27
Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy Brynmor J. Davis and P. Scott Carney University of Illinois at Urbana-Champaign Optical Characterization and Nanophotonics Laboratory Journal Club Boston University, December 3 2007

Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

  • Upload
    kanoa

  • View
    35

  • Download
    1

Embed Size (px)

DESCRIPTION

Brynmor J. Davis and P. Scott Carney University of Illinois at Urbana-Champaign. Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy. Optical Characterization and Nanophotonics Laboratory Journal Club Boston University, December 3 2007. Motivation and background - PowerPoint PPT Presentation

Citation preview

Page 1: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Brynmor J. Davis and P. Scott Carney

University of Illinois at Urbana-Champaign

Optical Characterization and Nanophotonics Laboratory Journal ClubBoston University, December 3 2007

Page 2: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

• Motivation and background

• The microscope (forward model)

• Data processing (inverse problem)

• Numerical simulations

Page 3: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Fire Opal

Stained Glass

commons.wikimedia.org/wiki/Image:Koelner_Dom_-_Bayernfenster_04.jpg

www.minerals.net/mineral/silicate/tecto/quartz/images/opal/mexfire3.htm

Size-Dependent PropertiesNanorods - TEM image Extinction Spectra

Oldenburg et al. - Opt. Express, 14 (2006) 6724

Smith et al. - Science, 305 (2004) 788

Metamaterials

Page 4: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

We aim to determine the nanoparticle polarizability tensor as a function of wavelength.

Patra et al. - App. Phys. Lett., 87 (2005) 101103

Px

Py

Pz

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

α xx α xy α xz

α xy α yy α yz

α xz α yz α zz

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Ex

Ey

E z

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Defined by 6 Parameters

Assumptions

• Particle small compared to

• Particle isolated spatially

• Linear, coherent scattering characterizedFluorescenceRamanSHG, THG

Induced Dipole Moment Polarizability

ElectricField

Page 5: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

A coherent confocal microscope is sensitive to the linear polarizability, can be spectrally multiplexed and is “standard”.

Page 6: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Coherent confocal microscopes are highly sensitive and produce data dependent on particle orientation.

Page 7: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Single fluorescent molecules can be characterized as dipoles and their orientation inferred from far-field intensity measurements.

Measured Theoretical

PSFs vary with dipole orientation

Page 8: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

We aim to show the feasibility of estimating the particle position and full tensor polarizability as a function of wavelength.

Mock et al. - J. Chem. Phys., 116 (2002) 6755

Measuring the full polarizability removes assumptions regarding particle shape

Page 9: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

• Motivation and background

• The microscope (forward model)

• Data processing (inverse problem)

• Numerical simulations

Page 10: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Interference with a reference beam allows the collection of data sensitive to the electric field.

I r,ω( ) = μE r( ) ω( ) + E s( ) r,ω( )2

= μE r( ) ω( )2

+ μE r( ) ω( )[ ]H

E s( ) r,ω( ) + E s( ) r,ω( )[ ]H

μE r( ) ω( ) + E s( ) r,ω( )2

Data

ReferenceScattered Field

Constant Background Autocorrelation

Complex DataConjugate Data

S r,ω( ) = μE r( ) ω( )[ ]H

E s( ) r,ω( )

Page 11: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The desired complex data can be isolated with simple processing.

I r,ω( ) = μE r( ) ω( ) + E s( ) r,ω( )2

= μE r( ) ω( )2

+ μE r( ) ω( )[ ]H

E s( ) r,ω( ) + E s( ) r,ω( )[ ]H

μE r( ) ω( ) + E s( ) r,ω( )2

SubtractInsignificant

Complex DataRemove via Hilbert

transform

S r,ω( ) = μE r( ) ω( )[ ]H

E s( ) r,ω( )

Page 12: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

A beam shaper is used to give a beam with diverse polarization components.

E b( ) sx,sy ,ω( ) = V sx ,sy,ω( )E r( ) ω( )

E xb( )

Eyb( )

Page 13: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

A high-aperture lens gives many propagation directions and therefore many polarization states in the field.

E b( ) sx,sy ,ω( ) = V sx ,sy,ω( )E r( ) ω( )

E l( ) sx,sy ,ω( ) = A sx ,sy,ω( )E r( ) ω( )

Richards and Wolf - Proc. Roy. Soc. London A, 253 (1959) 358

Exl( )

E yl( )

E zl( )

Page 14: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The field in the focal region is found by integrating the incident rays in an angular spectrum.

E b( ) sx,sy ,ω( ) = V sx ,sy,ω( )E r( ) ω( )

E l( ) sx,sy ,ω( ) = A sx ,sy,ω( )E r( ) ω( )

Richards and Wolf - Proc. Roy. Soc. London A, 253 (1959) 358

g ′ r − r,ω( ) = F ′ r − r,ω( )E r( ) ω( )

= − ik2π

E l( ) sx ,sy,ω( )sz sx ,sy( )

∫ e iks⋅ ′ r −r( )dsx dsy

Page 15: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The resulting focal fields display significant fields in all directions.

gx r( )2

gy r( )2

gz r( )2

z = 0

z = 2λ

z = λ

g ′ r − r,ω( ) = F ′ r − r,ω( )E r( ) ω( )

= − ik2π

E l( ) sx ,sy,ω( )sz sx ,sy( )

∫ e iks⋅ ′ r −r( )dsx dsy

Exl( )

Eyl( )

E zl( )

Page 16: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The scattered field can then be propagated back to the detector.

