37
Tuesday, 03 March 2015 13.15 15.00 Room E330 TFYA62 Course Nanomaterials for biosensors technology Ashutosh Tiwari, PhD, Doc Associate Professor Biosensors and Bioelectronics Centre

Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

Tuesday, 03 March 2015 – 13.15 – 15.00 – Room E330

TFYA62 Course

Nanomaterials

for biosensors technology

Ashutosh Tiwari, PhD, Doc Associate Professor

Biosensors and Bioelectronics Centre

Page 2: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

2

What is nanomaterials?

• Nanomaterials, size in between 1-100 nm are tools to

work in nanotechnology.

• Inorganic: nanopowders, nanoparticle dispersions, and

surface-functionalized nanoparticles.

• Organic: Carbon nanotubes, graphene,

fullerenes, dendrimers, dendrons and hyperbranched

polymers.

• Composite: Nanoclays and core-shell inorganic-organic

hybrids.

Page 3: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

3

Advantages of nanomaterials

• High surface area (capacity)

• Well defined structure

• High reactivity

• Easy dispersability

• Readily tailored for application in

• different environments

• Chemistry/materials developed for remediation

processes are readily tailored to biosensing/detection

Page 4: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

4

Nano-assembly

Sci China Chem, 55, 2012.

Page 5: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

5

Examples of nanostructured

materials

Au and Ag nanoparticles

Dendrimer

Fullerene C60

(0D

)

Page 6: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

6

Size-dependent optical properties of quantum dots Band gap energies

Absorption spectra

Procedures for synthesis of colloidal quantum dots Synthesis of quantum dots in reverse micelles

Synthesis of quantum dots in aqueous media

Hot-matrix synthesis of quantum dots

Types of semiconductor quantum dots Binary quantum dots

Alloyed quantum dots

Core/shell quantum dots: “type-I”

Core/shell quantum dots: “type-II”

Quantum dot/quantum well nanocrystals

Transition-element-doped quantum dots

Surface functionalization of quantum dots

Self-assembly of colloidal quantum dots

Quantum dots

Page 7: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

7

450 500 550 600 650 700 750 8000

1

2

Wavelength (nm)

Abso

rpti

on (

a.u

.)

0

1

2

PL

Inte

nsity

(a.u

.)

3.5 nm

3.8 nm

4.0 nm

4.5 nm

(a)

(b) (c)

Small LargeSizes of Quantum Dots

(a) Photoluminescence of CdSe QD samples exposed to ultraviolet light. (b) Absorption and

PL spectra of CdTe QDs with varying sizes as indicated for each sample. (c) TEM image of a

film composed of spherical CdTe QDs. The inset in (c) is a selected area electron diffraction

(SAED) pattern from the QD film.

CdSe quantum dots

Page 8: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

8

Popular 1D & 2D nanomaterials

Carbon nanotube

Graphene

Au nanorod

Page 9: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

9

2D and 3D nanostructures

Thin film 3D assembly

100 nm

Page 10: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

10

Functional nanomaterials

• Polymers and composites, one of emerging frontiers in materials science and biomedical studies, deal with induced conformational changes in their structures.

• Smart/and intelligent materials are being formulated in response to the environmental changes, typically with temperature, pH, electricity and magnetism etc.

• The intelligent materials could modulate their conformations and/or structures in these physical environments without causing biological and environmental harm, which thereby make them mainly attractive to biosensor, diagnosis, target-specific molecular recognition, metabolic control mechanisms and drug delivery.

Page 11: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

11

Composite or

miniaturize

FORM:

INTELLIGENCE

ADADAPTABILITY

RESPONSIVENESS

DDS In vivo with smart properties:

Biodegradable form

Encapsulation ratio

Polymer

Biocompatibility

Self-assembly or ‘hard’ synthesis

Strategies

Nanofabrication:

•DDS

•Porous and hard particle

•SEDDS, SMEDDS

•Polymer and amphiphile self-assembly

Environment:

Stimuli & responsiveness -

T, t, pH, I, Eh, M+,

reductase enzyme

MIMIC?

NOVEL?

Smart methods:

Biosensor use?

Biomaterials (novel)

key:

T = temperature, t = time,

I = ionic strength, Eh = redox status,

M+ =metal ion sensitivity, e.g. Ca2+

-phenomenological

representation of bottom-up

materials design

considerations.

-the form, environment and

nanofabrication method are

important factors in

production of a smart

technology that is variable in

structure and its use.

Designing strategy

Tiwari, A and Kobayashi, H. (Eds.) In Responsive materials and methods. Wiley, USA 2013.

Page 12: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

12

Polymeric nanomaterials

Amphiphilic blocks consist of hydrophilic and hydrophobic chains. They

can self-assemble at the polymeric architectonic.

