direction

Long term drift

in the Z direction

~ 9 hours

40nm

FURTHER WORK : THERMAL DRIFT

Page 18 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Measure and control the position of the KB

relative to the sample : 3 laser interferometers

Reduce the heat sources

(2 of the 4 motors switched

off on rotation stage)

Thermal modelling

of the station

+ temperature sensors

Reduce the sensitivity to heat

change (invar)

FUTURE WORK 2015

Page 19

Samples at 100K to limit

the radiation damage

Liquid nitrogen cooled + conductive braid

P van der Linden

Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

200m

m

sample

2nd KB optics focussing at 33.6 keV

Page 20 Nanopositioning for the ID16A NI endstation - MEDSI Melbourne - October 23, 2014 - F Villar

Thank you for your attention