Scattering produces sources

k 2α ′ r ,ω( )g ′ r − r,ω( )

Which leads to a scattered field

E s( ) r,ω( ) = k 2 F T ′ r − r,ω( )∫ α ′ r ,ω( )g ′ r − r,ω( )d3 ′ r

Recall the data expression

S r,ω( ) = μE r( ) ω( )[ ]H

E s( ) r,ω( )

And assuming a linearly polarized reference

S r,ω( ) = μk 2 gξ ′ r − r( )gβ ′ r − r( )∫ α ξβ ′ r ,ω( )ξβ∑ d3 ′ r

2D scanning gives z-dependent PSFs:

S ρ,ω( ) = hξβ ρ;z,ω( )∗∫ α ξβ ρ;z,ω( )ξβ∑ dz

Page 17: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Diverse PSFs/OTFs mean each component of the polarizability produces a different signature in the data.

OTFs at z=0

xx

xy

xz

yz€

yy

zz

hξβ ρ;z,ω( ) = μk 2gξ ρ;z,ω( )gβ ρ;z,ω( )

PSF in terms of the focused field

gx r( )2

gy r( )2

gz r( )2

E xl( )

E yl( )

E zl( )

Page 18: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

• Motivation and background

• The microscope (forward model)

• Data processing (inverse problem)

• Numerical simulations

Page 19: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Assuming a single isolated scatterer, the polarizability and position can be estimated by minimizing a cost function.

α ′ r ,ω( ) = α ω( )δ ′ r − rp( )

C α ω( ),rp( ) = ˜ S q,ω( ) − ˜ h ξβ q;zp,ω( )e−i qx x p +qy y p( )α ξβ ω( )

ξβ∑

Prior knowledge of the polarizability

Parameter estimation using a cost function

Cost Fourier-Domain Data

OTF at Particle Plane

From Lateral Position

PolarizabilityParameters to Estimate

Page 20: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Near the focal plane each OTF can be approximately characterized by one magnitude and one phase function.

OTF Magnitudes OTF Phases

z = 0

z = .5λ

z = .5λ

z = .25λ

z = λ

z = λ

zz€

xx

xy

xz

Page 21: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The approximation makes it easy to repeatedly calculate the cost.

C α ω( ),rp( ) = ˜ S q,ω( ) − ˜ h ξβ q;zp,ω( )e−i qx x p +qy y p( )α ξβ ω( )

ξβ∑

C α ω( ),rp( ) ≈ ˜ S q,ω( ) − ˜ H ξβ q;ω( )e−i qx x p +qy y p +φξβ q;ω( )kz p( )α ξβ ω( )ξβ∑

Magnitude Function Phase Function

Minimization is linear (easy) in polarizability and nonlinear in position

Cost Fourier-Domain Data

OTF at Particle Plane

From Lateral PositionPolarizability

Parameters to Estimate

Page 22: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The Nelder-Mead algorithm is used to iteratively minimize over the three position variables.

en.wikipedia.org/wiki/Image:Nelder_Mead2.gif

Nelder and Mead - The Computer Journal, 7 (1965) 308

Page 23: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

• Motivation and background

• The microscope (forward model)

• Data processing (inverse problem)

• Numerical simulations

Page 24: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Simulated data can be created from a given polarizability and particle position.

α =.433+ .633i .137 − .380i −.308 + .424i.137 − .380i −.540 + .164i −.096 − .293i

−.308 − .424i −.096 − .293i −.087 + .185i

⎢ ⎢ ⎢

⎥ ⎥ ⎥

r = λ−1.67−1.24−.088

⎢ ⎢ ⎢

⎥ ⎥ ⎥

No Noise SNR=13dB SNR=4dB

Real Part

Imaginary Part

Page 25: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

The reconstruction algorithm matches data in the Fourier domain.

r = λ−1.67−1.24−.088

⎢ ⎢ ⎢

⎥ ⎥ ⎥€

α =.433 + .633i .137 − .380i −.308 + .424i.137 − .380i −.540 + .164i −.096 − .293i

−.308 − .424i −.096 − .293i −.087 + .185i

⎢ ⎢ ⎢

⎥ ⎥ ⎥

ˆ α =.417 + .622i .137 − .401i −.339 + .405i.137 − .401i −.543 + .170i −.031− .279i

−.339 − .405i −.031− .279i −.111 + .168i

⎢ ⎢ ⎢

⎥ ⎥ ⎥

r = λ−1.66−1.25−.085

⎢ ⎢ ⎢

⎥ ⎥ ⎥

No Noise

SNR=13dB

Given Parameters

Estimated Parameters

ReconstructionFrom Noisy Data

Magnitude Phase

Page 26: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Monte Carlo simulations show performance degrades with noise and distance from the focal plane.

Page 27: Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy

Davis & Carney, Nanoparticle Polarizability Determination Using Coherent Confocal Microscopy, Boston University, Dec. 3 2007

Summary

• The nanoparticle’s position and wavelength-dependent linear polarizability can be accurately estimated.

• Estimates are from a single coherent confocal spectral image.

• The prior assumption of one small isolated scatterer is required.

• The method relies on polarization diversity in the focused field.

• The method is robust to noise and defocus.

Contact me: [email protected]