The synthesis of such structures could be accomplished by living anionic

polymerization, controlled/”living” radical polymerization (CRP) techniques

for example nitroxide-mediated polymerization (NMP), atom-transfer

radical polymerization (ATRP) or reversible addition-fragmentation chain

transfer (RAFT) polymerization.

The cross linking of amphiphilic polymers mainly in aqueous media – as

biomedical applications are targeted- together with the stabilization of

the self-assembled supramolecular structures by crosslinking.

The crosslinking of the self-assembled structure by the introduction of

covalent bonds between chains simultaneously or after assembly is

an efficient way to stabilize such dynamic supramolecular systems.

The stability of supramolecular structures strongly depends on the

nature and length of the polymers, the solvent and the temperature.

Tiwari, A, Kobayashi, H. Turner, A.P.F. (Eds.) In Biomedical materials and diagnostic devices. Wiley, USA 2012.

Page 13: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

13

Porous or impenetrable

SOLID or GEL

(50-200 nm)

Active is encapsulated in core

and/or in surface layering depending on log P

Part A

Part B

SLC

~50 nm

SLN

~50 nm

Polymer

Micelle

~150 nm

Nano-

sphere

~150 nm

Liposome

~25 nm

Micro-

emulsion,

Micelle

<10 nm

Quantum

-dot

~nm

Pro-drug

<5 nmL

ipid

Lip

id

Lip

id

Lip

id

PL

GA

, P

LA

,

PC

L

Ph

osp

ho

lipid

Su

rfa

cta

nt

Ch

em

ica

l

co

nju

ga

te

Fine

Emulsion

~400 nm

Lip

id

Hollow or

filled

Use in other

systems

such as tablets

or soft gelatin

capsules

Conjugated

antibody

Stimulus

modifier

Simple or

Polymer

coated

Drug +

linker+

particle

carrier

Pickering

Emulsion

Nano-

Emulsion

Formulation materials:

Natural, chemically-derivatized

Synthetic-biocompatible

LbL or

Adsorbate or

Electrostatic

deposition

Implants:

Prosthetics &

mimetic

Designs of polymers, particle

surfaces and interfaces, soft

nanotechnology products and

materials self-assembly- A flow

chart

Part A - forms such as solid lipid

nanoparticles and solid lipid

capsules, their size range and key

excipient type

-part B indicates the subtlety of

modification that is open to

theranostics scientists

Fabrications and

processing

Tiwari, A.; Tiwari, A. (Eds.) In Nanomaterials in drug delivery, imaging, and tissue engineering. Wiley, USA 2013.

Page 14: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

14

Self-assembly Morphological determination of assemblies of amphiphilic blocks

The design of the copolymer at the

molecular level, i.e. the nature of the

blocks, the blocks length and the

chain architecture directly impact the

assembly and morphology.

The type of structure formed is due to the inherent curvature of the molecule, which

can be estimated through calculation of its dimensionless packing parameter.

Blanazs, A.; Armes, S.P.; Ryan, A.J. (2009) Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications.

Macromol. Rapid Commun. 30, 267–277.

p = v/aolc p = packing parameter

v = volume of hydrophobic chains

ao = optimal area of head group

lc = length of hydrophobic tail

Page 15: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

15

Electrospun nanofibers

In the electrospinning process, the

polymer fibers-mat can be

extruded under an anode spinneret

with the electric force to grounded

collector.

- Concentration of polymer solution

- Molecular weight of polymer

- Humidity of electro spinning chamber

- Solvent of solution

- fixed voltage, flow rate and distance

from needle to ground.

Page 16: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

16

Page 17: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

17

Core-shell nanocomposite

CdSe

Radial distance

Po

ten

tial

EV

EC

Core

organic

molecule

Core/Shell (type-I)

CdSe

Core/Shell (type-II)

CdSe

ZnS ZnTe

CdS

HgS

CdS

Quantum Dot/Quantum Well

Ye

Yh

Illustrations of various types of QDs (top), and potential energy diagrams for the

respective QDs’ electrons and holes (bottom). The dashed and solid black lines

illustrate the electron (Ye) and hole (Yh) wavefunctions, respectively.

Page 18: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

18

Polymer vesicles

Formation of polymer vesicles by

simultaneous chain growth and

self-assembly via controlled

radical aqueous emulsion

polymerization

Chem. Commun., 2009, 2887-2889

Page 19: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

19

Micelle-vesicle

Reversible light-induced micellization and micelle-vesicle

transition of hydrogen bonded polymers

Angew. Chem. Int. Ed. 2006, 45, 3846-3850

Page 20: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

20

Thermo-sensitive nanogel

XXX T > LCST

XX

X

Mn > critical Mn

M1 = hydrophilic monomer, whose polymer possesses a LCST

R = bifunctional monomer

R• = initiator of radical polymerization

hydrophilic polymer

(PEO)

thermosensitive polymer

(PDEAAm)

MacroRAFT

agent

T > LCST

M1, M2, R•

Chain growth,

assembly and

crosslinking

M1, M2, R• T < LCSTM1, M2, R•

XXX

XXX T > LCST

XX

X

Mn > critical Mn

M1 = hydrophilic monomer, whose polymer possesses a LCST

R = bifunctional monomer

R• = initiator of radical polymerization

hydrophilic polymer

(PEO)

thermosensitive polymer

(PDEAAm)

MacroRAFT

agent

T > LCST

M1, M2, R•

Chain growth,

assembly and

crosslinking

M1, M2, R• T < LCSTM1, M2, R•

Synthesis pathway to thermo-sensitive nanogel particles:

simultaneous chain growth, assembly and crosslinking.

Langmuir 2009, 25, 5258–5265

Page 21: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

21

Biomolecular interactions

-nanoparticles interacting with proteins,

membranes, cells, DNA and organelles

-establish a series of nanoparticle/biological

interfaces

Nel, A.E. et al. (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8, 543-557.

- depends on colloidal forces as well

as dynamic biophysicochemical

interactions

Page 22: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

22

Hyperbranched polyester functionalized

gold nanoparticles

+

Drop casting EDC/NHS

(A)

(B)

ITO coated

glassH40-Au/ ITO

Carboxyl gold nanoparticle

(Au-COOH)

Amine functionalized Boltorn® H40

(Boltorn® H40-NH2)

Amine functionalized hyperbranched gold (H40-Au) nanoparticle

Urs/H40-Au/ ITO

DDC/NHS

Au NPs H40 -NH2

-COOH Urs-CO-NH-

Talanta 78, 1401–1407, 2009

Fictionalization of gold

nanoparticles with

hyperbranched polyester was

conducted via a two-step

procedure.

gold nanoparticle was

functionalized with mercapto

propionic acid (Au–COOH).

amine functionalized

hyperbranched Boltorn H40

(H40–NH2) was covalently

grafted onto Au–COOH

nanoparticles using N,N-

dicyclohexylcarbodiimide

(DCC) and

Nhydroxysuccinimide (NHS)

mediated reaction

Page 23: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

23

Nanofibers - sensor fabrication

Schematic diagram of the fabrication process for polyelectrlyte reactor on the Pt-disc electrode: (a)

Pt-disc electrode coated with PSA/PSSA electrospun fibes-mat, (b) self-assembly of ABBA upon

PSA/PSSA electrospun fibes-mat, (c) interaction of glucose with ABBA over the electrode surface

during glucose sensing, and (d) Formation of boronic ester (VII) via the reaction of 3-aminobenzene

boronic acid (VI) and glucose at physiological pH.

Talanta, 82, 1725, 2010.

Pt-electrode

-+

+

-+

-

-

+ -

- ++

-

--

-

-

-

+

-+

++

+

+-

+

Pt-electrode

-+

+

-+

-

-

+

--+

-

--

-

-

-

+

-

++

+

+

-+

-+

+

++

-

-

+

--+

-

--

-

-

-

+

-

++

+

+

- +

z-

+ -

+-

+ -

+

BOH

OH

NH2

BOH

OH

NH2 RR

OHOH

R

R

O

O

B-

OH

NH2

+ +

--Pt-electrode

a b c

Sensing

Adsorption

PSA/PSSA electrospun

fibers-matABBA

Boronic ester

with glucose

Glucose

B

OH

OH

NH2

RR

OHOH

R

RO

OB-

OH

NH2

VI VIII

pH 7.4

B-

OH

OH

NH2

OHOH

-

+ 2H2O

VII

d

Page 24: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

24

Tunable biosensors

ZnOnanoparticles

CHIT-g-PVAL matrix

ZnO/CHIT-g-PVAL /ITOnanocomposite electrode

GOD/ZnO/CHIT-g-PVAL /ITOnanocomposite bioelectrode

GOD

Spin coating+

(a) (b)

ITO

ITO

Schematic illustration of (a) fabrication of ZnO/CHIT-g-PVAL core-shell nanocomposite electrode,

and (b) immobilization of GOD onto core-shell nanocomposite electrode.

i) ZnO nanoparticles enhances the sensitivity of bioelectrode, ii) pH responsive, high swelling

behavior of core-shell nanocomposite film which provides small surface reaction zone for

interferences and good impulse propagating materials for glucose biosensing.

Shukla, S.K., Deshpande, S.R., Shukla, S.K., Tiwari, A. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly

(vinyl alcohol) core-shell nanocomposite. Talanta, 99, 283–287.

Page 25: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

25

Template-directed hierarchical self-assembly of

graphene based ultrasensitive biosensors

-functionalised graphene

as a fundamental building

block to obtain

hierarchically ordered

graphene-enzyme-

nanoparticle hybrid

structures for new

electrode materials

-hybrid structures provide

more sensitive and

efficient electrochemical

sensors, biosensors and

catalytic electrodes.

Parlak, O., Tiwari, A., Turner, A. P. F., Tiwari, A. (2013) Template-directed hierarchical self-assembly of graphene based

hybrid structure for electrochemical biosensing. Biosensors and Bioelectronics, 49, 53-62.

Page 26: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

26

On/off-switchable zipper-like

bioelectronics on a graphene interface

Adv. Mater. 2014, 26, 482–486.

-smart and flexible

bioelectronics on

graphene: emerged a

new frontier in the

field of biosensors

-biodevices suffer

from a lack of control

and regulation

-on/off-switchable

zipper-like graphene

interface: manipulate

biomolecular interactions

Page 27: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

27

MRI-visual order–disorder micellar

nanostructures

Fabrication of the MRI visual SPION@PS-b-PAADOx/ FA cancer nano-theranostics module.

Adv. Healthcare Mater, 4, XXX, 2014.

- SPIONs: Superparamagnetic iron oxide nanoparticles

- SPION@PS-b-PAADOx/ FA: amphiphilic poly(styrene)- b -poly(acrylic acid)-doxorubicin with folic acid

(FA) surfacing

Composite-DOx/FA

Recognition

Composite-DOx/FA

Dissemble

Drug release

Composite-DOx/FA

Disintegration

Tumor

microenvironment

Acidic pH

Page 28: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

28

1) ChOx and ChEt

2) EDC/NHS

Integrated self-reporting

nanobiosensing

Gold nanorods with a monolayer of enzymes-conjugated

amphiphilic block copolymer for NIR based cholesterol

nanobiosensing

Page 29: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

29

On/Off-switchable immunosensors

Deshpande, S., Turner, A.P.F. and Tiwari, A. (2012). Label-free nano immunosensor for diagnosis of cardiac injury based on localised surface plasmon

resonance. Label-free Technologies, 1-3 November 2012, Amsterdam, Elsevier.

Gold nanorod-based plasmonic biosensing displayed much higher selectivity and

sensitivity in the picograms/mL range for trace analytes

b) Antibody conjuagtedAuNR

c) AuNR with PNIPAAm

d) Ab-Ag interaction at 25OC

e) Ab-Ag interaction at 37OC

Thermo-switching behaviour

AntibodyTroponin (Ab)

Antigen

Troponin T (Ag)Poly(N-isopropylacrylamide)(PNIPAAm)

a) Gold nanorods(AuNR)

Schematic

illustrations (a-e)

of fabrication

steps of smart

nano-

immunosensor

and regeneration

of sensor at

room

temperature.

Page 30: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

30

(a) Troponin T-PNIPAM coil complex and (b) Troponin T- PNIPAM globular complex

(a) (b) -Calculations show

temperature dependence

of secondary structures

namely coil and globular

of PNIPAM which in turn

modulates the interaction

between the antibody

and troponin-T in a

temperature responsive

way.

Electrostatic energy, van der Waals energy, Internal energy, Gas phase energy, non-polar contribution to the solvation free

energy, electrostatic contribution to the solvation free energy, sum of non-polar and polar contributions to solvation, sum of the

electrostatic solvation free energy and electrostatic energy and final estimated binding free energy.

Binding Free Energy of Complexes

Page 31: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

31

High-throughput Electrocatalytic

Nano-bioreactors

Two-dimensional gold-tungsten disulphide bio-interface

Parlak, O.; Seshadri, P.; Lundström, I.; Turner, A.P.F; Tiwari, A. Advanced Materials Interfaces, DOI: 10.1002/admi.201400136, 2014.

Page 32: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

32

TEM images of WS2 nanosheets

Nano-bioreactors

Page 33: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

33

Electrocatalytic Activity of Nano-bioreactors

Amperometric responses (a) and the calibration curves (b) for the sensing of H2O2 with

WS2/HRP and WS2/Au NPs/HRP electrodes in 0.1 M PBS at 0.5 V applied potential vs.

Ag/AgCl.

Page 35: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

35

Page 37: Nanomaterials for biosensors technology · Part B SLC ~50 nm SLN ~50 nm Polymer Micelle ~150 nm Nano-sphere ~150 nm Liposome ~25 nm Micro-emulsion, Micelle

www.liu.se Thank you!